Javam™ Data Objects 2.0

JSR 243

Final

23 February 2006
JavaData Objects Expert Group

Specification Lead: Craig Russell,
Sun Microsystems Inc.

Technical comments:
jdo-comments@sun.com
Process comments:
community-process@sun.com

D Sun

microsystems

Sun Microsystems, Inc.

4140 Network Circle

Santa Clara, California 95054
408 276-5638 fax: 408 276-7191

Specification: JSR-000243 Java(tm) Data Objects ("Specification")

Version: 2.0

Status: Final Release

Release: 20 March 2006

Copyright 2006 SUN MICROSYSTEMS, INC.
4150 Network Circle, Santa Clara, California 95054, U.S.A

All rights reserved.

LIMITED LICENSE GRANTS

1. License for Evaluation Purposes. Sun hereby grants you a fully-paid,
non-exclusive, non-transferable, worldwide, limited license (without the right
to sublicense), under Sun's applicable intellectual property rights to view,
download, use and reproduce the Specification only for the purpose of internal
evaluation. This includes (i) developing applications intended to run on an
implementation of the Specification, provided that such applications do not
themselves implement any portion(s) of the Specification, and (ii) discussing
the Specification with any third party; and (iii) excerpting brief portions of
the Specification in oral or written communications which discuss the
Specification provided that such excerpts do not in the aggregate constitute a
significant portion of the Specification.

2. License for the Distribution of Compliant Implementations. Sun also grants

you a perpetual, non-exclusive, non-transferable, worldwide, fully paid-up,
royalty free, limited license (without the right to sublicense) under any

applicable copyrights or, subject to the provisions of subsection 4 below,

patent rights it may have covering the Specification to create and/or distribute

an Independent Implementation of the Specification that: (a) fully implements

the Specification including all its required interfaces and functionality; (b)

does not modify, subset, superset or otherwise extend the Licensor Name Space,
or include any public or protected packages, classes, Java interfaces, fields or
methods within the Licensor Name Space other than those required/authorized by
the Specification or Specifications being implemented; and (c) passes the
Technology Compatibility Kit (including satisfying the requirements of the
applicable TCK Users Guide) for such Specification ("Compliant Implementation").
In addition, the foregoing license is expressly conditioned on your not acting
outside its scope. No license is granted hereunder for any other purpose
(including, for example, modifying the Specification, other than to the extent

of your fair use rights, or distributing the Specification to third parties).

Also, no right, title, or interest in or to any trademarks, service marks, or

trade names of Sun or Sun's licensors, Sun or the Sun's licensors is granted

hereunder. Java, and Java-related logos, marks and names are trademarks or
registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

3. Pass-through Conditions. You need not include limitations (a)-(c) from the
previous paragraph or any other particular "pass through" requirements in any
license You grant concerning the use of your Independent Implementation or
products derived from it. However, except with respect to Independent
Implementations (and products derived from them) that satisfy limitations
(a)-(c) from the previous paragraph, You may neither: (a) grant or otherwise
pass through to your licensees any licenses under Sun's applicable intellectual
property rights; nor (b) authorize your licensees to make any claims concerning
their implementation's compliance with the Spec in question.

4. Reciprocity Concerning Patent Licenses.

a. With respect to any patent claims covered by the license granted under
subparagraph 2 above that would be infringed by all technically feasible
implementations of the Specification, such license is conditioned upon your
offering on fair, reasonable and non-discriminatory terms, to any party seeking
it from You, a perpetual, non-exclusive, non-transferable, worldwide license
under Your patent rights which are or would be infringed by all technically
feasible implementations of the Specification to develop, distribute and use a
Compliant Implementation.

b With respect to any patent claims owned by Sun and covered by the license
granted under subparagraph 2, whether or not their infringement can be avoided
in a technically feasible manner when implementing the Specification, such
license shall terminate with respect to such claims if You initiate a claim

against Sun that it has, in the course of performing its responsibilities as the

Sun, induced any other entity to infringe Your patent rights.

¢ Also with respect to any patent claims owned by Sun and covered by the license
granted under subparagraph, where the infringement of such claims can be avoided
in a technically feasible manner when implementing the Specification such

license, with respect to such claims, shall terminate if You initiate a claim

against Sun that its making, having made, using, offering to sell, selling or
importing a Compliant Implementation infringes Your patent rights.

5. Definitions. For the purposes of this Agreement: "Independent Implementation"
shall mean an implementation of the Specification that neither derives from any

of Sun's source code or binary code materials nor, except with an appropriate

and separate license from Sun, includes any of Sun's source code or binary code
materials; "Licensor Name Space" shall mean the public class or interface
declarations whose names begin with "java", "javax", "com.sun" or their

equivalents in any subsequent naming convention adopted by Sun through the Java
Community Process, or any recognized successors or replacements thereof; and
"Technology Compatibility Kit" or "TCK" shall mean the test suite and

accompanying TCK User's Guide provided by Sun which corresponds to the

Specification and that was available either (i) from Sun's 120 days before the
first release of Your Independent Implementation that allows its use for
commercial purposes, or (i) more recently than 120 days from such release but
against which You elect to test Your implementation of the Specification.

This Agreement will terminate immediately without notice from Sun if you breach
the Agreement or act outside the scope of the licenses granted above.

DISCLAIMER OF WARRANTIES

THE SPECIFICATION IS PROVIDED "AS IS". SUN MAKES NO REPRESENTATIONS OR
WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT
(INCLUDING AS A CONSEQUENCE OF ANY PRACTICE OR IMPLEMENTATION OF THE
SPECIFICATION), OR THAT THE CONTENTS OF THE SPECIFICATION ARE SUITABLE FOR ANY
PURPOSE. This document does not represent any commitment to release or implement

any portion of the Specification in any product. In addition, the Specification

could include technical inaccuracies or typographical errors.

LIMITATION OF LIABILITY

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SUN OR ITS LICENSORS BE
LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUE, PROFITS OR
DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES,
HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF OR
RELATED IN ANY WAY TO YOUR HAVING, IMPELEMENTING OR OTHERWISE USING USING THE
SPECIFICATION, EVEN IF SUN AND/OR ITS LICENSORS HAVE BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

You will indemnify, hold harmless, and defend Sun and its licensors from any
claims arising or resulting from: (i) your use of the Specification; (ii) the

use or distribution of your Java application, applet and/or implementation;
and/or (iii) any claims that later versions or releases of any Specification
furnished to you are incompatible with the Specification provided to you under
this license.

RESTRICTED RIGHTS LEGEND

U.S. Government: If this Specification is being acquired by or on behalf of the
U.S. Government or by a U.S. Government prime contractor or subcontractor (at
any tier), then the Government's rights in the Software and accompanying
documentation shall be only as set forth in this license; this is in accordance
with 48 C.F.R. 227.7201 through 227.7202-4 (for Department of Defense (DoD)
acquisitions) and with 48 C.F.R. 2.101 and 12.212 (for non-DoD acquisitions).

REPORT

If you provide Sun with any comments or suggestions concerning the Specification
("Feedback"), you hereby: (i) agree that such Feedback is provided on a
non-proprietary and non-confidential basis, and (ii) grant Sun a perpetual,
non-exclusive, worldwide, fully paid-up, irrevocable license, with the right to
sublicense through multiple levels of sublicensees, to incorporate, disclose,

and use without limitation the Feedback for any purpose.

GENERAL TERMS

Any action related to this Agreement will be governed by California law and
controlling U.S. federal law. The U.N. Convention for the International Sale of
Goods and the choice of law rules of any jurisdiction will not apply.

The Specification is subject to U.S. export control laws and may be subject to
export or import regulations in other countries. Licensee agrees to comply
strictly with all such laws and regulations and acknowledges that it has the
responsibility to obtain such licenses to export, re-export or import as may be
required after delivery to Licensee.

This Agreement is the parties' entire agreement relating to its subject matter.

It supersedes all prior or contemporaneous oral or written communications,
proposals, conditions, representations and warranties and prevails over any
conflicting or additional terms of any quote, order, acknowledgment, or other
communication between the parties relating to its subject matter during the term
of this Agreement. No modification to this Agreement will be binding, unless in
writing and signed by an authorized representative of each party.

Rev. January, 2006

Acknowledgments

I have come to know Rick Cattell during many shared experiences in the Java database
standards arena. Rick is a Distinguished Engineer at Sun Microsystems and has been the
database guru and Enterprise Cardinal in the Java “Church” for many years. I am deeply
in his debt for his many contributions to JDO, both technical and organizational.

I want to thank the experts on the JDO expert group who contributed ideas, APIs, feed-
back, and other valuable input to the standard, especially Heiko Bobzin, Constantine
Plotnikov, Luca Garulli, Philip Conroy, Steve Johnson, Michael Birk, Michael Rowley,
Gordan Vosicki, and Martin McClure.

I want to recognize Michael Bouschen, David Jordan, David Ezzio, Dave Bristor, and Jeff
Norton for their careful review of JDO for consistency, readability, and usability. With-
out their contributions, JDO would not have been possible.

Since the publication of JDO 1.0, many people have contributed time, energy, and ideas
to the JDO effort. I want to recognize these significant contributors: Robin Roos, Abe
White, David Jordan, Michael Bouschen, Michael Watzek, Wes Biggs, Geoff Hendry,
Christian Romberg, David Tinker, Patrick Linskey, Bernhard Sporkmann, David Ezzio,
Dion Almaer, Dirk Bartels, Dirk Theune, Eric Samson, Gordan Vosicki, Keiron McCam-
mon, Matthew Adams, Oliver Kamps, Rod Johnson, Erik Bengtson, Andy Jefferson,
Michelle Caisse, and Joerg von Frantzius.

Java Data Objects 2.0

Table of Contents

1 Introductioncovutiiiiinreneeenseenseensonsssnsasnscnnsos 22
LT OVEIVIEW .ottt e e e e e e 22
L2 S0P . . e it 23
L3 Target AUiENCe oottt e e e e e e e 23
L4 Organizationottt ettt e e et e e 23
1.5 Document CONVENTION\ttt ettt et et e ettt et et e s 24
1.6 Terminology CONVENtIONottt ettt e e e e e eee 24

2 OVEIVIEW . .tittintieeneeneeneescescoscnssnssssoassoscnssnsnnans 25
2.1 Definitionsottt 25

2.1.1 JDO common Interfaces.ttt e 25
2.1.2JDO in a managed enVIrONMEeNLt. oottt ettt 26
Enterprise Information System (EIS) 26

EIS ReSOUICE.ot e e e e e 27
Resource Manager (RM) e 27

L1 113157 5 o) o 27
Application Component it 27
Session Beans 27
Message-driven Beans 27

Entity Beans 27
Helper objectso e 27
L10) 11 1 T3 27
22Rationale e 28
2.3 G0als .. 29

3 JDOArchitectureccciiiiieieiiieinenneenceocescncsncnnnns 31
Bl OVeIVIEW .« ottt 31
32JDO ArChiteCturet e 32

B2 T TWOHEI USAZE . . ¢ o e et ettt e e e e e e e e e e e e e e e e 32
3.2.2 Application SEIVET USAZE . . . v vt vttt et et et et e et e 32
Resource Adapterttt e 32
Pooling . .. 33
CONMIACES . . . o ettt et e e e e e e 33

4 Rolesand ScCenariosooiitiieiieieeneeeeeoceocnscncsncnnans 36

A1 ROLES .t e 36
4.1.1 Application Developer. 36
4.1.2 Application Component Provider i, 36
4.1.3 Application Assembler 36
A1 A DEPIOYET. . o ottt 37
4.1.5 System AdmInIStratorttt ettt et 37
4.1.6JDO Vendor.o 37
4.1.77 Connector Provider i 37
4.1.8 Application Server Vendort 37
4.1.9 Container Provider. 38

JDO 2.0 7 February 28, 2006

Java Data Objects 2.0

4.2 Scenario: Embedded calendar management system, 38
4.3 Scenario: Enterprise Calendar Manager 39
S Life Cycleof JDOInNstancescccvvteieeeneconscsnsosnsonncons 41
S OVeIVIEW . it e 41
5.2 G0als .. 42
5.3 AIChIteCtUI: . . .ottt et e e 42
JDO INStANCESottt e 42

JDO State Manager.ov ittt e 43

JDO Managed Fields i e 43
SATDOIAEntityo e 43
Three Types of JDO identityt 44
UNIQUING . . . o ettt e e e 45
Change of identity.ot e 45

JDO Identity SUPPOTtot e 45

5.4.1 Application (primary key) identityttt 46
Compound Identityo 47

5.4.2 Single Field Identity. 47
5.4.3 Datastore 1dentityottt e 49
5.4.4 Nondurable JDO identity.ot 49
SSLife Cycle Statesottt e 50
Datastore Transactionsttt e 50

5.5.1 Transient (Required) e 51
5.5.2 Persistent-new (Required) i 51
5.5.3 Persistent-dirty (Required). 52
S5.54 Hollow (Required) e 52
5.5.5 Persistent-clean (Required) i 53
5.5.6 Persistent-deleted (Required). 53
5.5.7 Persistent-new-deleted (Required). i 53
5.5.8 Detached-clean (Required)c ... 54
5.5.9 Detached-dirty (Required). i 54

5.6 Nontransactional (Optional) e 54
5.6.1 Persistent-nontransactional (Optional) 56
5.6.2 Persistent-nontransactional-dirty (Optional) 57

5.7 Transient Transactional (Optional) 58
5.7.1 Transient-clean (Optional). e 58
5.7.2 Transient-dirty (Optional) it 58

5.8 Optimistic Transactions (Optional) 58
6 The Persistent Object Modelc.ciiiiiiiiiiiirenncnnnnnns 68
6.1 OVEIVIEW . . ot e 68
6.2 GOAlS ...t 69
6.3 ArChItECtUIE e e 69
Persistence-capable. 69

First Class Objects and Second Class Objects, 70

First Class ObJectsottt e e e e 70
Second Class ObJECtsottt e 70

ATTAYS .« o ottt e e 71

JDO 2.0 8 February 28, 2006

Java Data Objects 2.0

Primitiveso 72
Interfaces. e 72

6.4 Field types of persistence-capable classes 72
6.4.1 Nontransactional non-persistent fields. 72
6.4.2 Transactional non-persistent fields 72
6.4.3 Persistent fields 72
Precision of fields 72
Primitive typesot 73
Immutable Object Class typesv ittt e 73
Mutable Object Class typesot vttt ettt 73
Persistence-capable Class typesot 73

ODbJeCt Class tYPE . . oottt et e e e e e 73
Collection Interface types. oo v it e 74

Other Interface types.ot 74

ATTAYS et e 74

6.5 Inheritance 74
7 PersistenceCapablecciiiiiiiiiiiiititrtccttstccsnasanns 76
7.1 Persistence Managerttt e 76
T2Make DIrty e 77
T3IDOIAENLLYottt e e 77
T30 VErSION. . oot 77
7.4 Status INLEITOZALION .« . . o v\ttt et et e e e et e e e e e e e e e 78
TA L DIty . .o e 78
742 Transactional 78
TAZ PErSISIENT . . oottt e 78
TAANCW . .o 78
TASDeleted. e 78
TA.6Detached 78
TSNEW INSTANCE . . . ottt e e e e e e e e e e e 79
7.6 State Managerttt e 79
T.TReplace Flagso 79
T.8Replace Fields e 80
7.9 Provide Fields 80
710 Copy Fields e 80
7T Static Fieldso 80
7.12JDOidentity handling e 80
interface ObjectldFieldSupplier 82
interface ObjectldFieldConsumer. i, 82
interface ObjectldFieldManager. i, 82

T.13 Detachable e 82
8 JDOHeIperoiiiitiiiiiiiitiintenetonscsnscsnscsssossssnsssns 84
8.1 Persistence Managerttt e 84
B2Make Dirtyo 84
83IDOIAENtityottt e 85
A TDO VEISION ..ttt ettt et e e e e e 85
8.5 Status INterrOgationottt et 85

JDO 2.0 9 February 28, 2006

Java Data Objects 2.0

B 0. L DIty . o et 85
8.5.2 Transactional i e 85
853 PErSIStENL ottt e 86

B 0 N W o 86

B 5.5 D leted. . ..o 86
8.5.6 Detached 86

8.6 PersistenceManagerFactory methods 86
9 JDOImpIHeIpercoviiiiiiiiiiereeneoseesnssessssscssnasasns 89
9.1 JDOImMpPIHEIPET aCCESS . . o . vttt e e e e 89
0.2 Metadata QCCESS . . . v vttt et e e 89
9.3 Persistence-capable instance factory i 90
9.4 Registration of PersistenceCapable classes 90
9.4.1 Notification of PersistenceCapable class registrations 90
RegisterClassEvent. i e 91
RegisterClassListener oo e 91

9.5 Security adminiStrationttt e 91
9.6 Application identity handling 92
9.7 Persistence-capable class state interrogationo.iiian.. 92
10 InstanceCallbacksccciiiiiiiiiiirnirnieneeerensensenanns 94
10.1 jdoPostLoad 94
T0.2 JAOPIESIOre . . . oot 94
10.3JdoPreCleart e 95
10.4 jdoPreDeleteo 95
10.5 jdoPreDetach and jdoPostDetach 95
10.6 jdoPreAttach and jdoPostAttach 96
11 PersistenceManagerFactorycooiiiieiiinnnrccsnosccnnnnas 97
11.1 Interface PersistenceManagerFactory 97
Construction by Properties e 99

11.2 ConnectionFactoryottt e e e 100
11.3 PersistenceManager ACCESS v vttt ettt et et 101
11.4 Close the PersistenceManagerFactory 101
11.5 Non-configurable Properties i, 102
11.6 Optional Feature SUpportttt e et e e 102
11.7 Static Properties COnStruCtOrttt et en 104
11.8 Second-level cache management i, 105
Evicting objects fromthecache 105
Pinning objectsinthecache 106
Unpinning objectsinthecache. 106

11.9 Registering for life cycle events i 106
12 PersistenceManagereceeeeeescesscssscsssssscsnscnnss 107
I2.1 OVEIVIEW . ottt et e e e e e e e e e e 107
12.2Goals ... 107
12.3 Architecture: JDO PersistenceManagerut it 107
124 Threadingot e 108
125 Class Loadersot 108

JDO 2.0 10 February 28, 2006

Java Data Objects 2.0

12.6 Interface PersistenceManagerouintiiit i 109
State Transitions for persistent instances atclose. 110

Null managementttt e 110

12.6.1 Cache management ittt 110
12.6.2 Transaction factory interfacet 112
12.6.3 Query factory interface i 112
12.6.4 Extent Management.ottt 112
Extents of interfaces e 113

12.6.5 JDO Identity managementottt 113
Getting Multiple Persistent Instances 115
Getting an Objectby Classand Key. 115

12.6.6 Persistent instance factoryottt 116
12.6.7 JDO Instance life cycle management.cotiuinnennnn... 116
Make Instances PersiStento v vttt ettt e 116

Delete persistent INStANCESo vttt ettt et 117

Make Instances tranSIeNt. v vttt e e 118

Make instances transactional 118

Make instances nontransactional i . 119

12.6.8 Detaching and attaching instances.coutiiiennennenn.. 119
Committing the transaction with DetachAllOnCommit. 119
Serializing Persistent Instances. i 120
Explicitdetach 120
Behavior of Detached Instances i 121

127 Fetch Plan 121
1271 Fetch Groups . . . oottt e e e e e e e e 122
12.7.2 MaxFetchDepth 123
12.77.3 ROOLINSTANCES - .« . v vt ettt e et et e e e e e e e 124
12.7.4 Recursion-depth. e 124
12.7.5 The FetchPlan interface i 124
12.7.6 Defining fetch groups e 127
12.8 FIushing inStancesttt e ettt aan 129
12.9 Transaction cOmPpletionttt 130
12.10 Multithreaded Synchronization 130
12.11 User associated ODJECtSottt et e e e 131
12.12 PersistenceManagerFactory 131
12.13 Objectld class managementttt ettt 131
I2.14 SEQUENCE . . .ottt et e e e 132
12.15 Life-cycle callbacks 133
InstanceLifecycleEvent. 135

12.16 Access to internal datastore CONNECHIONvvv vttt e 136
SQL Portability 137

13 Transactions and Connectionscccvveeenreencoesconscnnss 138
I3. 1 OVEIVIEW . .ottt e e e e e e 138
13.2Go0als ... 138
13.3 Architecture: PersistenceManager, Transactions, and Connections 138
Connection Management SCENArios o.vt ettt 139

JDO 2.0 11 February 28, 2006

Java Data Objects 2.0

Native Connection Managementuuteneenennennennenn.. 139
Non-native Connection Management.otiutinennennenn.. 140
Optimistic Transactionsttt e e 140

13.4 Interface Transactionttt e 141
13.4.1 PersistenceManager. v vttt et e 141
13.4.2 Transaction OPLONS v vt vttt ittt et et et e 141
Nontransactional access to persistent values 141
Optimistic concurrency control i 141

Retain values at transaction commit.ttt inennenenen.. 142
Restore values at transaction rollback 142

13.4.3 Synchronization« .ot 142
13.4.4 Transaction demarcationuutntntnt oot 143
Non-managed envVIronNmMent.uu ettt 143
Managed enVIrONMENt ittt 144
13.4.5RollbackOnly. e 144
13.5 Optimistic transaction MaNAZEMENT ottt v vt e et e et e e e e e e eeenens 145
14 QUEIY ..vvtiiiieiieeeeeeseossessosssesessscsssssssnssasanasas 147
TA T OVEIVIEW . .ottt e e e e e e e e e e 147
T4.2 GOals ..o e e 147
14.3 Architecture: QUETYttt e e e e 148
14.4 Namespaces N QUETIES o v vttt et et e e et e e et e e e e 149
Keywords 150

14.5 Query Factory in PersistenceManager interface 150
14.6 Query Interface e 152
Persistence Manager.ot 152

Fetch Plan 152
Queryelementbinding i e 153

QUETY OPLIONS . . o ettt e e e e e e e 154

Query modification. e 154

Query evaluation. 154

Query compilation 154

14.6.1 QUETY @XECULION. .« . . v vttt e et et e e e e e e et e et 155
14.6.2 Filter specification ottt e ettt 156
14.6.3 Parameter declarationttt 160
Implicit parameter declaration 161

14.6.4 IMpOrt StAteMENTS. . . . o\t v ettt et et e e e e 161
14.6.5 Variable declaration. it e e 161
Implicit variable declaration.ttt 161

14.6.6 Ordering Statement.t i ettt et e e e e 162
14.6.7 Closing Query results. e 162
14.6.8 Limiting the Cardinality of the Query Result 163
14.6.9 Specifying the Result of a Query (Projections, Aggregates). 163
Distinct results 164
Named Result EXpressionsottt e e 165
AgEregate Ty PeS. . v oottt e 165
Primitive Types. . .. oot 165

JDO 2.0 12 February 28, 2006

Java Data Objects 2.0

Null Results. 165
Default Result. 165
14.6.10 Grouping Aggregate Results 165
14.6.11 Specifying Uniqueness of the Query Result 166
Default Unique Settingov ittt e e e 166
14.6.12 Specifying the Classof the Result. 166
Result Class Requirements it e 166
14.6.13 Single-string Query elementbinding. 167
14,7 SQL QUEIIES . . oottt e e e e e 168
14.7.1 Mapping Columns of SQL Queries to User-specified Result Classes. 170
14.8 Deletion by QUErY e 170
T4.9 EXIENSIONS . o vttt ettt et e e e e e e e e e e 171
1410 Examples:o e 171
14.10.1 BaSIC QUETY. . . . oottt e e e e e e 172
14.10.2 Basic query with ordering.. i 172
14.10.3 Parameter Passing. oottt ettt et et et e 172
14.10.4 Navigation through single-valued field. 173
14.10.5 Navigation through multi-valued field. 173
14.10.6 Membershipinacollection, 173
14.10.7 Projectionof aSingle Field 174
14.10.8 Projection of Multiple Fields and Expressions 174
14.10.9 Projection of Multiple Fields and Expressions into a Constructed instance . . . 175
14.10.10 Aggregationof asingle Field. 176
14.10.11 Aggregation of Multiple Fields and Expressions 176
14.10.12 Aggregation of Multiple fields with Grouping 177
14.10.13 Selection of a Single Instance 177
14.10.14 Selection of a Single Field. i 177
14.10.15 Projection of “this” to User-defined Result Class with Matching Field 178
14.10.16 Projection of “this” to User-defined Result Class with Matching Method . . . 178
14.10.17 Projection of variables 179
14.10.18 Deleting Multiple Instances. 180

15 Object-Relational Mappingccciiiiiiennerccnnnsccannsas 181
Mapping OVeIVIEW oottt ettt e e e e ettt e 181
Mapping Strate@ies ottt et e 181

I5.1 Column Elements 182
15.1.1 Mapping single-valued fieldstocolumns 182
152 J0in Conditionttt e 183
15.2.1 Secondary Table mappingttt 183
1522 Mapusingjointable e 185
15.3 Relationship Mappingo e 187
Mapping Strate@ies oottt et e 187

15.3.1 Many-to-One using foreign key. 188
15.3.2 One-to-Many using foreignkey. i 189
15.3.3 Many-to-One and One-to-Many using mapped-by 190
15.3.4 Many-to-One and One-to-Many using compound foreignkey.............. 191
15.3.5 Many-to-One and One-to-Many using Map<Department, String>. 193

JDO 2.0 13 February 28, 2006

Java Data Objects 2.0

15.3.6 Many-to-One and One-to-Many using Map<String, Employee> 194
I54Embedding 195
15.4.1 Mapping relationships using embedded, referenced, and join table 196
15.5 Foreign Key Constraintsttt 198
Delete Action, Update ACHiON.oit ittt et 198

15.5.1 Many-to-One with foreign key constraint 199
IS.6 INdEXES . . oot 200
Unique CONSIraINES oottt et et e e e e et e e et 201

15.6.1 Single-field and Compound Indexes 201

IS5 7INheritance e 202
I5.8 VEISIONING . . . oottt e e e e e e e 203
15.8.1 Inheritance with superclass-table and version. 203
15.8.2 Inheritance with new-table and version. 204
15.8.3 Inheritance with subclass-table 206

16 Enterprise JavaBeanscciiiiiiiiiiiicinionncsnncnnns 208
16.1 Session Beans e 208
16.1.1 Stateless Session Bean with Container Managed Transactions. 209
16.1.2 Stateful Session Bean with Container Managed Transactions 209
16.1.3 Stateless Session Bean with Bean Managed Transactions 209
16.1.4 Stateful Session Bean with Bean Managed Transactions 210
16.2 Entity Beans e 210
17 JDO EXCEPLIONS ..ot vvtiiiiiiinreereeeeoceocessnssnssnsenans 211
I7. 1 JDOEXCEPLON . ..ottt et e e e e e e e e e e e e e 211
17.1.1 JDOFatalEXCEPLION oottt ettt e e e e et e e 212
17.1.2 JDOCanRetryEXception.ttt e 212
17.1.3 JDOUnsupportedOptionExceptionttt 212
17.1.4 JDOUSErEXCeptioni. i e e 212
17.1.5 JDOFatalUserEXceptionvutinti it 213
17.1.6 JDOFatallnternal EXceptiont 213
17.1.7 JDODataStoreEXceptionttt 213
17.1.8 JDOFatalDataStoreEXceptionoutiti e 213
17.1.9 IDOObjectNotFoundException.t 213
17.1.10 JDOOptimisticVerificationException, 213
17.1.11 JDODetachedFieldAccessException., 214

18 XML Metadataccitiiiiiiinrneneenecnscncsnssnceannns 215
Mapping to Relational Databases. i, 217

I8 T ELEMENT JAO . . . oot e e e e e 217
I8 2 ELEMENT packageottt e e e et 217
183 ELEMENT interfacet 217
184 ELEMENT column e e e 218
I8 S ELEMENT Classottt e e e e e 220
18.5.1 ELEMENT datastore-identityt uutininennnnnennenn.. 222

I8 52 ELEMENT VErSionottt e e e 222
18.6 ELEMENT primary-Keyiuii e iiii e 223
187 ELEMENT JOINttt e e e e e e e e 223

JDO 2.0 14 February 28, 2006

Java Data Objects 2.0

18.8 ELEMENT Inheritanceuunuiuut it 224
18.9 ELEMENT diSCriminatoriuuntntmt e, 224
18.10 ELEMENT implementsttt e e e 224
18.11 ELEMENT foreign-Key eeen 225
18.11.1 ATTRIBUTE update-actionc.ouiutiniinennennennenn.. 225
18.11.2 ATTRIBUTE delete-actionttt 225
18.11.3 ATTRIBUTE deferred.ot 225
18.11.4 ATTRIBUTE nameot e 225

I8 12 ELEMENT UNIQUE o oottt et e e e e e e e e et 225
I8 I3 ELEMENT INdeXottt e e e e e 226
18.14 ELEMENT Propertyttt e e et et 226
18. 1S ELEMENT field e e e 226
Default persistence-modifier. 227
Embedded e 228
Column Mappingottt e e 229
Foreign Keyo 230
18.15.1 ELEMENT collectiontit it 230

I8 152 ELEMENT Map. .« oottt e e e 231

I8 153 ELEMENT Arrayo oottt e e e e 231
18.154 ELEMENT embedded e 232

I8 155 ELEMENTKEY . ..ot e e 232

I8 15.6 ELEMENT value.o e e 232
18.15. 7 ELEMENT element.ttt e e 233

I8 15.8 ELEMENT Orderottt e e e e 233

I8 16 ELEMENT QUETY . . . oottt e e e e e e e e e 233
18.17 ELEMENT SEQUENCEottt t et e e e e e e e e e 233
18.18 ELEMENT €XteNSION oottt ettt ettt e e e e e et ens 234
IS 19 ELEMENT Ormot e e e e e 234
18.20 ELEMENT JAOQUETYottt e e e e e e 234
18.21 The jdo Schema Descriptorot 234
18.22 The orm Schema DesCriptorttt 240
18.23 The jdoquery Schema Descriptor 245
1824 Example XML file 246
19 EXtent ...otintiiiiiiiieiieieeneeeeeoesscescnscnssnssnsnnans 248
TO.T OVEIVIEW . .ottt e e e e e 248
192 Goals ... 248
19.3 Interface EXtentt e e e 249
20 Portability Guidelinescoiiitiiiiiiiiiinnreenrcenconnnes 251
20.1 Optional Features e 251
20.1.1 Optimistic TranSactionS.ttt et et e e e 251
20.1.2 Nontransactional Read. 251
20.1.3 Nontransactional WTitettt e e 251
20.1.4 Transient Transactional i i 251
20.1.5 RetainValuest e 251
20.1.6 IgnoreCache. o 251
20.2 0bject Model e 251

JDO 2.0 15 February 28, 2006

Java Data Objects 2.0

203 JDOIAentity . .. cov et e 252
20.4 PersistenceManagerottt e 252
20.5 QUETY .ottt 252
20.6 XML metadata e 253
207 Life CyCle ..ot e 253
20.8 IDOHEIPET . . .ot 253
20.9 TranSaCtionottt et e e 253
20.10 Binary Compatibility e 253
21 JDOReference Enhanceroiiititiiiiinnnnnnenaceceens 254
211 OVEIVIEW . .ottt 254
21.2 GOoals ..o e 254
21.3 Enhancement: Archite€Cturettt 255
21.4 Inheritance e 258
21.5 Field NUmberingottt e e e e e 258
21.6 Serialization 259
217 CIONING . . o ottt e e e e e e 260
21.8 Introspection (Java core reflection)o, 260
21.9 Field Modifiers i e e 261
21.9. 1 NON-PETSISIENL ot ottt ettt e et e e e e 261
21.9.2 Transactional nON-persiStentuuuunt ettt 261
21.9.3 PersiStento 261
2194 PrimaryKey 262
2195 Embedded 262
21.9.6 Null-value i 262
21.10 Treatment of standard Java field modifiers 262
21.10.1 StatiC ..ottt 262
21102 Finalo 263
21103 Privateo e 263
21.10.4 Public, Protected 263
2111 Fetch Groupsttt e e e e e e e 263
21.12 jdoFlags Definition e 263
2113 EXCEPLONS . . vttt ettt e e e e e e e e e e 264
21.14 Modified field aCCess oo 264
21.15 Generated fields in least-derived PersistenceCapableclass 265
21.16 Generated fields in all PersistenceCapableclasses 265
Generated static initializer e 266

21.17 Generated methods in least-derived PersistenceCapableclass 266
21.18 Generated methods in PersistenceCapablerootclasses 268
21.19 Generated method in least-derived Detachableclasses 269
21.20 Generated methods in all PersistenceCapableclasses 269
21.21 Example class: Employee e 272
21.21.1 Generated fieldsS. i 272
21.21.2 Generated static initializer. ottt 273
21.21.3 Generated INteIrrOZatiVesottt t et e e 273
21.21.4 Generated jdoReplaceStateManageroitiitiitnnenn.n. 274
21.21.5 Generated jdoReplaceFlags 275

JDO 2.0 16 February 28, 2006

Java Data Objects 2.0

21.21.6 Generated jdoNewlnstance helpers 275
21.21.7 Generated jdoGetManagedFieldCount 275
21.21.8 Generated jdoGetXXX methods (one per persistent field) 276
21.21.9 Generated jdoSetXXX methods (one per persistent field) 277
21.21.10 Generated jdoReplaceField and jdoReplaceFields 278
21.21.11 Generated jdoProvideField and jdoProvideFields. 279
21.21.12 Generated jdoCopyField and jdoCopyFields methods 280
21.21.13 Generated writeObject method 281
21.21.14 Generated jdoPreSerialize method., 281
21.21.15 Generated jdoNewObjectldInstance i, 281
21.21.16 Generated jdoCopyKeyFieldsToObjectld 282
21.21.17 Generated jdoCopyKeyFieldsFromObjectld. 282
21.21.18 Generated Detachablemethods 282

22 Interface StateManagerccvieeeeeeesccensscccnsscnns 284
221 OVEIVIEW . .ottt ettt e e e e e e e e e e 284
Clone SUPPOTL . . . ottt e e e e 284

22.2 StateManager Managementuuuuntent et 284
22.3 PersistenceManager Managementuuttntetetaeaa 285
22.4 Dirty managementttt e 285
22.5 State QUETIES . . o o v v ottt e et et e e e e 285
22,6 JDOIdentityot e 286
22.7 Serialization SUPPOTTttt e e 286
22.8 Field Managementttt e 286
22.8.1 User-requested valueof afield 287
22.8.2 User-requested modificationof afield 287
22.8.3 StateManager-requested valueof afield 288
22.8.4 StateManager-requested modification of afield 289
22.9 Detached InStance SUPPOITottt e e 289
23 JDOPermiSSiOncceveeieneeeeeeeeeosocncecsssscnsnsasonnns 290
24 JDOOQL BNF .. .iiiiiiiiiiiiitiittetentensescessasonsansnnns 291
24.1 Grammar NOtationttt e e e 291
24.2 Single-String JDOQL e 291
24 3 Filter Specification it 292
24.4 Parameter Declaration e 293
24.5 Variable Declaration e 294
24.6 Import Declaration 294
24.7 Ordering Specificationttt e 294
24.8 Result Specificationt e 295
24.9 Grouping Specification 295
24 10 TYPES - v ettt 296
24 11 Laterals . ..o e 296
24 T2 NAMES .« oottt e e e e e e 297
24 13 KeyWOTdS . . .ottt e e e e 297
25 Items Deferred to the Next Releasecciiiiiiiinnnn. 299
25.1 Nested TransacCtionsvu ittt e e e 299

JDO 2.0 17 February 28, 2006

Java Data Objects 2.0

25.2 Savepoint, Undosavepointttt 299
25.3 Inter-PersistenceManager References 299
25.4 Enhancer Invocation API 299
25.5 Prefetch AP . .. 299
25.6 BLOB/CLOB datatype SUPPOITt . ..« vvt ettt e e e e e e e e e e e 299
25.7 Managed (inverse) relationship support i 300
25.8 Case-Insensitive QUETYottt e e e 300
25.9 String conversion iIn QUETYttt e 300
25.10 Read-only fields i 300
25.11 Enumeration Patternottt ettt e e 300
25.12 Non-static INNer Classes vttt e e e 301
25.13 Projections I QUETY« v vttt ettt e e e e e et e e e e e 301
25.14 LOGWTIIEr SUPPOTT . . . o vttt e e et e e e e e e e e e e e e 301
25.15 New EXCEPLIONS . . . oottt e e e e e e e e 301
25.16 Distributed 0bject SUPPOITottt e 301
25.17 Object-Relational Mapping e 301
26 JDO1.0.1 Metadataccvvieeenrnncenconcescnsonsonconns 303
20,1 ELEMENT JAOo 304
262 ELEMENT packageottt e e e 304
203 ELEMENT Classot e e e e 304
264 ELEMENT field e 305
Default persistence-modifier. 305

26.4.1 ELEMENT collection i 306
2042 ELEMENT mMap.ottt e e e 307
260643 ELEMENT array e e 307
26.5 ELEMENT XteNSIONottt ittt e e e e e e e e 307
26.6 The Document Type Descriptoruutitiii i 307
26.7 Example XML file 308
Appendix A: Referencesc.ciiiiiiiiiiiiieitieicncnenennnns 310
Appendix B: Design Decisionscciviiiiiiiiiencsnrcsnnconns 311
B.1 Enhancer e 311
Appendix C: Revision Historyccoiiiiiiiiiiniinnreencennnes 312
C.1 Changes since Draft 0.1 e 312
C.1 Changes since Draft 0.2 e e 312
C.1 Changes since Draft 0.3 e 312
C.1 Changes since Draft 0.4 e 312
C.1 Changes since Draft 0.5 e e 313
C.1 Changes since Draft 0.6 (Participant Review Draft) 314
C.1 Changes since Draft 0.7 e 314
C.1 Changes since Draft 0.8 e e 315
C.1 Changes since Draft 0.9 315
C.1 Changes since draft 0.91 316
C.1 Changes since draft 0.92 317
C.1 Changes since draft 0.93 317
C.1 Changes since draft 0.94 e 318

JDO 2.0 18 February 28, 2006

Java Data Objects 2.0

C.1 Changes since draft 0.95 (Proposed Final Draft) 319
C.1 Changes since draft 0.96 319
C.1 Changes since draft 0.97 e 320
C.1 Changes since Approved Draft 321
C.1 Changes since 1.0.1 i e e et 323
C.1 Changes since Proposed Final Draft 325

JDO 2.0 19 February 28, 2006

Java Data Objects 2.0

List of Tables

Which Enhancement Interfaceis Used. 26
State Transitions oottt e 60
State INtEITOZAtION. v ottt ettt e e e e e e e e e e 78
QUETY OPETALOTS . . . v ottt ettt et et e e e e e e e e e 158
Query Methods 159
Shape of Result (C is the candidate class) 167
Shape of Result of SQL Query 169
Default Jdbe-typeo 219
Field access mediation i e 265
JDO 2.0 20 February 28, 2006

Figure 1: Standard plug-and-play between application programs and EISes using JDO. 29
Figure 2: Overview of non-managed JDO architecture 31
Figure 3: Contracts between application server and native JDO resource adapter. 34
Figure 4: Contracts between application server and layered JDO implementation 35
Figure 5: Scenario: Embedded calendar manager 38
Figure 6: Scenario: Enterprise Calendar Manager 40
Figure 7: Life Cycle: New Persistent Instances 63
Figure 8: Life Cycle: Transactional ACCesS, 63
Figure 9: Life Cycle: Datastore TransactionsS.ouvutintnnennean... 64
Figure 10: Life Cycle: Optimistic Transactionso, 64
Figure 11: Life Cycle: Access Outside Transactions 64
Figure 12: Life Cycle: Transient TransactionalLife Cycle: Transient Transactional. . . . 65
Figure 13: Life Cycle: Detached. i 65
Figure 14: JDO Instance State Transitionsttt 66
Figure 15: Instantiated persistent ObjJects oottt 68
Figure 16: Transactions and Connections.ouvtviteitennenennenn.. 140
JDO 2.0 21 February 28, 2006

Java Data Objects 2.0

Listof Figures

Java Data Objects 2.0

Introduction

Java is a language that defines a runtime environment in which user-defined classes exe-
cute. The instances of these user-defined classes might represent real world data. The data
might be stored in databases, file systems, or mainframe transaction processing systems.
These data sources are collectively referred to as Enterprise Information Systems (EIS).
Additionally, small footprint environments often require a way to manage persistent data
in local storage.

The data access techniques are different for each type of data source, and accessing the
data presents a challenge to application developers, who currently need to use a different
Application Programming Interface (API) for each type of data source.

This means that application developers need to learn at least two different languages to
develop business logic for these data sources: the Java programming language; and the
specialized data access language required by the data source.

Currently, aside from JDO, there are three Java standards for storing Java data persistent-
ly: serialization, JDBC, and Enterprise JavaBeans. Serialization preserves relationships
among a graph of Java objects, but does not support sharing among multiple users. JDBC
requires the user to explicitly manage the values of fields and map them into relational da-
tabase tables. Enterprise JavaBeans require a container in which to run.

Developers can be more productive if they focus on creating Java classes that implement
business logic, and use native Java classes to represent data from the data sources. Map-
ping between the Java classes and the data source, if necessary, can be done by an EIS do-
main expert.

JDO defines interfaces and classes to be used by application programmers when using
classes whose instances are to be stored in persistent storage (persistence-capable classes),
and specifies the contracts between suppliers of persistence-capable classes and the run-
time environment (which is part of the JDO Implementation).

The supplier of the JDO Implementation is hereinafter called the JDO vendor.

1.1

JDO 2.0

Overview

There are two major objectives of the JDO architecture: first, to provide application pro-
grammers a transparent Java-centric view of persistent information, including enterprise
data and locally stored data; and second, to enable pluggable implementations of data-
stores into application servers.

The Java Data Objects architecture defines a standard API to data contained in local stor-
age systems and heterogeneous enterprise information systems, such as ERP, mainframe
transaction processing and database systems. The architecture also refers to the Connector
architecture [see Appendix A reference 4] which defines a set of portable, scalable, secure,
and transactional mechanisms for the integration of EIS with an application server.

22 February 28, 2006

Java Data Objects 2.0

This architecture enables a local storage expert, an enterprise information system (EIS)
vendor, or an EIS domain expert to provide a standard data view (JDO Implementation)
for the local data or EIS.

1.2

Scope

The JDO architecture defines a standard set of contracts between an application program-
mer and an JDO vendor. These contracts focus on the view of the Java instances of persis-
tence-capable classes.

JDO uses the Connector Architecture [see Appendix A reference 4] to specify the contract
between the JDO vendor and an application server. These contracts focus on the important
aspects of integration with heterogeneous enterprise information systems: instance man-
agement, connection management, and transaction management.

To provide transparent storage of local data, the JDO architecture does not require the
Connector Architecture in non-managed (non-application server) environments.

1.3

Target Audience

The target audience for this specification includes:
¢ application developers

JDO vendors

* enterprise information system (EIS) vendors and EIS Connector providers

* container providers
¢ enterprise system integrators
* enterprise tool vendors

JDO defines two types of interfaces: the JDO API, of primary interest to application developers (the
JDO instance life cycle) and the JDO SPI, of primary interest to container providers and JDO ven-
dors. An italicized notice may appear at the end of a section, directing readers interested only in the
API side to skip to the next API-side section.

1.4

JDO 2.0

Organization

This document describes the rationale and goals for a standard architecture for specifying
the interface between an application developer and a local file system or EIS datastore. It
then elaborates the JDO architecture and its relationship to the Connector architecture.

The document next describes two typical JDO scenarios, one managed (application server)
and the other non-managed (local file storage). This chapter explains key roles and respon-
sibilities involved in the development and deployment of portable Java applications that
require persistent storage.

The document then details the prescriptive aspects of the architecture. It starts with the
JDO instance, which is the application programmer-visible part of the system. It then de-
tails the JDO PersistenceManager, which is the primary interface between a persis-
tence-aware application, focusing on the contracts between the application developer and
JDO implementation provider. Finally, the contracts for connection and transaction man-
agement between the JDO vendor and application server vendor are defined.

23 February 28, 2006

Java Data Objects 2.0

1.5 Document Convention

A Palatino font is used for describing the JDO architecture.

A courier font is used for code fragments.

1.6 Terminology Convention

“Must” is used where the specified component is required to implement some interface or
action to be compliant with the specification.

“Might” is used where there is an implementation choice whether or how to implement a
method or function.

“Should” is used to describe objectives of the specification and recommended application
programming usage. If the recommended usage is not followed by applications, behavior
is non-portable, unexpected, or unspecified.

“Should” is also used where there is a recommended choice for possibly different imple-
mentation actions. If the recommended usage is not followed by implementations, ineffi-
ciencies might result.

| JDO 2.0 24 February 28, 2006

Java Data Objects 2.0

Overview

This chapter introduces key concepts that are required for an understanding of the JDO
architecture. It lays down a reference framework to facilitate a formal specification of the
JDO architecture in the subsequent chapters of this document.

2.1
2.1.1

JDO 2.0

Definitions

JDO common interfaces
JDO Instance

A JDO instance is a Java programming language instance of a Java class that implements
the application functions, and represents data in a local file system or enterprise datastore.
Without limitation, the data might come from a single datastore entity, or from a collection
of entities. For example, an entity might be a single object from an object database, a single
row of a relational database, the result of a relational database query consisting of several
rows, a merging of data from several tables in a relational database, or the result of execut-
ing a data retrieval API from an ERP system.

The objective of JDO is that most user-written classes, including both entity-type classes
and utility-type classes, might be persistence capable. The limitations are that the persis-
tent state of the class must be represented entirely by the state of its Java fields. Thus, sys-
tem-type classes such as System, Thread, Socket, File, and the like cannot be JDO
persistence-capable, but common user-defined classes can be.

JDO Implementation

A JDO implementation is a collection of classes that implement the JDO contracts. The JDO
implementation might be provided by an EIS vendor or by a third party vendor, collective-
ly known as JDO vendor. The third party might provide an implementation that is opti-
mized for a particular application domain, or might be a general purpose tool (such as a
relational mapping tool, embedded object database, or enterprise object database).

The primary interface to the application is PersistenceManager, with interfaces Que-
ry and Transaction playing supporting roles for application control of the execution
environment.

JDO Enhancer

To use persistence-capable classes with binary-compatible JDO implementations, the
classes must implement the PersistenceCapable contract, which includes implement-
ing the javax.jdo.spi.PersistenceCapable contract, as well as adding other meth-
ods including static registration methods. This contract enables management of classes
including transparent loading and storing of the fields of their persistent instances. A JDO
enhancer, or byte code enhancer, is a program that modifies the byte codes of application-
component Java class files to implement this interface.

The JDO reference implementation (reference enhancement) contains an approach for the
enhancement of Java class files to allow for enhanced class files to be shared among several
coresident JDO implementations.

25 February 28, 2006

Java Data Objects 2.0

There are alternative approaches to byte code enhancement for having the classes imple-
ment the PersistenceCapable contract. These include preprocessing or code genera-
tion. If one of these alternatives is used instead of byte code enhancement, the
PersistenceCapable contract is implemented explicitly.

A JDO implementation is free to extend the Reference Enhancement contract with imple-
mentation-specific methods and fields that might be used by its runtime environment.

Binary Compatibility
A JDO implementation may optionally choose to support binary compatibility with other
JDO implementations by supporting the PersistenceCapable contract for persistence-

capable classes. If it does, then enhanced classes produced by another implementation or
by the reference enhancer must be supported according to the following requirements.

¢ classes enhanced by the reference enhancer must be usable by any JDO compliant
implementation that supports BinaryCompatibility;

¢ classes enhanced by a JDO compliant implementation must be usable by the
reference implementation; and

¢ classes enhanced by a JDO compliant implementation must be usable by any other
JDO compliant implementation that supports BinaryCompatibility.

The following table determines which interface is used by a JDO implementation based on

Table 1: Which Enhancement Interface is Used

Reference Runtime Vendor A Runtime Vendor B Runtime

Reference Enhancer

Reference Enhancement

Reference Enhancement

Reference Enhancement

Vendor A Enhancer

Reference Enhancement

Vendor A Enhancement

Reference Enhancement

Vendor B Enhancer

Reference Enhancement

Reference Enhancement

Vendor B Enhancement

2.1.2

JDO 2.0

the enhancement of the persistence-capable class. For example, if Vendor A runtime de-
tects that the class was enhanced by its own enhancement, then the runtime will use its en-
hancement contract. Otherwise, it will use the Reference Enhancement contract.

Readers primarily interested in JDO as a local persistence mechanism can ignore the following sec-
tion, as it details architectural features not relevant to local environments. Skip to 2.2 — Rationale.

JDO in a managed environment

This discussion provides a bridge to the Connector architecture, which [DO uses for transaction and
connection management in application server environments.

Enterprise Information System (EIS)

An EIS provides the information infrastructure for an enterprise. An EIS offers a set of ser-
vices to its clients. These services are exposed to clients as local and/or remote interfaces.
Examples of EIS include:

¢ relational database system;
* object database system;
¢ ERP system; and

* mainframe transaction processing system.

26 February 28, 2006

Java Data Objects 2.0

JDO 2.0

EIS Resource

An EIS resource provides EIS-specific functionality to its clients. Examples are:
¢ arecord or set of records in a database system;
* abusiness object in an ERP system; and

* atransaction program in a transaction processing system

Resource Manager (RM)

A resource manager manages a set of shared resources. A client requests access to a re-
source manager to use its managed resources. A transactional resource manager can par-
ticipate in transactions that are externally controlled and coordinated by a transaction
manager.

Connection

A connection provides connectivity to a resource manager. It enables an application client
to connect to a resource manager, perform transactions, and access services provided by
that resource manager. A connection can be either transactional or non-transactional. Ex-
amples include a database connection and a SAP R/3 connection.

Application Component

An application component can be a server-side component, such as an EJB, JSP, or servlet,
that is deployed, managed and executed on an application server. It can be a component
executed on the web-client tier but made available to the web-client by an application serv-
er, such as a Java applet, or DHTML page. It might also be an embedded component exe-
cuted in a small footprint device using flash memory for persistent storage.

Session Beans

Session objects are EJB application components that execute on behalf of a single client,
might be transaction aware, might update data in an underlying datastore, and do not di-
rectly represent data in the datastore.

Message-driven Beans

Message-driven beans are EJB application components that execute on behalf of a single
client in response to an incoming message, might be transaction aware, might update data
in an underlying datastore, and do not directly represent data in the datastore.

Entity Beans

Entity objects are EJB application components that provide an object view of transactional
data in an underlying datastore, allow shared access from multiple users, including ses-
sion objects and remote clients, and directly represent data in the datastore.

Helper objects

Helper objects are application components that provide an object view of data in an un-
derlying datastore, allow transactionally consistent view of data in multiple transactions,
are usable by local session and entity beans, but do not have a remote interface.

Container

A container is a part of an application server that provides deployment and runtime sup-
port for application components. It provides a federated view of the underlying applica-
tion server services for the application components. For more details on different types of
standard containers, refer to Enterprise JavaBeans (E]B) [see Appendix A reference 1], Java
Server Pages (JSP), and Servlets specifications.

27 February 28, 2006

Java Data Objects 2.0

2.2

JDO 2.0

Rationale

There is no existing Java platform specification that proposes a standard architecture for
storing the state of Java objects persistently in transactional datastores.

The JDO architecture offers a Java solution to the problem of presenting a consistent view
of data from the large number of application programs and enterprise information sys-
tems already in existence. By using the JDO architecture, it is not necessary for application
component vendors to customize their products for each type of datastore.

This architecture enables an EIS vendor to provide a standard data access interface for its
EIS. The JDO implementation is plugged into an application server and provides underly-
ing infrastructure for integration between the EIS and application components.

Similarly, a third party vendor can provide a standard data access interface for locally
managed data such as would be found in an embedded device.

An application component vendor extends its system only once to support the JDO archi-
tecture and then exploits multiple data sources. Likewise, an EIS vendor provides one
standard JDO implementation and it has the capability to work with any application com-
ponent that uses the JDO architecture.

The Figure 1.0 on page 29 shows that an application component can plug into multiple
JDO implementations. Similarly, multiple JDO implementations for different EISes can
plug into an application component. This standard plug-and-play is made possible
through the JDO architecture.

28 February 28, 2006

Java Data Objects 2.0

Figure 1.0 Standard plug-and-play between application programs and ElSes using JDO

q 8 Enterprise Information
Systems
JDO

implementations

~ Application Program

—
—-—
—
—~—
—
—_—
—
—

dis

JDO
implementation Enterprise Information
Application Programs System

Legend:
[h Application program/EJB container

JDO implementation provided by JDO vendor

2.3 Goals
The JDO architecture has been designed with the following goals:

¢ The JDO architecture provides a transparent interface for application component
and helper class developers to store data without learning a new data access
language for each type of persistent data storage.

* The JDO architecture simplifies the development of scalable, secure and
transactional JDO implementations for a wide range of EISes — ERP systems,
database systems, mainframe-based transaction processing systems.

* The JDO architecture is implementable for a wide range of heterogeneous local file
systems and EISes. The intent is that there will be various implementation choices
for different EIS—each choice based on possibly application-specific
characteristics and mechanisms of a mapping to an underlying EIS.

* The JDO architecture is suitable for a wide range of uses from embedded small
footprint systems to large scale enterprise application servers. This architecture
provides for exploitation of critical performance features from the underlying EIS,
such as query evaluation and relationship management.

JDO 2.0 29 February 28, 2006

Java Data Objects 2.0

® The JDO architecture uses the J2EE Connector Architecture to make it applicable
to all J2EE platform compliant application servers from multiple vendors.

* The JDO architecture makes it easy for application component developers to use
the Java programming model to model the application domain and transparently
retrieve and store data from various EIS systems.

* The JDO architecture defines contracts and responsibilities for various roles that
provide pieces for standard connectivity to an EIS. This enables a standard JDO
implementation from a EIS or third party vendor to be pluggable across multiple
application servers.

* The connector architecture also enables an application programmer in a non-
managed application environment to directly use the JDO implementation to
access the underlying file system or EIS. This is in addition to a managed access to
an EIS with the JDO implementation deployed in the middle-tier application
server. In the former case, application programmers will not rely on the services
offered by a middle-tier application server for security, transaction, and
connection management, but will be responsible for managing these system-level
aspects by using the EIS connector.

| JDO 2.0 30 February 28, 2006

Java Data Objects 2.0

JDO Architecture

3.1 Overview
Multiple JDO implementations - possibly multiple implementations per type of EIS or lo-
cal storage - are pluggable into an application server or usable directly in a two tier or em-
bedded architecture. This enables application components, deployed either on a middle-
tier application server or on a client-tier, to access the underlying datastores using a con-
sistent Java-centric view of data. The JDO implementation provides the necessary map-
ping from Java objects into the special data types and relationships of the underlying
datastore.
Figure 2.0 Overview of non-managed JDO architecture

[Java Virtual Machine JDO PersistenceManager \
Applicat
pplication

N

transient
instance

transient
instance

transient
instance

(T

Enterprise Information

System

JDO PersistenceManager

(Transaction)

Local Persistent

J Storage

JDO 2.0

In a non-managed environment, the JDO implementation hides the EIS specific issues such
as data type mapping, relationship mapping, and data retrieval and storage. The applica-
tion component sees only the Java view of the data organized into classes with relation-
ships and collections presented as native Java constructs.

Managed environments additionally provide transparency for the application compo-
nents’ use of system-level mechanisms - distributed transactions, security, and connection
management, by hiding the contracts between the application server and JDO implemen-
tations.

31 February 28, 2006

Java Data Objects 2.0

With both managed and non-managed environments, an application component develop-
er focuses on the development of business and presentation logic for the application com-
ponents without getting involved in the issues related to connectivity with a specific EIS.

3.2
3.2.1

3.2.2

JDO 2.0

JDO Architecture
Two tier usage

For simple two tier usage, JDO exposes to the application component two primary inter-
faces: javax.jdo.PersistenceManager, from which services are requested; and
javax.jdo.JDOHelper, which provides the bootstrap and management view of user-
defined persistence-capable classes.

The PersistenceManager interface provides services such as query management,
transaction management, and life cycle management for instances of persistence-capable
classes.

The JDOHelper class provides services such as bootstrap methods to acquire an instance
of PersistenceManagerFactory and life cycle state interrogation for instances of per-
sistence-capable classes.

Readers primarily interested in JDO as a local persistence mechanism can ignore the following sec-
tions. Skip to 4 — Roles and Scenarios.

Application server usage

For application server usage, the JDO architecture uses the J2EE Connector architecture,
which defines a standard set of system-level contracts between the application server and
EIS connectors. These system-level contracts are implemented in a resource adapter from
the EIS side.

The JDO persistence manager is a caching manager as defined by the J2EE Connector ar-
chitecture, that might use either its own (native) resource adapter or a third party resource
adapter. If the JDO PersistenceManager has its own resource adapter, then imple-
mentations of the system-level contracts specified in the J2EE Connector architecture must
be provided by the JDO vendor. These contracts include ManagedConnectionFacto-
ry, XAResource, and LocalTransaction interfaces.

The JDO Transaction mustimplement the Synchronization interface so that trans-
action completion events can cause flushing of state through the underlying connector to
the EIS.

The application components are unable to distinguish between JDO implementations that
use native resource adapters and JDO implementations that use third party resource
adapters. However, the deployer will need to understand that there are two configurable
components: the JDO PersistenceManager and its underlying resource adapter.

For convenience, the PersistenceManagerFactory provides the interface necessary
to configure the underlying resource adapter.
Resource Adapter

A resource adapter provided by the JDO vendor is called a native resource adapter, and
the interface is specific to the JDO vendor. It is a system-level software driver that is used
by an application server or an application client to connect to a resource manager.

The resource adapter plugs into a container (provided by the application server). The ap-
plication components deployed on the container then use the client API exposed by jav-
ax.jdo.PersistenceManager to access the JDO PersistenceManager. The JDO

32 February 28, 2006

Java Data Objects 2.0

JDO 2.0

implementation in turn uses the underlying resource adapter interface specific to the
datastore. The resource adapter and application server collaborate to provide the underly-
ing mechanisms - transactions, security and connection pooling - for connectivity to the
EIS.

The resource adapter is located within the same VM as the JDO implementation using it.
Examples of JDO native resource adapters are:

* Object/Relational (O/R) products that use their own native drivers to connect to
object relational databases

* Object Database (OODBMS) products that store Java objects directly in object
databases

Examples of non-native resource adapter implementations are:
¢ O/R mapping products that use JDBC drivers to connect to relational databases

¢ Hierarchical mapping products that use mainframe connectivity tools to connect
to hierarchical transactional systems

Pooling

There are two levels of pooling in the JDO architecture. JDO PersistenceManagers
might be pooled, and the underlying connections to the datastores might be independent-
ly pooled.

Pooling of the connections is governed by the Connector Architecture contracts. Pooling
of PersistenceManagers is an optional feature of the JDO Implementation, and is not
standardized for two-tier applications. For managed environments, PersistenceMan-
ager pooling is required to maintain correct transaction associations with Persis-
tenceManagers.

For example, a JDO PersistenceManager instance might be bound to a session run-
ning a long duration optimistic transaction. This instance cannot be used by any other user
for the duration of the optimistic transaction.

During the execution of a business method associated with the session, a connection might
be required to fetch data from the datastore. The PersistenceManager will request a
connection from the connection pool to satisfy the request. Upon termination of the busi-
ness method, the connection is returned to the pool but the PersistenceManager re-
mains bound to the session.

After completion of the optimistic transaction, the PersistenceManager instance
might be returned to the pool and reused for a subsequent transaction.

Contracts

JDO specifies the application level contract between the application components and the
JDO PersistenceManager.

The J2EE Connector architecture specifies the standard contracts between application
servers and an EIS connector used by a JDO implementation. These contracts are required
for a JDO implementation to be used in an application server environment. The Connector
architecture defines important aspects of integration: connection management, transaction
management, and security.

The connection management contracts are implemented by the EIS resource adapter
(which might include a JDO native resource adapter).

The transaction management contract is between the transaction manager (logically dis-
tinct from the application server) and the connection manager. It supports distributed

33 February 28, 2006

Java Data Objects 2.0

transactions across multiple application servers and heterogeneous data management pro-

JDO 2.0

grams.
The security contract is required for secure access by the JDO connection to the underlying
datastore.

Figure 3.0 Contracts between application server and native JDO resource adapter

Transaction Manager

Transaction
contract

Application
Component

Container

Application Server

Connection
Management
contract

D

JDO Native
Resource
Adapter

JDO API

Security
contract

34

JDO data

store

February 28, 2006

Java Data Objects 2.0

Figure 4.0 Contracts between application server and layered JDO implementation

I
|
XAResource I
Transaction Manager - |
Connector Contracts [
(e.g. ManagedConnection) [
Resource | I
Adapter :
o JDO implementation [Resource
épphcatloltl I Manager
omponen S\ I I > | (EIS datastore)

Container ApPIs |
Application Server Sy?(;: r}:;%rgz ation :
I
I

The above diagram illustrates the relationship between a JDO implementation provided by a third
party vendor and an EIS-provided resource adapter.

| JDO 2.0 35 February 28, 2006

Java Data Objects 2.0

Roles and Scenarios

4.1

4.1.1

4.1.2

4.1.3

JDO 2.0

Roles

This chapter describes roles required for the development and deployment of applications
built using the JDO architecture. The goal is to identify the nature of the work specific to
each role so that the contracts specific to each role can be implemented on each side of the
contracts.

The detailed contracts are specified in other chapters of this specification. The specific in-
tent here is to identify the primary users and implementors of these contracts.

Application Developer

The application developer writes software to the JDO API. The JDO application developer
does not have to be an expert in the technology related to a specific datastore.

Application Component Provider

The application component provider produces an application library that implements ap-
plication functionality through Java classes with business methods that store data persis-
tently in one or more ElSes through the JDO APL

There are two types of application components that interact with JDO. JDO-transparent
application components, typically helper classes, are those that use JDO to have their state
stored in a transactional datastore, and directly access other components by references of
their fields. Thus, they do not need to use JDO APIs directly.

JDO-aware application components (message-driven beans and session beans) use servic-
es of JDO by directly accessing its API. These components use JDO query facilities to re-
trieve collections of JDO instances from the datastore, make specific instances persistent in
a particular datastore, delete specific persistent instances from the datastore, interrogate
the cached state of JDO instances, or explicitly manage the cache of the JDO Persis-
tenceManager. These application components are non-transparent users of JDO.

Session beans that use helper JDO classes interact directly with PersistenceManager
and JDOHelper. They can use the life cycle methods and query factory methods, while
ignoring the transaction demarcation methods if they use container-managed transac-
tions.

The output of the application component provider is a set of jar files containing application
components.
Application Assembler

The application assembler is a domain expert who assembles application components
from multiple sources including in-house developers and application library vendors. The
application assembler can combine different types of application components, for example
EJBs, servlets, or JSPs, into a single end-user-visible application.

36 February 28, 2006

Java Data Objects 2.0

414

4.1.5

4.1.6

4.1.7

4.1.8

JDO 2.0

The input of the application assembler is one or more jar files, produced by application
component providers. The output is one or more jar files with deployment specific de-
scriptions.

Deployer

The deployer is responsible for configuring assembled components into specific opera-
tional environments. The deployer resolves all external references from components to
other components or to the operational system.

For example, the deployer will bind application components in specific operating environ-
ments to datastores in those environments, and will resolve references from one applica-
tion component to another. This typically involves using container-provided tools.

The deployer must understand, and be able to define, security roles, transactions, and con-
nection pooling protocols for multiple datastores, application components, and contain-
ers.

System Administrator

The system administrator manages the configuration and administration of multiple con-
tainers, resource adapters and EISs that combine into an operational system.

Readers primarily interested in developing applications with the JDO API can ignore the following
sections. Skip to 4.2 — Scenario: Embedded calendar management system.

JDO Vendor

The JDO vendor is an expert in the technology related to a specific datastore and is respon-
sible for providing a JDO SPI implementation for that specific datastore. Since this role is
highly datastore specific, a datastore vendor will often provide the standard JDO imple-
mentation.

A vendor can also provide a JDO implementation and associated set of application devel-
opment tools through a loose coupling with a specific third party datastore. Such provid-
ers specialize in writing connectors and related tools for a specific EIS or might provide a
more general tool for a large number of datastores.

The JDO vendor requires that the EIS vendor has implemented the J2EE Connector archi-
tecture and the role of the JDO implementation is that of a synchronization adapter to the
connector architecture.

Readers primarily interested in [DO as a local persistence mechanism can ignore the following sec-
tion. Skip to 4.2 — Scenario: Embedded calendar management system.

Connector Provider

The connector provider is typically the vendor of the EIS or datastore, and is responsible
for supplying a library of interface implementations that satisfy the resource adapter inter-
face.

In the JDO architecture, the Connector is a separate component, supplied by either the JDO
vendor or by an EIS vendor or third party.

Application Server Vendor

An application server vendor [see Appendix A reference 1], provides an implementation
of a J2EE compliant application server that provides support for component-based enter-
prise applications. A typical application server vendor is an OS vendor, middleware ven-
dor, or database vendor.

37 February 28, 2006

Java Data Objects 2.0

4.1.9

The role of application server vendor will typically be the same as that of the container pro-
vider.

Container Provider

For bean-managed persistence, the container provides deployed application components
with transaction and security management, distribution of clients, scalable management
of resources and other services that are generally required as part of a managed server
platform.

4.2

Scenario: Embedded calendar management system

This section describes a scenario to illustrate the use of JDO architecture in an embedded
mobile device such as a personal information manager (PIM) or telephone.

Figure 5.0 Scenario: Embedded calendar manager

.

Telephone JVM

O

File Manager
Calendar DO Java File
Manager :H—>[
Application DO implementation /0 APIs Flash RAM
\ / API
- b - -« |
Calendars-R-Us Apache Persistware Sven’s Phones

/

JDO 2.0

Sven’s Phones is a manufacturer of high function telephones for the traveling businessper-
son. They have implemented a Java operating environment that provides persistence via
a Java file I/O subsystem that writes to flash RAM.

Apache Persistware is a supplier of JDO software that has a small footprint and as such, is
especially suited for embedded devices such as personal digital assistants and telephones.
They use Java file I/O to store JDO instances persistently.

Calendars-R-Us is a supplier of appointment and calendar software that is written for sev-
eral operating environments, from high function telephones to desktop workstations and
enterprise application servers.

Calendars-R-Us uses the JDO API directly to manage calendar appointments on behalf of
the user. The calendar application needs to insert, delete, and change calendar appoint-
ments based on the user’s keypad input. It uses Java application domain classes: Ap-

38 February 28, 2006

Java Data Objects 2.0

pointment, Contact, Note, Reminder, Location, and TelephoneNumber. It
employs JDK library classes: Time, Date, ArrayList, and Calendar.

Calendars-R-Us previously used Java file I/O APIs directly, but ran into several difficul-
ties. The most efficient storage for some environments was an indexed file system, which
was required only for management of thousands of entries. However, when they ported

the application to the telephone, the indexed file system was too resource-intensive, and
had to be abandoned.

They then wrote a data access manager for sequential files, but found that it burned out
the flash RAM due to too much rewriting of data. They concluded that they needed to use
the services of another software provider who specialized in persistence for flash RAM in
embedded devices.

Apache Persistware developed a file access manager based on the Berkeley File System
and successfully sold it to a range of Java customers from embedded devices to worksta-
tions. The interface was proprietary, which meant that every new sale was a challenge, be-
cause customers were loath to invest resources in learning a different interface for each
environment they wanted to support. After all, Java was portable. Why wasn’t file access?

Sven’s Phones was a successful supplier of telephones to the mobile professional, but
found themselves constrained by a lack of software developers. They wanted to offer a
platform on which specially tailored software from multiple vendors could operate, and
take advantage of external developers to write software for their telephones.

The solution to all of these issues was to separate the software into components that could
be tailored by the domain expert for each component.

Sven’s phones implemented the Java runtime environment for their phones, and wrote an
efficient sequential file I/O manager that implemented the Java file I/O interface. This in-
terface was used by Apache Persistware to build a JDO implementation, including a JDO
instance handler and a JDO query manager.

Using the JDO interface, Calendars-R-Us rewrote just the query part of their software. The
application classes did not have to be changed. Only the persistence interface that queried
for specific instances needed to be modified.

Readers primarily interested in JDO as a local persistence mechanism can ignore the following sec-
tion. Skip to 5 — Life Cycle of JDO Instances.

4.3

JDO 2.0

Scenario: Enterprise Calendar Manager

Calendars-R-Us also supports workstations and enterprise mainframes with their calen-
dar software, and they use the same interface for persistence in all environments. For en-
terprise environments, they simply need to use a different JDO implementation supplied
by a different vendor to achieve persistence for their calendar objects.

39 February 28, 2006

Java Data Objects 2.0

Figure 6.0

Scenario: Enterprise Calendar Manager

-

Application Server

-
O

Calendar
Manager

Session Bean,

Container

DO

~

~

Transaction Manager

JCA
Resource
Adapter

I:] JDO

implementation

Entity Beans

API

-

=2

Database

In this scenario, the JDO implementation is provided by a vendor that maps Java objects
to relational databases. The implementation uses a JCA Resource Adapter to connect to the

datastore.

The JDO PersistenceManager is a caching manager, as defined by the Connector ar-
chitecture, and it is configured to use a JCA Resource Adapter. The PersistenceMan-
ager instance might be cached when used with a Session Bean, and might be serially
reused for multiple session beans.

Multiple JDO PersistenceManager instances might serially reuse connections from
the same pool of JDBC drivers. Therefore, resource sharing is accomplished while main-
taining state for each session.

JDO 2.0

40

February 28, 2006

Java Data Objects 2.0

Life Cycle of JDO Instances

This chapter specifies the life cycle for persistence capable class instances, hereinafter
“JDO instances”. The classes include behavior as specified by the class (bean) developer,
and for binary compatible implementations, additional behavior as provided by the refer-
ence enhancer or JDO vendor’s deployment tool. The enhancement of the classes allows
application developers to treat JDO instances as if they were normal instances, with auto-
matic fetching of persistent state from the JDO implementation.

5.1

JDO 2.0

Overview

JDO instances might be transient, detached, or persistent. That is, they might represent the
persistent state of data contained in a transactional datastore. If a JDO instance is transient
(and not transactional), then the instance behaves exactly like an ordinary instance of the
persistence capable class.

If a JDO instance is persistent, its behavior is linked to the transactional datastore with
which it is associated. The JDO implementation automatically tracks changes made to the
values in the instance, and automatically refreshes values from the datastore and saves
values into the datastore as required to preserve transactional integrity of the data. Persis-
tent instances stored in the datastore retain their class and the state of their persistent
fields. Changing the class of a persistent instance is not supported explicitly by the JDO
API. However, it might be possible for an instance to change class based on external (out-
side the JDO environment) modifications to the datastore.

If a JDO instance is detached, its behavior is very similar to that of a transient instance,
with a few significant exceptions. A detached instance does not necessarily have all of its
persistent fields loaded from the data store, and any attempt to access unloaded fields,
whether for read or write, is denied. A detached instance maintains its persistent identity
and the identity can be obtained by an observer. A detached instance allows changes to be
made to loaded fields, and tracks those changes while detached. Detached instances never
observe transaction boundaries.

During the life of a JDO instance, it transitions among various states until it is finally gar-
bage collected by the JVM. During its life, the state transitions are governed by the behav-
iors executed on it directly as well as behaviors executed on the JDO
PersistenceManager by both the application and by the execution environment (in-
cluding the TransactionManager).

During the life cycle, instances at times might be inconsistent with the datastore as of the
beginning of the transaction. If instances are inconsistent, the notation for that instance in
JDO is “dirty”. Instances made newly persistent, deleted, or modified in the transaction
are dirty. Detached instances might be dirty.

At times, the JDO implementation might store the state of persistent instances in the datas-
tore. This process is called “flushing”, and it does not affect the “dirty” state of the instanc-
es.

41 February 28, 2006

Java Data Objects 2.0

Under application control, transient JDO instances might observe transaction boundaries,
in which the state of the instances is either preserved (on commit) or restored (on rollback).
Transient instances that observe transaction boundaries are called transient transactional
instances. Support for transient transactional instances is a JDO option; that is, a JDO com-
pliant implementation is not required to implement the APIs that cause the state transi-
tions associated with transient transactional instances.

Under application control, persistent JDO instances might not observe transaction bound-
aries. These instances are called persistent-nontransactional instances, and the life cycle of
these instances is not affected by transaction boundaries. Support for nontransactional in-
stances is a JDO option.

In a binary-compatible implementation, if a JDO instance is persistent or transactional, it
contains a non-null reference to a JDO StateManager instance which is responsible for
managing the JDO instance state changes and for interfacing with the JDO Persis-
tenceManager.

5.2

Goals
The JDO instance life cycle has the following goals:

* The fact of persistence should be transparent to both JDO instance developer and
application component developer

¢ JDO instances should be able to be used efficiently in a variety of environments,
including managed (application server) and non-managed (two-tier) cases

¢ Several JDO PersistenceManagers might be coresident and might share the
same persistence capable classes (although a JDO instance can be associated with
only one PersistenceManager at a time)

5.3

JDO 2.0

Architecture:
JDO Instances

For transient JDO instances, there is no supporting infrastructure required. That is, tran-
sient instances will never make calls to methods to the persistence infrastructure. There is
no requirement to instantiate objects outside the application domain. In a binary-compat-
ible implementation, there is no difference in behavior between transient instances of en-
hanced classes and transient instances of the same non-enhanced classes, with some
exceptions:

¢ additional methods and fields added by the enhancement process are visible to
Java core reflection,

¢ timing of method execution is different because of added byte codes,
¢ extra methods for registration of metadata are executed at class load time.

Persistent JDO instances execute in an environment that contains an instance of the JDO
PersistenceManager responsible for its persistent behavior. In a binary-compatible
implementation, the JDO instance contains a reference to an instance of the JDO State-
Manager responsible for the state transitions of the instance as well as for managing the
contents of the fields of the instance. The PersistenceManager and the StateMan-
ager might be implemented by the same instance, but their interfaces are distinct.

The contract between the persistence capable class and other application components ex-
tends the contract between the associated non-persistence capable class and application

42 February 28, 2006

Java Data Objects 2.0

components. For both binary-compatible and non-binary-compatible implementations,
these contract extensions support interrogation of the life cycle state of the instances and
are intended for use by management parts of the system.

Persistent instances might be constructed by the application and made persistent; or might
be constructed by the JDO PersistenceManager in response to a query or navigation
from a persistent instance or via the newInstance method. If the JDO PersistenceM-
anager constructs the instance, the class of the instance might be a derived class of the
class of the original instance, and will respond true to instanceof the class of the origi-
nal. Thus, applications must not rely on tests of the actual class of persistent instances, but
must instead use the instanceof test.

JDO State Manager

In a binary-compatible implementation, persistent and transactional JDO instances con-
tain a reference to a JDO StateManager instance to which all of the JDO interrogatives
are delegated. The associated JDO StateManager instance maintains the state changes
of the JDO instance and interfaces with the JDO PersistenceManager to manage the
values of the datastore.

JDO Managed Fields

Only some fields are of interest to the persistence infrastructure: fields whose values are
stored in the datastore are called persistent; fields that participate in transactions (their val-
ues may be restored during rollback) are called transactional; fields of either type are
called managed.

54

JDO 2.0

JDO Identity

Java defines two concepts for determining if two instances are the same instance (identity),
or represent the same data (equality). JDO extends these concepts to determine if two in-
memory instances represent the same stored object.

Java object identity is entirely managed by the Java Virtual Machine. Instances are identi-
cal if and only if they occupy the same storage location within the JVM. The Java VM im-
plements object identity via the = = operator. This can be used by JDO implementations to
determine whether two instances are identical (have the same location) in the VM.

Java object equality is determined by the class. Distinct instances are equal if they repre-
sent the same data, such as the same value for an Integer, or same set of bits foraBit -
Set.

The application implements hashCode and equals, to create the application's vision of
equality of instances, typically based on values of fields in the instances. The JDO imple-
mentation must not use the application's hashCode and equals methods from the per-
sistence-capable classes except as needed to implement the Collections Framework in
package java.util. The JDO implementation must use the application's hashCode and
equals methods from the application-provided object id classes.

The interaction between Java object identity and equality is an important one for JDO de-
velopers. Java object equality is an application specific concept, and JDO implementations
must not change the application’s semantic of equality. Still, JDO implementations must
manage the cache of JDO instances such that there is only one JDO instance associated
with each JDO PersistenceManager representing the persistent state of each corre-
sponding datastore object. Therefore, JDO defines object identity differently from both the
Java VM object identity and from the application equality.

43 February 28, 2006

Java Data Objects 2.0

JDO 2.0

Applications should implement equals for persistence-capable classes differently from
Object’s default equals implementation, which simply uses the Java VM object identi-
ty. This is because the JVM object identity of a persistent instance cannot be guaranteed
between PersistenceManagers and across space and time, except in very specific cas-
es noted below.

Additionally, if persistence instances are stored in the datastore and are queried using the
== query operator, or are referred to by a persistent collection that enforces equality (Set,
Map) then the implementation of equals should exactly match the JDO implementation
of equality, using the primary key or ObjectId as the key. This policy is not enforced,
but if it is not correctly implemented, semantics of standard collections and JDO collec-
tions may differ.

To avoid confusion with Java object identity, this document refers to the JDO concept as
JDO identity. The JDO implementation is responsible for the implementation of JDO iden-
tity based on the user's declaration of the identity type of each persistence-capable class.

Three Types of JDO identity
JDO defines three types of JDO identity:

* Application identity - JDO identity managed by the application and enforced by
the datastore; JDO identity is often called the primary key

¢ Datastore identity - JDO identity managed by the datastore without being tied to
any field values of a JDO instance

* Nondurable identity - JDO identity managed by the implementation to guarantee
uniqueness in the JVM but not in the datastore

The type of JDO identity used is a property of a JDO persistence-capable class and is fixed
at class loading time.

The representation of JDO identity in the JVM is via a JDO object id. Every persistent in-
stance (Java instance representing a persistent object) has a corresponding object id. There
might be an instance in the JVM representing the object id, or not. The object id JVM in-
stance corresponding to a persistent instance might be acquired by the application at run
time and used later to obtain a reference to the same datastore object, and it might be saved
to and retrieved from durable storage (by serialization or other technique).

The class representing the object id for datastore and nondurable identity classes is de-
fined by the JDO implementation. The implementation might choose to use any class that
satisfies the requirements for the specific type of JDO identity for a class. It might choose
the same class for several different JDO classes, or might use a different class for each JDO
class.

The class representing the object id for application identity classes is defined by the appli-
cation in the metadata, and might be provided by the application or by a JDO vendor tool.

The application-visible representation of the JDO identity is an instance that is completely
under the control of the application. The object id instances used as parameters or returned
by methods in the JDO interface (getObjectId, getTransactionalObjectId, and
getObjectById) will never be saved internally; rather, they are copies of the internal
representation or used to find instances of the internal representation.

Therefore, the object returned by any call to getObjectId might be modified by the us-
er, but that modification does not affect the identity of the object that was originally re-
ferred. That is, the call to getObjectId returns only a copy of the object identity used
internally by the implementation.

44 February 28, 2006

Java Data Objects 2.0

JDO 2.0

It is a requirement that the instance returned by a call to getObjectById (Object) of
different PersistenceManager instances returned by the same PersistenceMan-
agerFactory represent the same persistent object, but with different Java object identity
(specifically, all instances returned by getObjectId from the instances must return
true to equals comparisons with all others).

Further, any instances returned by any calls to getObjectById(Object) with the
same object id instance to the same PersistenceManager instance must be identical
(assuming the instances were not garbage collected between calls).

The JDO identity of transient instances is not defined. Attempts to get the object id for a
transient instance will return null.

Uniquing

JDO identity of persistent instances is managed by the implementation. For a durable JDO
identity (datastore or application), there is only one persistent instance associated with a
specific datastore object per PersistenceManager instance, regardless of how the per-
sistent instance was put into the cache:

® PersistenceManager.getObjectById (Object oid, boolean
validate);

* query via a Query instance associated with the PersistenceManager
instance;

* navigation from a persistent instance associated with the
PersistenceManager instance;

» PersistenceManager .makePersistent (Object pc);

Change of identity

Change of identity is supported only for application identity, and is an optional feature of
a JDO implementation. An application attempt to change the identity of an instance (by
writing a primary key field) where the implementation does not support this optional fea-
ture results in JDOUnsupportedOptionException being thrown. The exception
might be thrown immediately or upon flush or transaction commit.

NOTE: Application developers should take into account that changing primary
key values changes the identity of the instance in the datastore. In production
environments where audit trails of changes are kept, change of the identity of
datastore instances might cause loss of audit trail integrity, as the historical
record of changes does not reflect the current identity in the datastore.

JDO instances using application identity may change their identity during a transaction if
the application changes a primary key field. In this case, there is a new JDO Identity asso-
ciated with the JDO instance immediately upon completion of the statement that changes
a primary key field. If a JDO instance is already associated with the new JDO Identity, then
a JDOUserException is thrown. The exception might be thrown immediately or upon
flush or transaction commit.

Upon successful commit of the transaction, the existing datastore instance will have been
updated with the changed values of the primary key fields.

JDO Identity Support

A JDO implementation is required to support either or both of application (primary key)
identity or datastore identity, and may optionally support nondurable identity.

45 February 28, 2006

Java Data Objects 2.0

54.1

JDO 2.0

Application (primary key) identity

This is the JDO identity type used for datastores in which the value(s) in the instance de-
termine the identity of the object in the datastore. Thus, JDO identity is managed by the
application. The class provided by the application that implements the JDO object id has
all of the characteristics of an RMI remote object, making it possible to use the JDO object
id class as the EJB primary key class. Specifically:

* the ObjectId class must be public;
* the ObjectId class mustimplement Serializable;

¢ the ObjectId class must have a public no-arg constructor, which might be the
default constructor;

¢ the field types of all non-static fields in the ObjectId class must be serializable,
and for portability should be primitive, String, Date, Byte, Short,
Integer, Long, Float, Double, BigDecimal, or BigInteger
types; JDO implementations are required to support these types and might
support other reference types;

¢ all serializable non-static fields in the ObjectId class must be public;

¢ the names of the non-static fields in the ObjectId class must include the names
of the primary key fields in the JDO class, and the types of the corresponding fields
must be identical;

¢ the equals () and hashCode () methods of the ObjectId class must use the
value(s) of all the fields corresponding to the primary key fields in the JDO class;

¢ if the ObjectId classis an inner class, it must be static;

¢ the ObjectId class mustoverride the toString () method defined in Object,
and return a String that can be used as the parameter of a constructor;

* the ObjectId class must provide a constructor taking either a String alone or
a Class and String that returns an instance that compares equal to an instance
that returned that String by the toString () method.

These restrictions allow the application to construct an instance of the primary key class
providing values only for the primary key fields, or alternatively providing only the result
of toString () from an existing instance. The JDO implementation is permitted to ex-
tend the primary key class to use additional fields, not provided by the application, to fur-
ther identify the instance in the datastore. Thus, the JDO object id instance returned by an
implementation might be a subclass of the user-defined primary key class. Any JDO im-
plementation must be able to use the JDO object id instance from any other JDO implemen-
tation.

A primary key identity is associated with a specific set of fields. The fields associated with
the primary key are a property of the persistence-capable class, and cannot be changed af-
ter the class is enhanced for use at runtime. When a transient instance is made persistent,
the implementation uses the values of the fields associated with the primary key to con-
struct the JDO identity.

A primary key instance must have none of its primary key fields set to null when used to
find a persistent instance. The persistence manager will throw JDOUserException if the
primary key instance contains any null values when the key instance is the parameter of
getObjectById.

46 February 28, 2006

Java Data Objects 2.0

5.4.2

JDO 2.0

Persistence-capable classes that use application identity have special considerations for in-
heritance. To be portable, the key class must be the same for all classes in the inheritance
hierarchy derived from the least-derived (topmost) concrete persistence-capable class in
the hierarchy.

Compound Identity

Compound identity is a special case of application identity. References to other persis-
tence-capable classes can be defined as key fields. In this case, the object id class contains
a field that is of the type of the object id of the relationship field.

For example, two classes have a one-many relationship, and on the reference side of the
relationship, the field is a key field. On the other side of the relationship, there is a Col-
lection or other multi-valued type.

class Order {
long orderId;
Set<OrderItem> items;
-}
class OrderId {
long orderId; // matches orderId field name
.}
class OrderItem {
Order order;
long item;
-}
class OrderItemId ({
OrderId order; // matches order field name
long item; matches item field name

.

Single Field Identity

A common case of application identity uses exactly one persistent field in the class to rep-
resent identity. In this case, the application can use a standard JDO class instead of creating
a new user-defined class for the purpose.

A JDO implementation that supports application identity must also support single field
identity.
package javax.jdo.identity;
public abstract class SingleFieldIdentity implements Externalizable
{
protected SingleFieldIdentity(Class pcClass);
public Class getTargetClass();
public String getTargetClassName () ;
public Object getKeyAsObject () ;
}

public class ByteIdentity
extends SingleFieldIdentity {

47 February 28, 2006

Java Data Objects 2.0

JDO 2.0

public
public
public
public

byte getKey (
ByteIdentity
ByteIdentity
ByteIdentity

Class pcClass,
Class pcClass,
Class pcClass,

—_~ o~ ~

public class CharIdentity
extends SingleFieldIdentity {

public

public

public

public
}

char getKey () ;

CharIdentity (Class pcClass,
CharIdentity (Class pcClass,
CharIdentity (Class pcClass,

public class ShortIdentity
extends SingleFieldIdentity {

public
public
public
public

short getKey () ;

ShortIdentity(Class pcClass,
ShortIdentity(Class pcClass,
ShortIdentity(Class pcClass,

public class IntIdentity
extends SingleFieldIdentity {

public
public
public
public

int getKey () ;

IntIdentity(Class pcClass,
IntIdentity(Class pcClass,
IntIdentity(Class pcClass,

public class LongIdentity
extends SingleFieldIdentity {

public

public LongIdentity(Class pcClass,
LongIdentity (Class pcClass,
public LongIdentity(Class pcClass,

public

long getKey() ;

public class StringIdentity
extends SingleFieldIdentity {
public String getKey () ;

public StringIdentity(Class pcClass,

public class ObjectIdentity
extends SingleFieldIdentity {
public Object getKey () ;

public ObjectIdentity(Class pcClass,

byte key);
Byte key);
String key);

char key) ;
Character key);
String key);

short key);
Short key) ;
String key);

int key);
Integer key);
String key) ;

long key) ;
Long key) ;
String key);

String key) ;

Object key);

The constructors that take reference types throw JDONullIdentityException if the
second argument is null. Valid key values are never null.

Constructors of primitive identity types that take String parameters convert the parameter
to the proper type using the static parseXXX method of the corresponding wrapper class.

48

February 28, 2006

Java Data Objects 2.0

543

5.4.4

JDO 2.0

Instances of SingleFieldIdentity classes are immutable. When serialized, the name
of the target class is serialized. When deserialized, the name of the target class is restored,
but not the target class. The deserialized instance will return null to getTargetClass.
All instances will return the “binary” name of the target class (the result of Class.get-
Name ()).

The singleFieldIdentity classes adhere to all of the requirements for application ob-
ject id classes, with the exception of field names. That is, there are no public fields visible
to the application.

Datastore identity

This is the JDO identity type used for datastores in which the identity of the data in the
datastore does not depend on the values in the instance. The implementation guarantees
uniqueness for all instances.

A JDO implementation might choose one of the primitive wrapper classes as the Objec-
tIdclass(e.g. Short, Integer, Long, or String), or might choose an implementation-
specific class. Implementation-specific classes used as JDO ObjectId have the following
characteristics:

* the ObjectId class must be public;
* the ObjectId class mustimplement Serializable;

* the ObjectId class must have a public no-arg constructor, which might be the
default constructor;

¢ all serializable fields in the ObjectId class must be public;
¢ the field types of all non-static fields in the ObjectId class must be serializable;

e the ObjectId class mustoverride the toString () method defined in Object,
and return a String that can be used as the parameter of the
PersistenceManager method newObjectIdInstance(Class cls,
String key);

Note that, unlike application identity, datastore identity ObjectId classes are not re-
quired to support equality with ObjectId classes from other JDO implementations. Fur-
ther, the application cannot change the JDO identity of an instance of a class using
datastore identity.

Nondurable JDO identity

The primary usage for nondurable JDO identity is for log files, history files, and other sim-
ilar files, where performance is a primary concern, and there is no need for the overhead
associated with managing a durable identity for each datastore instance. Objects are typi-
cally inserted into datastores with transactional semantics, but are not accessed by key.
They may have references to instances elsewhere in the datastore, but often have no keys
or indexes themselves. They might be accessed by other attributes, and might be deleted
in bulk.

Multiple objects in the datastore might have exactly the same values, yet an application
program might want to treat the objects individually. For example, the application must
be able to count the persistent instances to determine the number of datastore objects with
the same values. Also, the application might change a single field of an instance with du-
plicate objects in the datastore, and the expected result in the datastore is that exactly one
instance has its field changed. If multiple instances in memory are modified, then instanc-
es in the datastore are modified corresponding one-to-one with the modified instances in

49 February 28, 2006

Java Data Objects 2.0

memory. Similarly, if the application deletes some number of multiple duplicate objects,
the same number of the objects in the datastore must be deleted.

As another example, if a datastore instance using nondurable identity is loaded twice into
the VM by the same PersistenceManager, then two separate instances are instantiat-
ed, with two different JDO identities, even though all of the values in the instances are the
same. It is permissible to update or delete only one of the instances. At commit time, if only
one instance was updated or deleted, then the changes made to that instance are reflected
in the datastore by changing the single datastore instance. If both instances were changed,
then the transaction will fail at commit, with a JDOUserException because the changes
must be applied to different datastore instances. Because the JDO identity is not visible in
the datastore, there are special behaviors with regard to nondurable JDO identity:

* the ObjectId is not valid after making the associated instance hollow, and
attempts to retrieve it will throw a JDOUserException;

¢ the ObjectId cannot be used in a different instance of PersistenceManager
from the one that issued it, and attempts to use it even indirectly (e.g.
getObjectById with a persistence-capable object as the parameter) will throw
a JDOUserException;

* the persistent instance might transition to persistent-nontransactional or hollow
but cannot transition to any other state afterward;

* attempts to access the instance in the hollow state will throw a
JDOUserException;

¢ the results of a query in the datastore will always return instances that are not
already in the Java VM, so multiple queries that find the same objects in the
datastore will return additional JDO instances with the same values and different
JDO identities;

* makePersistent will succeed even though another instance already has the
same values for all persistent fields.

For JDO identity that is not managed by the datastore, the class that implements JDO Ob-
jectId has the following characteristics:

¢ the ObjectId class must be public;

¢ the ObjectId class must have a public constructor, which might be the default
constructor or a no-arg constructor;

¢ all fields in the ObjectId class must be public;
¢ the field types of all fields in the ObjectId class must be serializable.

5.5

JDO 2.0

Life Cycle States

There are many states defined by this specification. Some states are required, and others
states are optional. If an implementation does not support certain operations, then these
optional states are not reachable.

Datastore Transactions

The following descriptions apply to datastore transactions with retainvalues=false.
Optimistic transaction and retainvValues=true state transitions are covered later in
this chapter.

50 February 28, 2006

Java Data Objects 2.0

5.5.1

5.5.2

JDO 2.0

Transient (Required)

JDO instances created by using a developer-written or compiler-generated constructor
that do not involve the persistence environment behave exactly like instances of the unen-
hanced class.

There is no JDO identity associated with a transient instance.

There is no intermediation to support fetching or storing values for fields. There is no sup-
port for demarcation of transaction boundaries. Indeed, there is no transactional behavior
of these instances, unless they are referenced by transactional instances at commit time.

When a persistent instance is committed to the datastore, instances referenced by persis-
tent fields of the flushed instance become persistent. This behavior propagates to all in-
stances in the closure of instances through persistent fields. This behavior is called
persistence by reachability.

No methods of transient instances throw exceptions except those defined by the class de-
veloper.

A transient instance transitions to persistent-new if it is the parameter of makePersis-
tent, or if it is referenced by a persistent field of a persistent instance when that instance
is committed or made persistent.

Persistent-new (Required)

JDO instances that are newly persistent in the current transaction are persistent-new. This
is the state of an instance that has been requested by the application component to become
persistent, by using one of the PersistenceManager makePersistent methods on
the instance.

During the transition from transient to persistent-new

¢ the associated PersistenceManager becomes responsible to implement state
interrogation and further state transitions.

¢ if the transaction flag restorevValues is true, the values of persistent and
transactional non-persistent fields are saved for use during rollback.

* the values of persistent fields of mutable SCO types (e.g. java.util.Date,
java.util.HashSet, etc.) are replaced with JDO implementation-specific
copies of the field values that track changes and are owned by the persistent
instance.

* aJDO identity is assigned to the instance by the JDO implementation. This identity
uniquely identifies the instance inside the PersistenceManager and might
uniquely identify the instance in the datastore. A copy of the JDO identity will be
returned by the PersistenceManager method getObjectId(Object).

* instances reachable from this instance by fields of persistence-capable types and
collections of persistence-capable types become provisionally persistent and
transition from transient to persistent-new. If the instances made provisionally
persistent are still reachable at commit time, they become persistent. This effect is
recursive, effectively making the transitive closure of transient instances
provisionally persistent.

A persistent-new instance transitions to persistent-new-deleted if it is the parameter of
deletePersistent.

A persistent-new instance transitions to hollow when it is flushed to the datastore during
commit when retainvValues is false. This transition is not visible during before-

51 February 28, 2006

Java Data Objects 2.0

5.5.3

554

JDO 2.0

Completion, andis visible during afterCompletion. During beforeCompletion,
the user-defined jdoPreStore method is called if the class implements Instance-
Callbacks.

A persistent-new instance transitions to transient at rollback. The instance loses its JDO
Identity and its association with the PersistenceManager. If restorevalues is
false, the values of managed fields in the instance are left as they were at the time roll-
back was called.If restoreValues is true, the values of managed fields in the instance
are restored to the values as they were at the time makePersistent was called.

Persistent-dirty (Required)

JDO instances that represent persistent data that was changed in the current transaction
are persistent-dirty.

A persistent-dirty instance transitions to persistent-deleted if it is the parameter of
deletePersistent.

Persistent-dirty instances transition to hollow during commit when retainvalues is
false or during rollback when restorevalues is false. During beforeComple-
tion, the user-defined jdoPreStore method is called if the class implements Store-
Callback.

If an application modifies a managed field, but the new value is equal to the old value, then
it is an implementation choice whether the JDO instance is modified or not. If no modifi-
cation to any managed field was made by the application, then the implementation must
not mark the instance as dirty. If a modification was made to any managed field that
changes the value of the field, then the implementation must mark the instance as dirty.

Since changes to array-type fields cannot be tracked by JDO, setting the value of an array-
type managed field marks the field as dirty, even if the new value is identical to the old
value. This special case is required to allow the user to mark an array-type field as dirty
without having to call the JDOHelper method makeDirty.

Hollow (Required)

JDO instances that represent specific persistent data in the datastore but whose values are
not in the JDO instance are hollow. The hollow state provides for the guarantee of unique-
ness for persistent instances between transactions.

This is permitted to be the state of instances committed from a previous transaction, ac-
quired by the method getObjectById, returned by iterating an Extent, returned in
the result of a query execution, or navigating a persistent field reference. However, the
JDO implementation may choose to return instances in a different state reachable from
hollow.

A JDO implementation is permitted to effect a legal state transition of a hollow instance at
any time, as if a field were read. Therefore, the hollow state might not be visible to the ap-
plication.

During the commit of the transaction in which a dirty persistent instance has had its values
changed (including a new persistent instance), the underlying datastore is changed to
have the transactionally consistent values from the JDO instance, and the instance transi-
tions to hollow.

Requests by the application for an instance with the same JDO identity (query, navigation,
or lookup by Objectld), in a subsequent transaction using the same PersistenceMan-
ager instance, will return the identical Java instance, assuming it has not been garbage
collected. If the application does not hold a strong reference to a hollow instance, the in-

52 February 28, 2006

Java Data Objects 2.0

5.5.5

5.5.6

5.5.7

JDO 2.0

stance might be garbage collected, as the PersistenceManager must not hold a strong
reference to any hollow instance.

The hollow JDO instance maintains its JDO identity and its association with the JDO Per -
sistenceManager. If the instance is of a class using application identity, the hollow in-
stance maintains its primary key fields.

A hollow instance transitions to persistent-deleted if it is the parameter of deletePer-
sistent.

A hollow instance transitions to persistent-dirty if a change is made to any managed field.
It transitions to persistent-clean if a read access is made to any persistent field other than
one of the primary key fields.

A hollow instance transitions to detached if the transaction associated with its persistence
manager is committed while the DetachAllOnCommit property is true.

The behavior of persistent instances at close of the corresponding PersistenceManager
is not further defined in this specification.

Persistent-clean (Required)

JDO instances that represent specific transactional persistent data in the datastore, and
whose values have not been Changed in the current transaction, are persistent—clean. This
is the state of an instance whose values have been requested in the current datastore trans-
action, and whose values have not been changed by the current transaction.

A persistent-clean instance transitions to persistent-dirty if a change is made to any man-
aged field.

A persistent-clean instance transitions to persistent-deleted if it is the parameter of
deletePersistent.

A persistent-clean instance transitions to hollow at commit when retainvalues is
false; or rollback when restorevValues is false. It retains its identity and its associa-
tion with the PersistenceManager.

Persistent-deleted (Required)

JDO instances that represent specific persistent data in the datastore, and that have been
deleted in the current transaction, are persistent-deleted.

Read access to primary key fields is permitted. Any other access to persistent fields is not
supported and might throw a JDOUserException.

Before the transition to persistent-deleted, the user-written jdoPreDelete s called if the
persistence-capable class implements InstanceCallbacks.

A persistent-deleted instance transitions to transient at commit. During the transition, its
persistent fields are written with their Java default values, and the instance loses its JDO
Identity and its association with the PersistenceManager.

A persistent-deleted instance transitions to hollow at rollback when restorevalues is
false. The instance retains its JDO Identity and its association with the Persistence-
Manager.

Persistent-new-deleted (Required)

JDO instances that represent instances that have been newly made persistent and deleted
in the current transaction are persistent-new-deleted.

Read access to primary key fields is permitted. Any other access to persistent fields is not
supported and might throw a JDOUserException.

53 February 28, 2006

Java Data Objects 2.0

Before the transition to persistent-new-deleted, the user-written jdoPreDelete is called
if the persistence-capable class implements InstanceCallbacks.

A persistent-new-deleted instance transitions to transient at commit. During the transi-
tion, its persistent fields are written with their Java default values, and the instance loses
its JDO Identity and its association with the PersistenceManager.

A persistent-new-deleted instance transitions to transient at rollback. The instance loses its
JDO Identity and its association with the PersistenceManager.

If RestoreValues is true, the values of managed fields in the instance are restored to
their state as of the call to makePersistent. If RestoreValues is false, the values
of managed fields in the instance are left as they were at the time rollback was called.

JDO instances that have been detached from their persistence manager and have not been
modified are detached-clean. Detach is done by one of three ways:

¢ the instance or an instance containing a reference to the instance is serialized; in
this case, the serialized instance is detached

¢ the transaction of the persistence manager managing the instance is committed
and the DetachAllOnCommit property is true; in this case the persistent
instance itself is detached (there is no copy)

¢ the instance is explicitly detached from the persistence manager via one of the
detachCopy or detachCopyAll methods; in this case the copy is detached.

Detached-clean instances transition to detached-dirty if a loaded field is modified. At-
tempts to change their state via any of the persistence manager methods except for
makePersistent and deletePersistentthrow JDOUserException.

Evict, refresh, retrieve, makeTransient, makeTransactional, makeNon-
transactional, and detachCopy throw JDOUserException if a parameter instance
is in the detached-clean or detached-dirty state.

A detachable class is not serialization-compatible with the corresponding unenhanced

Detached instances are further described in section 12.6.8.

JDO instances that have been removed from their persistence manager and have fields
marked as modified are detached-dirty.

Fields are marked as modified if a field of the detached instance is explicitly modified by

Detached-dirty instances do not change their life cycle state.

Evict, refresh, retrieve, makeTransient, makeTransactional, makeNon-
transactional, and detachCopy throw JDOUserException if a parameter instance
is in the detached-clean or detached-dirty state.

Management of nontransactional instances is an optional feature of a JDO implementa-
tion. Usage is primarily for slowly changing data or for optimistic transaction manage-
ment, as the values in nontransactional instances are not guaranteed to be transactionally

5.5.8 Detached-clean (Required)
class.
5.5.9 Detached-dirty (Required)
the application.
5.6 Nontransactional (Optional)
consistent.
JDO 2.0

54 February 28, 2006

Java Data Objects 2.0

JDO 2.0

The use of this feature is governed by the PersistenceManager options Nontrans-
actionalRead, NontransactionalWrite, Optimistic, and RetainValues.
An implementation might support any or all of these options. For example, an implemen-
tation might support only NontransactionalRead. For options that are not support-
ed, the value of the unsupported property is false and it may not be changed.

If a PersistenceManager does not support this optional feature, an operation that
would result in an instance transitioning to the persistent-nontransactional state or a re-
quest to set the NontransactionalRead, NontransactionalWrite, Optimis-
tic, or RetainValues option to true, throws a
JDOUnsupportedOptionException.

NontransactionalRead, NontransactionalWrite, Optimistic, and Reta-
invValues are independent options. A JDO implementation must not automatically
change the values of these properties as a side effect of the user changing other properties.

With NontransactionalRead set to true:

* Navigation and queries are valid outside a transaction. It is a JDO implementation
decision whether the instances returned are in the hollow or persistent-
nontransactional state.

* When a managed, non-key field of a hollow instance is read outside a transaction,
the instance transitions to persistent-nontransactional.

¢ If a persistent-clean instance is the parameter of makeNontransactional, the
instance transitions to persistent-nontransactional.

With NontransactionalWrite setto true:

* Modification of persistent-nontransactional instances is permitted outside a
transaction. The changes might participate in a subsequent transaction.

¢ This is an incompatible change from the behavior in JDO 1.0. Compatibility is only
supported if a subsequent transaction is not begun after making changes to
persistent instances in the cache.

With RetainValues set to true:

* At commit, persistent-clean, persistent-new, and persistent-dirty instances
transition to persistent-nontransactional. Fields defined in the XML metadata as
containing mutable second-class types are examined to ensure that they contain
instances that track changes made to them and are owned by the instance. If not,
they are replaced with new second class object instances that track changes,
constructed from the contents of the second class object instance. These include
java.util.Date,and Collection and Map types. NOTE: This process is not
required to be recursive, although an implementation might choose to recursively
convert the closure of the collection to become second class objects. JDO requires
conversion only of the affected persistence-capable instance’s fields.

With Restorevalues set to true:

¢ If the JDO implementation does not support persistent-nontransactional instances,
at rollback persistent-deleted, persistent-clean and persistent-dirty instances
transition to hollow.

¢ If the JDO implementation supports persistent-nontransactional instances, at
rollback persistent-deleted, persistent-clean and persistent-dirty instances
transition to persistent-nontransactional. The state of each managed field in
persistent-deleted and persistent-dirty instances is restored:

55 February 28, 2006

Java Data Objects 2.0

5.6.1

JDO 2.0

e fields of primitive types (int, £loat, etc.), wrapper types (Integer, Float,
etc.), immutable types (Locale, etc.), and references to persistence-capable types
are restored to their values as of the beginning of the transaction and the fields are
marked as loaded.

¢ fields of mutable types (Date, Collection, array-type, etc.) are set to null
and the fields are marked as not loaded.

Persistent-nontransactional (Optional)

NOTE: The following discussion applies only to datastore transactions. See section 5.8 for
a discussion on how optimistic transactions change this behavior.

JDO instances that represent specific persistent data in the datastore, whose values are cur-
rently loaded but not transactionally consistent, are persistent-nontransactional. There is
aJDO Identity associated with these instances, and transactional instances can be obtained
from the object ids.

The persistent-nontransactional state allows persistent instances to be managed as a shad-
ow cache of instances that are updated asynchronously.

As long as a transaction is not in progress:

¢ if NontransactionalRead is true, persistent field values might be retrieved
from the datastore by the PersistenceManager;

* if NontransactionalWriteis true, the application might make changes to the
persistent field values in the instance. These changes might be committed in a
subsequent transaction.

A persistent-nontransactional instance transitions to persistent-clean if it is the parameter
of amakeTransactional method executed when a transaction is in progress. The state
of the instance in memory is discarded (cleared) and the state is loaded from the datastore.

A persistent-nontransactional instance transitions to persistent-clean if any managed field
is accessed when a datastore transaction is in progress. The state of the instance in memory
is discarded and the state is loaded from the datastore.

A persistent-nontransactional instance transitions to persistent-dirty if any managed field
is written when a transaction is in progress. The state of the instance in memory is saved
for use during rollback, and the state is loaded from the datastore. Then the change is ap-
plied.

A persistent-nontransactional instance transitions to persistent-deleted if it is the parame-

ter of deletePersistent. The state of the instance in memory is saved for use during
rollback.

A persistent-nontransactional instance transitions to detached if a transaction is commited
while the DetachAllOnCommit property is true.

A persistent-nontransactional instance transitions to persistent-nontransactional-dirty if a
change is made outside a transaction while the NontransactionalWrite property is
true.

If the application does not hold a strong reference to a persistent-nontransactional in-
stance, the instance might be garbage collected. The PersistenceManager must not
hold a strong reference to any persistent-nontransactional instance.

The behavior of persistent instances at close of the corresponding PersistenceManager
is not further defined in this specification.

56 February 28, 2006

Java Data Objects 2.0

5.6.2

JDO 2.0

Persistent-nontransactional-dirty (Optional)

JDO instances that represent specific persistent data in the datastore, whose values may be
currently loaded but not transactionally consistent, and have been modified since the last
commit, are persistent-nontransactional-dirty. There is a JDO Identity associated with
these instances, and transactional instances can be obtained from the object ids.

The persistent-nontransactional-dirty state allows applications to operate on nontransac-
tional instances in the cache and make changes to the instances without having a transac-
tion active. At some future point, the application can begin a transaction and incorporate
the changes into the transactional state. Committing the transaction makes the changes
made outside the transaction durable.

A persistent-nontransactional-dirty instance transitions to hollow if it is the parameter of
evict or evictAll. This allows the application to remove instances from the set of in-
stances whose state is to be committed to the datastore.

If a datastore transaction is begun, commi t will write the changes to the datastore with no
checking as to the current state of the instances in the datastore. That is, the changes made
outside the transaction together with any changes made inside the transaction will over-
write the current state of the datastore. The persistent-nontransactional-dirty instances
will transition according to the Retainvalues flag. With the RetainValues flag set
to true, persistent-nontransactional-dirty instances will transition to persistent-nontrans-
actional. With the RetainValues flag set to false, persistent-nontransactional-dirty in-
stances will transition to hollow.

If a datastore transaction is begun, rollback will not write any changes to the datastore.
The persistent-nontransactional-dirty instances will transition according to the Restoxr-
eValues flag. With the RestorevValues flag set to true, persistent-nontransactional-
dirty instances will make no state transition, but the fields will be restored to their values
as of the beginning of the transaction, and any changes made within the transaction will
be discarded. With the RestoreValues flag set to false, persistent-nontransactional-
dirty instances will transition to hollow.

If an optimistic transaction is begun, commi t will write the changes to the datastore after
checking as to the current state of the instances in the datastore. The changes made outside
the transaction together with any changes made inside the transaction will update the cur-
rent state of the datastore if the version checking is successful. The persistent-nontransac-
tional-dirty instances will transition according to the RetainvValues flag. With the
RetainValues flag set to true, persistent-nontransactional-dirty instances will transi-
tion to persistent-nontransactional. With the Retainvalues flag set to false, persis-
tent-nontransactional-dirty instances will transition to hollow.

If an optimistic transaction is begun, rollback will not write any changes to the datas-
tore. The persistent-nontransactional-dirty instances will transition according to the Re-
storeValues flag. With the RestoreValues flag set to true, persistent-
nontransactional-dirty instances will make no state transition, but the fields will be re-
stored to their values as of the beginning of the transaction, and any changes made within
the transaction will be discarded. With the RestoreValues flag set to false, persis-
tent-nontransactional-dirty instances will transition to hollow.

The behavior of persistent instances at close of the corresponding PersistenceManager
is not further defined in this specification.

57 February 28, 2006

Java Data Objects 2.0

Transient Transactional (Optional)

Management of transient transactional instances is an optional feature of a JDO implemen-
tation. The following sections describe the additional states and state changes when using

A transient instance transitions to transient-clean if it is the parameter of make-Trans-

JDO instances that represent transient transactional instances whose values have not been
changed in the current transaction are transient-clean. This state is not reachable if the JDO
PersistenceManager does not implement the optional feature javax.jdo.op-
tion.TransientTransactional.

Changes made outside a transaction are allowed without a state change. A transient-clean
instance transitions to transient-dirty if any managed field is changed in a transaction.
During the transition, values of managed fields are saved by the PersistenceManager
for use during rollback. This behavior is not dependent on the setting of the Restoreval-

A transient-clean instance transitions to transient if it is the parameter of makeNon-

JDO instances that represent transient transactional instances whose values have been
changed in the current transaction are transient-dirty. This state is not reachable if the JDO
PersistenceManager does not implement the optional feature javax.jdo.op-
tion.TransientTransactional.

A transient-dirty instance transitions to transient-clean at commit. The values of managed
fields saved (for rollback processing) at the time the transition was made from transient-
clean to transient-dirty are discarded. None of the values of fields in the instance are mod-

A transient-dirty instance transitions to transient-clean at rollback. The values of managed
fields saved at the time the transition was made from transient-clean to transient-dirty are
restored. This behavior is not dependent on the setting of the Restorevalues flag.

A transient-dirty instance transitions to persistent-new at makePersistent. The values
of managed fields saved at the time the transition was made from transient-clean to tran-
sient-dirty are used as the before image for the purposes of rollback.

Optimistic Transactions (Optional)
Optimistic transaction management is an optional feature of a JDO implementation.
The Optimistic flag set to true changes the state transitions of persistent instances:

¢ If a persistent field other than one of the primary key fields is read, a hollow
instance transitions to persistent-nontransactional instead of persistent-clean.
Subsequent reads of these fields do not cause a transition from persistent-

* A persistent-nontransactional instance transitions to persistent-deleted if it is a
parameter of deletePersistent. The state of the managed fields of the
instance in memory is saved for use during rollback, and for verification during

5.7
transient transactional behavior.
actional.

5.7.1 Transient-clean (Optional)
ues flag.
transactional.

5.7.2 Transient-dirty (Optional)
ified as a result of commit.

5.8
nontransactional.
JDO 2.0

58 February 28, 2006

Java Data Objects 2.0

commit. The values in fields of the instance in memory are unchanged. If fresh
values need to be loaded from the datastore, then the user should first call
refresh on the instance.

* A persistent-nontransactional instance transitions to persistent-clean if it is a
parameter of a makeTransactional method executed when an optimistic
transaction is in progress. The values in managed fields of the instance in memory
are unchanged. If fresh values need to be loaded from the datastore, then the user
should first call refresh on the instance.

* A persistent-nontransactional instance transitions to persistent-dirty if a managed
field is modified when an optimistic transaction is in progress. If RestorevValues
is true, a before image is saved before the state transition. This is used for
restoring field values during rollback. Depending on the implementation the
before image of the instance in memory might be saved for verification during
commit. The values in fields of the instance in memory are unchanged before the
update is applied. If fresh values need to be loaded from the datastore, then the
user should first call refresh on the instance.

| JDO 2.0 59 February 28, 2006

Java Data Objects 2.0

Table 2: State Transitions

method \ current state Transient P-new P-clean P-dirty Hollow

makePersistent P-new unchanged | unchanged | unchanged | unchanged
deletePersistent error P-new-del | P-del P-del P-del
makeTransactional T-clean unchanged | unchanged | unchanged | P-clean
makeNontransactional | error error P-nontrans | error unchanged
makeTransient unchanged | error Transient error Transient
commit unchanged | Hollow Hollow Hollow unchanged
retainValues=false
commit unchanged | P-nontrans | P-nontrans | P-nontrans | unchanged
retainValues=true
rollback unchanged | Transient Hollow Hollow unchanged
restore Values=false
rollback unchanged | Transient P-nontrans | P-nontrans | unchanged
restore Values=true
refresh with active unchanged | unchanged | unchanged | P-clean unchanged
Datastore transaction
refresh with active Opti- | unchanged | unchanged | unchanged | P-nontrans | unchanged
mistic transaction
evict n/a unchanged | Hollow unchanged | unchanged
read field outside transac- | unchanged | impossible | impossible | impossible | P-nontrans
tion
read field with active unchanged | unchanged | unchanged | unchanged | P-nontrans
Optimistic transaction
read field with active | unchanged | unchanged | unchanged | unchanged | P-clean
Datastore transaction
write field or unchanged | impossible | impossible | impossible | P-nontrans
makeDirty outside
transaction
write field or unchanged | unchanged | P-dirty unchanged | P-dirty
makeDirty with
active transaction

JDO 2.0 60 February 28, 2006

Java Data Objects 2.0

Table 2: State Transitions

method \ current state Transient P-new P-clean P-dirty Hollow
retrieve outside or with unchanged | unchanged | unchanged | unchanged | P-nontrans
active Optimistic transac-
tion
retrieve with active Datas- | unchanged | unchanged | unchanged | unchanged | P-clean
tore transaction
commit transaction with | unchanged | detached- detached- detached- detached-
DetachAllOnCommit true clean clean clean clean
method \ current state T-clean T-dirty P-new-del P-del P-nontrans
makePersistent P-new P-new unchanged | unchanged | unchanged
deletePersistent error error unchanged | unchanged | P-del
makeTransactional unchanged | unchanged | unchanged | unchanged | P-clean
makeNontransactional | Transient error error error unchanged
makeTransient unchanged | unchanged | error error Transient
commit unchanged | T-clean Transient Transient unchanged
retain Values=false
commit unchanged | T-clean Transient Transient unchanged
retainValues=true
rollback unchanged | T-clean Transient Hollow unchanged
restore Values=false
rollback unchanged | T-clean Transient P-nontrans | unchanged
restore Values=true
refresh unchanged | unchanged | unchanged | unchanged | unchanged
evict unchanged | unchanged | unchanged | unchanged | Hollow
read field outside transac- | unchanged | impossible | impossible | impossible | unchanged
tion
read field with Optimistic | unchanged | unchanged | error error unchanged
transaction
read field with active | unchanged | unchanged | error error P-clean
Datastore transaction
write field or unchanged | impossible | impossible | impossible | unchanged
makeDirty outside
transaction
JDO 2.0 61 February 28, 2006

Java Data Objects 2.0

method \ current state T-clean T-dirty P-new-del P-del P-nontrans
write field or T-dirty unchanged | error error P-dirty
makeDirty with
active transaction
retrieve outside or with unchanged | unchanged | unchanged | unchanged | unchanged
active Optimistic transac-
tion
retrieve with active Datas- | unchanged | unchanged | unchanged | unchanged | P-clean
tore transaction
commit transaction with | unchanged | unchanged | Transient Transient detached-
DetachAllOnCommit true clean
P-nontrans- | detached- detached-
method \ current state . .
dirty clean dirty
makePersistent unchanged | unchanged | unchanged
deletePersistent error unchanged | unchanged
makeTransactional unchanged | error error
makeNontransactional | error error error
makeTransient error error error
commit with hollow unchanged | unchanged
retainValues=false
commit with P-nontrans | unchanged | unchanged
retainValues=true
rollback unchanged | unchanged | unchanged
refresh unchanged | error error
evict hollow error error
read field unchanged | unchanged | unchanged
write field or unchanged | detached- unchanged
makeDirty dirty
retrieve unchanged | error error
commit transaction with | detached unchanged | unchanged
DetachAllOnCommit true
62 February 28, 2006

Java Data Objects 2.0

error: a JDOUserException is thrown; the state does not change

unchanged: no state change takes place; no exception is thrown due to the state change

n/a: not applicable; if this instance is an explicit parameter of the method, a JDOUserException
is thrown; if this instance is an implicit parameter, it is ignored.

impossible: the state cannot occur in this scenario

Figure 7.0 Life Cycle: New Persistent Instances

makePersistent >
Transient rollback Persistent- comimit I Elllons
< new
deletePersistent
commit, Persistent-
rollback new-deleted

Figure 8.0 Life Cycle: Transactional Access

) read field,
Active write field
Persistent -
Transient Instances > Hollow
commit,
rollback
deletePersistent

commit

Persistent- rollback

deleted

| JDO 2.0 63 February 28, 2006

Java Data Objects 2.0

Figure 9.0 Life Cycle: Datastore Transactions

w—readfield
Persistent-
clean commit,

Hollow
write/field rollback
%M
Persistent- %'
dirty rollback
Figure 10.0 Life Cycle: Optimistic Transactions
Persistent- ‘%
nontransactional
commit,
write] field rollback Hollow
Persistent- /
dirty commit,
rollback
Figure 11.0 Life Cycle: Access Outside Transactions
read field,
write field
. -
read field Persistent-
nontransactional Hollow
- -
evict
¢ write field
Persistent- evict
nontransactional-
dirty

| JDO 2.0 64 February 28, 2006

Java Data Objects 2.0

Figure 12.0 Life Cycle: Transient TransactionalLife Cycle: Transient Transactional

Transient

makeTransactional ¢ ? makeNontransactional

Transient-
clean

write field comimit,
rollback

Transient-
dirty

Figure 13.0 Life Cycle: Detached

Detached-
clean

write field ¢

Detached-
dirty

| JDO 2.0 65 February 28, 2006

Java Data Objects 2.0

Figure 14.0 JDO Instance State Transitions

// READ-OK \

— | 20. ——
17 '_(persistent-deleted 1.

persistent-
18. new-deleted

k TRANSIENT / PERSISTENT

10. Gransient-clearD
8. per51stent-clean
4. 12 *
9. 13)
(fonsientdiny) || (perstent) {12 ﬁs;ifsﬁz‘;;m Ly Ciolow
new
_ y . 14,y Azs
(transmnt ‘e 15. @erswten’c-dlr@ /
N \ K \ WRITE\OK wg

NOTE: Not all possible state transitions are shown in this diagram.

1. A transient instance transitions to persistent-new when the instance is the
parameter of a makePersistent method.

2. A persistent-new instance transitions to hollow when the transaction in which it
was made persistent commits.

A hollow instance transitions to persistent-clean when a field is read.
A persistent-clean instance transitions to persistent-dirty when a field is written.
A persistent-dirty instance transitions to hollow at commit or rollback.

A persistent-clean instance transitions to hollow at commit or rollback.

N Vv AW

A transient instance transitions to transient-clean when it is the parameter of a
makeTransactional method.

*®

A transient-clean instance transitions to transient-dirty when a field is written.
9. A transient-dirty instance transitions to transient-clean at commit or rollback.

10. A transient-clean instance transitions to transient when it is the parameter of a
makeNontransactional method.

11. A hollow instance transitions to persistent-dirty when a field is written.

| JDO 2.0 66 February 28, 2006

Java Data Objects 2.0

JDO 2.0

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

22.

23.

24.

A persistent-clean instance transitions to persistent-nontransactional at commit
when RetainvValues is set to true, at rollback when Restorevalues is set
to true, or when it is the parameter of a makeNontransactional method.

A persistent-nontransactional instance transitions to persistent-clean when it is
the parameter of a makeTransactional method.

A persistent-nontransactional instance transitions to persistent-dirty when a
field is written in a transaction.

A persistent-new instance transitions to transient on rollback.

A persistent-new instance transitions to persistent-new-deleted when it is the
parameter of deletePersistent.

A persistent-new-deleted instance transitions to transient on rollback. The
values of the fields are restored as of the makePersistent method.

A persistent-new-deleted instance transitions to transient on commit. No
changes are made to the values.

A hollow, persistent-clean, or persistent-dirty instance transitions to persistent-
deleted when it is the parameter of deletePersistent.

A persistent-deleted instance transitions to transient when the transaction in
which it was deleted commits.

A persistent-deleted instance transitions to hollow when the transaction in
which it was deleted rolls back.

A hollow instance transitions to persistent-nontransactional when the
NontransactionalRead option is set to true, a field is read, and there is
either an optimistic transaction or no transaction active.

A persistent-dirty instance transitions to persistent-nontransactional at commit
when RetainValuesissetto true orat rollback when RestorevValues is
set to true.

A persistent-new instance transitions to persistent-nontransactional at commit
when RetainvValues is set to true.

67 February 28, 2006

Java Data Objects 2.0

The Persistent Object Model

This chapter specifies the object model for persistence capable classes. To the extent possi-
ble, the object model is the same as the Java object model. Differences between the Java ob-
ject model and the JDO object model are highlighted.

6.1

Overview

The Java execution environment supports different kinds of classes that are of interest to
the developer. The classes that model the application and business domain are the primary
focus of JDO. In a typical application, application classes are highly interconnected, and
the graph of instances of those classes includes the entire contents of the datastore.

Applications typically deal with a small number of persistent instances at a time, and it is
the function of JDO to allow the illusion that the application can access the entire graph of
connected instances, while in reality only small subset of instances needs to be instantiated
in the JVM. This concept is called transparent data access, transparent persistence, or sim-

Figure 15.0 Instantiated persistent objects

P

OA Instan/zte&ersisten objects /
Persistent objécs

ply transparency.
V\\“/(*
®

Ve

Datastore virtual objects

Transient objects

i ’
‘ . . ‘ Mapping function

Java VM

JDO 2.0

Datastore

68 February 28, 2006

Java Data Objects 2.0

Within a JVM, there may be multiple independent units of work that must be isolated from
each other. This isolation imposes requirements on JDO to permit the instantiation of the
same datastore object into multiple Java instances. The connected graph of Java instances
is only a subset of the entire contents of the datastore. Whenever a reference is followed
from one persistent instance to another, the JDO implementation transparently instanti-
ates the required instance into the JVM.

The storage of objects in datastores might be quite different from the storage of objects in
the JVM. Therefore, there is a mapping between the Java instances and the objects in the
datastore. This mapping is performed by the JDO implementation, using metadata that is
available at runtime. The metadata is generated by a JDO vendor-supplied tool, in coop-
eration with the deployer of the system. The mapping is not standardized by JDO except
in the case of relational databases, for which a subset of mapping functionality is standard.
The standard part of the mapping is specified in Chapter 15.

JDO instances are stored in the datastore and retrieved, possibly field by field, from the
datastore at specific points in their life cycle. The class developer might use callbacks at
certain points to make a JDO instance ready for execution in the JVM, or make a JDO in-
stance ready to be removed from the JVM. While executing in the JVM, a JDO instance
might be connected to other instances, both persistent and transient.

There is no restriction on the types of non-persistent fields of persistence-capable classes.
These fields behave exactly as defined by the Java language. Persistent fields of persis-
tence-capable classes have restrictions in JDO, based on the characteristics of the types of
the fields in the class definition.

The JDO Object Model has the following objectives:

e All field types supported by the Java language, including primitive types,
reference types and interface types should be supported by JDO instances.

¢ All class and field modifiers supported by the Java language including private,
public, protected, static, transient, abstract, final, synchronized, and volatile,
should be supported by JDO instances.

¢ All user-defined classes should be allowed to be persistence-capable.

* Some system-defined classes (especially those for modeling state) should be

In Java, variables (including fields of classes) have types. Types are either primitive types
or reference types. Reference types are either classes or interfaces. Arrays are treated as

An object is an instance of a specific class, determined when the instance is constructed.
Instances may be assigned to variables if they are assignment compatible with the variable

The JDO Object Model distinguishes between two kinds of classes: those that are marked
as persistence-capable and those that aren’t. A user-defined class can be persistence-capa-
ble unless its state depends on the state of inaccessible or remote objects (e.g. it extends

6.2 Goals
persistence-capable.
6.3 Architecture
classes.
type.
Persistence-capable
JDO 2.0

69 February 28, 2006

Java Data Objects 2.0

JDO 2.0

java.net.SocketImpl or uses JNI (native calls) to implement java.net.Socke-
tOptions). A non-static inner class cannot be persistence-capable because the state of its
instances depends on the state of their enclosing instances.

Except for system-defined classes specially addressed by the JDO specification, system-de-
fined classes (those defined in java.lang, java.io, java.util, java.net, etc.) are
not persistence-capable, nor is a system-defined class allowed to be the type of a persistent
field.

First Class Objects and Second Class Objects

A First Class Object (FCO) is an instance of a persistence-capable class that has a JDO Iden-
tity, can be stored in a datastore, and can be independently deleted and queried. A Second
Class Object (SCO) has no JDO Identity of its own and is stored in the datastore only as
part of a First Class Object. In some JDO implementations, some SCO instances are actually
artifacts that have no literal datastore representation at all, but are used only to represent
relationships. For example, a Collection of instances of a persistence-capable class
might not be stored in the datastore, but created when needed to represent the relationship
in memory. At commit time, the memory artifact is discarded and the relationship is rep-
resented entirely by datastore relationships.

First Class Objects

FCOs support uniquing; whenever an FCO is instantiated into memory, there is guaran-
teed to be only one instance representing that FCO managed by the same Persistence-
Manager instance. They are passed as arguments by reference.

An FCO can be shared among multiple FCOs, and if an FCO is changed (and the change
is committed to the datastore), then the changes are visible to all other FCOs that refer to it.

Second Class Objects

Second Class Objects are either instances of immutable system classes (java.lang.In-
teger, java.lang.String, etc.), JDO implementation subclasses of mutable system
classes that implement the functionality of their system class (java.util.Date, ja-
va.util.HashSet, etc.), or persistence-capable classes.

Second Class Objects of mutable system classes and persistence-capable classes track
changes made to them, and notify their owning FCO that they have changed. The change
is reflected as a change to the owning FCO (e.g. the owning instance might change state
from persistent-clean to persistent-dirty). They are stored in the datastore only as part of a
FCO. They do not support uniquing, and the Java object identity of the values of the per-
sistent fields containing them is lost when the owning FCO is flushed to the datastore.
They are passed as arguments by reference.

SCO fields must be explicitly or by default identified in the metadata as embedded. If a
field, or an element of a collection or a map key or value is identified as embedded (em-
bedded-element, embedded-key, or embedded-value) then any instances so identified in
the collection or map are treated as SCO during commit. That is, the value is stored with
the owning FCO and the value loses its own identity if it had one.

SCO fields of persistence-capable types are identified as embedded. The behavior of em-
bedded persistence-capable types is intended to mirror the behavior of system types, but
this is not standard, and portable applications must not depend on this behavior.

It is possible for an application to assign the same instance of a mutable SCO class to mul-
tiple FCO embedded fields, but this non-portable behavior is strongly discouraged for the
following reason: if the assignment is done to persistent-new, persistent-clean, or persis-
tent-dirty instances, then at the time that the FCOs are committed to the datastore, the Java

70 February 28, 2006

Java Data Objects 2.0

JDO 2.0

object identity of the owned SCOs might change, because each FCO might have its own
unshared SCO. If the assignment is done before makePersistent is called to make the
FCOs persistent, the embedded fields are immediately replaced by copies, and no sharing
takes place.

When an FCO is instantiated in the JVM by a JDO implementation, and an embedded field
of a mutable type is accessed, the JDO implementation assigns to these fields a new in-
stance that tracks changes made to itself, and notifies the owning FCO of the change. Sim-
ilarly, when an FCO is made persistent, either by being the parameter of
makePersistent or makePersistentAll or by being reachable from a parameter of
makePersistent or makePersistentAll at the time of the execution of the makeP-
ersistent or makePersistentAll method call, the JDO implementation replaces the
tield values of mutable SCO types with instances of JDO implementation subclasses of the
mutable system types.

Therefore, the application cannot assume that it knows the actual class of instances as-
signed to SCO fields, although it is guaranteed that the actual class is assignment compat-
ible with the type.

There are few differences visible to the application between a field mapped to an FCO and
an SCO. One difference is in sharing. If an FCO1 is assigned to a persistent field in FCO2
and FCOB, then any changes at any time to instance FCO1 will be visible from FCO2 and
FCO3.

If an SCOL1 is assigned to a persistent field in persistent instances FCO1 and FCO2, then
any changes to SCO1 will be visible from instances FCO1 and FCO2 only until FCO1 and
FCO2 are committed. After commit, instance SCO1 might not be referenced by either
FCOL1 or FCO2, and any changes made to SCO1 might not be reflected in either FCO1 or
FCO2.

Another difference is in visibility of SCO instances by queries. SCO instances are not add-
ed to Extents. If the SCO instance is of a persistence-capable type, it is not visible to que-
ries of the Extent of the persistence-capable class. Furthermore, the field values of SCO
instances of persistence-capable types might not be visible to queries at all.

Sharing of immutable SCO fields is supported in that it is good practice to assign the same
immutable instance to multiple SCO fields. But the field values should not be compared
using Java identity, but only by Java equality. This is the same good practice used with
non-persistent instances.

Arrays

Arrays are system-defined classes that do not necessarily have any JDO Identity of their
own, and support by a JDO implementation is optional. If an implementation supports
them, they might be stored in the datastore as part of an FCO. They do not support uniqu-
ing, and the Java object identity of the values of the persistent fields containing them is lost
when the owning FCO is flushed to the datastore. They are passed as arguments by refer-
ence.

Tracking changes to Arrays is not required to be done by a JDO implementation. If an Ar-
ray owned by an FCO is changed, then the changes might not be flushed to the datastore.
Portable applications must not require that these changes be tracked. In order for changes
to arrays to be tracked, the application must explicitly notify the owning FCO of the
change to the Array by calling the makeDirty method of the JDOHelper class, or by re-
placing the field value with its current value.

Since changes to array-type fields cannot be tracked by JDO, setting the value of an array-
type managed field marks the field as dirty, even if the new value is identical to the old

71 February 28, 2006

Java Data Objects 2.0

value. This special case is required to allow the user to mark an array-type field as dirty
without having to call the JDOHelper method makeDirty.

Furthermore, an implementation is permitted, but not required to, track changes to Arrays
passed as references outside the body of methods of the owning class. There is a method
defined on class JDOHelper that allows the application to mark the field containing such
an Array to be modified so its changes can be tracked. Portable applications must not re-
quire that these changes be tracked automatically. When a reference to the Array is re-
turned as a result of a method call, a portable application first marks the Array field as
dirty.

It is possible for an application to assign the same instance of an Array to multiple FCOs,
but after the FCO is flushed to the datastore, the Java object identity of the Array might
change.

When an FCO is instantiated in the JVM, the JDO implementation assigns to fields with an
Array type a new instance with a different Java object identity from the instance stored.

Therefore, the application cannot assume that it knows the identity of instances assigned
to Array fields, although it is guaranteed that the actual value is the same as the value
stored.

Primitives

Primitives are types defined in the Java language and comprise boolean, byte, short,
int, long, char, float, and double. They might be stored in the datastore only as part
of an FCO. They have no Java identity and no datastore identity of their own. They are
passed as arguments by value.

Interfaces

Interfaces are types whose values may be instances of any class that declare that they im-
plement that interface.

6.4
6.4.1

6.4.2

6.4.3

JDO 2.0

Field types of persistence-capable classes
Nontransactional non-persistent fields

There are no restrictions on the types of nontransactional non-persistent fields. These
fields are managed entirely by the application, not by the JDO implementation. Their state
is not preserved by the JDO implementation, although they might be modified during ex-
ecution of user-written callbacks defined in interface InstanceCallbacks at specific
points in the life cycle, or any time during the instance’s existence in the JVM.

Transactional non-persistent fields

There are no restrictions on the types of transactional non-persistent fields. These fields are
partly managed by the JDO implementation. Their state is preserved and restored by the
JDO implementation during certain state transitions.

Persistent fields

Precision of fields

JDO implementations may not represent Java types precisely in the datastore, because not
all datastores are able to natively represent all Java types. Some type mapping may be re-
quired. The precision of the mapping is a quality of service issue with the JDO implemen-
tation and the particular datastore.

72 February 28, 2006

Java Data Objects 2.0

JDO 2.0

The mapping precision restriction applies to the range of values that can be faithfully
stored and retrieved, the precision of the values, and the scale of BigDecimal values.
Primitive types
JDO implementations must support fields of any of the primitive types

* boolean, byte, short, int, long, char, float, and double.
Primitive values are stored in the datastore associated with their owning FCO. They have
no JDO Identity.
Immutable Object Class types

JDO implementations must support fields that reference instances of immutable object
classes, and may choose to support these instances as SCOs or FCOs:

° package java.lang: Boolean,Character,Byte, Short, Integer, Long,
Float, Double, and String;

* package java.util: Locale, Currency.
* package java.math: BighDecimal, BigInteger.

Portable JDO applications must not depend on whether instances of these classes are treat-
ed as SCOs or FCOs.

The scale of BigDecimal values is not guaranteed to be preserved by implementations.
For example, saving a persistent field with value BigDecimal (*1.2300”) mightbe re-
turned as value BigDecimal (“1.23").

Mutable Object Class types

JDO implementations must support fields that reference instances of the following muta-
ble object classes, and may choose to support these instances as SCOs or FCOs:

°package java.util: Date, HashSet, HashMap, Hashtable,
LinkedHashMap, LinkedHashSet.

JDO implementations may optionally support fields that reference instances of the follow-
ing mutable object classes, and may choose to support these instances as SCOs or FCOs:

* package java.util:ArrayList, LinkedList, TreeMap, TreeSet, and
Vector.

Because the treatment of these fields may be as SCO, the behavior of these mutable object
classes when used in a persistent instance is not identical to their behavior in a transient
instance.

Portable JDO applications must not depend on whether instances of these classes refer-
enced by fields are treated as SCOs or FCOs.

Persistence-capable Class types

JDO implementations must support references to FCO instances of persistence-capable
classes and are permitted, but not required, to support references to SCO instances of per-
sistence-capable classes.

Portable JDO applications must not depend on whether these fields are treated as SCOs or
FCOs.

Object Class type

JDO implementations must support fields of Object class type as FCOs. The implemen-
tation is permitted, but is not required, to allow any class to be assigned to the field. If an

73 February 28, 2006

Java Data Objects 2.0

implementation restricts instances to be assigned to the field, a ClassCastException
must be thrown at the time of any incorrect assignment.

Portable JDO applications must not depend on whether these fields are treated as SCOs or
FCOs.

Collection Interface types

JDO implementations must support fields of interface types, and may choose to support
them as SCOs or FCOs: package java.util:Collection, Map, Set,and List. Col-
lection, Map, and Set are required; List is optional.

Portable JDO applications must not depend on whether these fields are treated as SCOs or
FCOs.

Other Interface types

JDO implementations must support fields of interface types other than Collection in-
terface types as FCOs. The implementation is permitted, but is not required, to allow any
class that implements the interface to be assigned to the field. If an implementation further
restricts instances that can be assigned to the field, a ClassCastException must be
thrown at the time of any incorrect assignment.

Portable JDO applications must treat these fields as FCOs.
Arrays

JDO implementations may optionally support fields of array types, and may choose to
support them as SCOs or FCOs. If Arrays are supported by JDO implementations, they are
permitted, but not required, to track changes made to Arrays that are fields of persistence
capable classes in the methods of the classes. They need not track changes made to Arrays
that are passed by reference as arguments to methods, including methods of persistence-
capable classes.

Portable JDO applications must not depend on whether these fields are treated as SCOs or
FCOs.

6.5

JDO 2.0

Inheritance

A class might be persistence-capable even if its superclass is not persistence-capable. This
allows users to extend classes that were not designed to be persistence-capable. If a class
is persistence-capable, then its subclasses might or might not be persistence-capable them-
selves.

Further, subclasses of such classes that are not persistence-capable might be persistence-
capable. That is, it is possible for some classes in the inheritance hierarchy to be persis-
tence-capable and some not persistence-capable.

The expression "obj instanceof PersistenceCapable" can be true (because of a
persistence-capable superclass) when in fact the class of obj is not persistence-capable.
Thus, it is not possible for an application to examine a class to determine whether an in-
stance of that class is allowed to be persistent.

Fields identified in the XML metadata as persistent or transactional in persistence-capable
classes must be fields declared in that Java class definition. That is, inherited fields cannot
be named in the XML metadata.

Fields identified as persistent in persistence-capable classes will be persistent in subclass-
es; fields identified as transactional in persistence-capable classes will be transactional in

74 February 28, 2006

Java Data Objects 2.0

JDO 2.0

subclasses; and fields identified as non-persistent in persistence-capable classes will be
non-persistent in subclasses.

Of course, a class might define a new field with the same name as the field declared in the
superclass, and might define it with a different persistence-modifier from the inherited
field. But Java treats the declared field as a different field from the inherited field, so there
is no conflict.

All persistence-capable classes must have a no-arg constructor. This constructor might be
a private constructor, as it is only used from within the jdoNewInstance methods. The
constructor might be the default no-arg constructor created by the compiler when the
source code does not define any constructors.

The identity type of the least-derived persistence-capable class defines the identity type for
all persistence-capable classes that extend it.

Persistence-capable classes that use application identity have special considerations for in-
heritance:

Key fields may be declared only in abstract superclasses and least-derived concrete classes
in inheritance hierarchies. Key fields declared in these classes must also be declared in the
corresponding objectid classes, and the objectid classes must form an inheritance hierar-
chy corresponding to the inheritance hierarchy of the persistence-capable classes. A per-
sistence-capable class can only have one concrete objectid class anywhere in its inheritance
hierarchy.

For example, if an abstract class Component declares a key field masterId, the objectid
class ComponentKey must also declare a field of the same type and name. If Compo-
nentKey is concrete, then no subclass is allowed to define an objectid class.

If ComponentKey is abstract, an instance of a concrete subclass of ComponentKey must
be used to find a persistent instance. A concrete class Part that extends Component must
declare a concrete objectid class (for example, PartKey) that extends ComponentKey.
There might be no key fields declared in Part or PartKey. Persistence-capable subclass-
es of Part must not have an objectid class.

Another concrete class Assembly that extends Component must declare a concrete ob-
jectid class (for example, AssemblyKey) that extends ComponentKey. If there is a key
field, it must be declared in both Assembly and AssemblyKey. Persistence-capable sub-
classes of Assembly must not have an objectid class.

There might be other abstract classes or non-persistence-capable classes in the inheritance
hierarchy between Component and Part, or between Component and Assembly.
These classes are ignored for the purposes of objectid classes and key fields.

Readers primarily interested in developing applications with the [DO API can ignore the following
chapter. Skip to 8 — JDOHelper.

75 February 28, 2006

Java Data Objects 2.0

PersistenceCapable

For JDO implementations that support the BinaryCompatibility rules, every instance that
is managed by a JDO PersistenceManager must be of a class that implements the
public PersistenceCapable interface. This interface defines methods that allow the
implementation to manage the instances. It also defines methods that allow a JDO aware
application to examine the runtime state of instances, for example to discover whether the
instance is transient, persistent, transactional, dirty, etc., and to discover its associated
PersistenceManager if it has one.

The JDO Reference Enhancer modifies the class to implement PersistenceCapable
prior to loading the class into the runtime environment. The enhancer additionally adds
code to implement the methods defined by PersistenceCapable. Other enhancers
can be used for specific binary-compatible JDO implementations.

The PersistenceCapable interface is designed to avoid name conflicts in the scope of
user-defined classes. All of its declared method names are prefixed with “jdo”.

Class implementors may explicitly declare that the class implements PersistenceCa-
pable. If this is done, the implementor must implement the PersistenceCapable
contract, and the enhancer will ignore the class instead of enhancing it.

The recommended (and only portable) approach for applications to interrogate the state
of persistence-capable instances is to use the class JDOHelper, which provides static
methods that delegate to the instance if it implements PersistenceCapable, and if
not, attempts to find the JDO implementation responsible for the instance, and if unable to
do so, returns the values that would have been returned by a transient instance.

Classes that are to be detached from the persistence manager further implement the De-
tachable interface. This interface is used to establish the fields loaded before detachment
and to query the instance if it is presented for attachment later.

The persistence modifier, identity type, identity class, key fields, persistent fields, and de-
tachability of the class are fixed at enhancement time, or when the class is loaded, which-
ever occurs first.

NOTE: This interface is not intended to be used by application programmers.
It is for use only by implementations. Applications should use the methods
defined in class JDOHelper instead of these methods.

package javax.jdo.spi;

public interface PersistenceCapable {

71

JDO 2.0

Persistence Manager
PersistenceManager jdoGetPersistenceManager () ;

This method returns the associated PersistenceManager or null if the instance is
transient.

76 February 28, 2006

Java Data Objects 2.0

7.2

Make Dirty

void jdoMakeDirty (String fieldName) ;void jdoMakeDirty (int
fieldNumber) ;

These methods mark the specified field dirty so that its values will be modified in the
datastore when the transaction in which the instance is modified is committed. The
fieldName is the name of the field to be marked as dirty, optionally including the fully
qualified package name and class name of the field. This method returns with no effect if
the instance is not managed by a StateManager. This method has the same effect on the
life cycle state of the instance as changing a managed field would. The fieldNumber pa-
rameter is the internal field number assigned during class enhancement.

If the same name is used for multiple fields (a class declares a field of the same name as a
field in one of its superclasses) then the unqualified name refers to the most-derived class
in which the field is declared to be persistent. The qualified name (className.fieldName)
should always be used to identify the field to avoid ambiguity with subclass-defined
fields.

The rationale for this is that a method in a superclass might call this method, and specify
the name of the field that is hidden by a subclass. The StateManager has no way of
knowing which class called this method, and therefore assumes the Java rule regarding
field names.

It is always safe to explicitly name the class and field referred to in the parameter to the
method. The StateManager will resolve the scope of the name in the class named in the
parameter.

For example, if class C inherits class B which inherits class A, and field X is declared in
classes A and C, a method declared in class B may refer to the field in the method as “B.X”
and it will refer to the field declared in class A. Field X is not declared in B; however, in the
scope of class B, X refers to A.X.

7.3

7.3.1

JDO 2.0

JDO Identity
Object jdoGetObjectId() ;

This method returns the JDO identity of the instance. If the instance is transient, null is
returned. If the identity is being changed in a transaction, this method returns the identity
as of the beginning of the transaction. If the instance is detached, this method returns the
identity as of the time of detachment.

Object jdoGetTransactionalObjectId() ;

This method returns the JDO identity of the instance. If the instance is transient, null is
returned. If the identity is being changed in a transaction, this method returns the current
identity in the transaction. If the instance is detached, this method returns the identity as
of the time of detachment.

Version

Object jdoGetVersion() ;

This method returns the version of the instance.

77 February 28, 2006

Java Data Objects 2.0

7.4

74.1

7.4.2

743

7.4.4

7.4.5

7.4.6

JDO 2.0

Status interrogation

The status interrogation methods return a boolean that represents the state of the instance:
Dirty

boolean jdoIsDirty () ;

Instances whose state has been changed in the current transaction return true. If the in-
stance is transient or detached, false is returned.

Transactional
boolean jdoIsTransactional () ;

Instances whose state is associated with the current transaction return true. If the in-
stance is transient or detached, false is returned.

Persistent
boolean jdoIsPersistent();

Instances that represent persistent objects in the datastore return true. If the instance is
transient or detached, false is returned.

New

boolean jdoIsNew () ;

Instances that have been made persistent in the current transaction return true. If the in-
stance is transient or detached, false is returned.

Deleted
boolean jdoIsDeleted() ;

Instances that have been deleted in the current transaction return true. If the instance is
transient or detached, false is returned.

Detached
boolean jdoIsDetached() ;

Table 3: State interrogation

Persistent | Transactional | Dirty | New | Deleted | Detached
Transient
Transient-clean v
Transient-dirty v v
Persistent-new v v v v
Persistent- v
nontransactional
Persistent-nontrans- v v
actional-dirty

78 February 28, 2006

Java Data Objects 2.0

Table 3: State interrogation

Persistent | Transactional | Dirty | New | Deleted | Detached
Persistent-clean v v
Persistent-dirty v v v
Hollow v
Persistent-deleted v v v v
Persistent-new- v v v v v
deleted
Detached-clean v
Detached-dirty v v

Instances that have been detached return true.

PersistenceCapable jdoNewInstance (StateManager sm) ;

This method creates a new instance of the class of the instance. It is intended to be used as
a performance optimization compared to constructing a new instance by reflection using
the constructor. It is intended to be used only by JDO implementations, not by applica-
tions. If the class is abstract, null is returned.

PersistenceCapable jdoNewInstance (StateManager sm, Object oid);

This method creates a new instance of the class of the instance, and copies key field values
from the oid parameter instance. It is intended to be used as a performance optimization
compared to constructing a new instance by reflection using the constructor, and copying
values from the oid instance by reflection. It is intended to be used only by JDO implemen-
tations for classes that use application identity, not by applications. If the class is abstract,

void jdoReplaceStateManager (StateManager sm)
throws SecurityException;

This method sets the jdoStateManager field to the parameter. This method is normally
used by the StateManager during the process of making an instance persistent, trans-
actional, or transient. The caller of this method must have JDOPermission("set-
StateManager") for the instance, otherwise SecurityException isthrown.

This method tells the instance to call the owning StateManager’s replacingFlags
method to get a new value for the jdoFlags field.

7.5 New instance
null is returned.
7.6 State Manager
7.7 Replace Flags
void jdoReplaceFlags ();
JDO 2.0

79 February 28, 2006

Java Data Objects 2.0

void jdoReplaceField (int fieldNumber) ;

This method gets a new value from the StateManager for the field specified in the pa-
rameter. The field number must refer to a field declared in this class or in a superclass.

void jdoReplaceFields (int[] fieldNumbers) ;

This method iterates over the array of field numbers and calls jdoReplaceField for

void jdoProvideField (int fieldNumber) ;

This method provides the value of the specified field to the StateManager. The field
number must refer to a field declared in this class or in a superclass.

void jdoProvideFields (int[] fieldNumbers) ;

This method iterates over the array of field numbers and calls jdoProvideField for

void jdoCopyFields (Object other, int[] fieldNumbers) ;
void jdoCopyField (Object other, int fieldNumber) ;

These methods copy fields from another instance of the same class. These methods can be
invoked only when both this and other are managed by the same StateManager.

The following fields define the permitted values for the jdoFlags field.
public static final byte READ WRITE_OK = O0;

public static final byte READ_OK = -1;

public static final byte LOAD_REQUIRED = 1;

The following fields define the flags for the jdoFieldFlags elements.
public static final byte CHECK_READ = 1;

public static final byte MEDIATE_READ = 2;

public static final byte CHECK_WRITE = 4;

public static final byte MEDIATE_WRITE = 8;

public static final byte SERIALIZABLE = 16;

public Object jdoNewObjectIdInstance();

This method creates a new instance of the class used for JDO identity. It is intended only
for application identity. If the class has been enhanced for datastore identity, or if the class

7.8 Replace Fields
each one.
7.9 Provide Fields
each one.
7.10 Copy Fields
7.11 Static Fields
7.12 JDO identity handling
is abstract, null is returned.
JDO 2.0

80 February 28, 2006

Java Data Objects 2.0

JDO 2.0

For classes using single field identity, this method must be called on an instance of a per-
sistence-capable class with its primary key field initialized (not null), or a JDONullIden-
tityException is thrown.

The instance returned is initialized with the value(s) of the primary key field(s) of the in-
stance on which the method is called.

public Object jdoNewObjectIdInstance (Object key) ;

This method creates a new instance of the class used for JDO identity, using the appropri-
ate constructor of the object id class. It is intended only for application identity, including
single field identity. If the class has been enhanced for datastore identity, or if the class is
abstract, null is returned. The identity instance returned has no relationship with the val-
ues of the primary key fields of the persistence-capable instance on which the method is
called.

For single field identity, there is specific behavior required for parameters of these types:

® ObjectIdFieldSupplier: the field value is fetched and used to construct the
single field identity instance.

* Number or Character: the parameter key must be an instance of the key type or,
for primitive key types, the wrapper of the key type; the key is passed as a
parameter to the single field identity constructor.

* String: the String is parsed to a value of the appropriate type and the value is
used to construct the single field identity instance. For ObjectIdentity, the

String is decomposed into two parts using “:” as a delimiter. The first part is the
class name; the second is the String representation of the value of the class.

* Object: for ObjectIdentity, the key type must be assignable from the
parameter key.

public void jdoCopyKeyFieldsToObjectId(Object oid) ;

This method copies all key fields from this instance to the parameter. The parameter must
be an instance of the JDO identity class, or ClassCastException is thrown. If the class
uses single field identity, this method always throws JDOFatalInternalException.

public void jdoCopyKeyFieldsToObjectId(ObjectIdFieldSupplier
fs, Object oid);

This method copies fields from the field manager instance to the second parameter in-
stance. Each key field in the ObjectId class matching a key field in the Persistence-
Capable class is set by the execution of this method. For each key field, the method of the
ObjectIdFieldSupplier is called for the corresponding type of field. The second pa-
rameter must be an instance of the JDO identity class. If the parameter is not of the correct
type, then ClassCastException is thrown. If the class uses single field identity, this
method always throws JDOFatalInternalException.

public void jdoCopyKeyFieldsFromObjectId (ObjectIdFieldConsumer
fc, Object oid);

This method copies fields to the field manager instance from the second parameter in-
stance. Each key field in the ObjectId class matching a key field in the Persistence-
Capable classis retrieved by the execution of this method. For each key field, the method
of the ObjectIdFieldConsumer is called for the corresponding type of field. The sec-
ond parameter must be an instance of the JDO identity class. If the parameter is not of the
correct type, then ClassCastException is thrown.

81 February 28, 2006

Java Data Objects 2.0

interface ObjectIdFieldSupplier

boolean fetchBooleanField (int fieldNumber) ;
char fetchCharField (int fieldNumber) ;

short fetchShortField (int fieldNumber) ;
int fetchIntField (int fieldNumber) ;

long fetchLongField (int fieldNumber) ;
float fetchFloatField (int fieldNumber) ;
double fetchDoubleField (int fieldNumber) ;
String fetchStringField (int fieldNumber) ;
Object fetchObjectField (int fieldNumber) ;

These methods all fetch one field from the field manager. The returned value is stored in
the object id instance. The generated code in the PersistenceCapable class calls a
method in the field manager for each key field in the object id. The field number is the same
as in the persistence capable class for the corresponding key field.

interface ObjectldFieldConsumer

void storeBooleanField (int fieldNumber, boolean value);
void storeCharField (int fieldNumber, char value);

void storeShortField (int fieldNumber, short value);
volid storeIntField (int fieldNumber, int value);

void storeLongField (int fieldNumber, long value) ;

void storeFloatField (int fieldNumber, float value);
void storeDoubleField (int fieldNumber, double value) ;
volid storeStringField (int fieldNumber, String value) ;
void storeObjectField (int fieldNumber, Object value);

These methods all store one field to the field manager. The value is retrieved from the ob-
ject id instance. The generated code in the PersistenceCapable class calls a method
in the field manager for each key field in the object id. The field number is the same as in
the persistence capable class for the corresponding key field.

interface ObjectldFieldManager

This interface is a convenience interface that extends both ObjectIdFieldSupplier
and ObjectIdFieldConsumer.

7.13

JDO 2.0

Detachable

This interface contains the method used by the StateManager to manage the detached
state in a detached instance. This interface is not intended to be used by application pro-
grams.

The detached state is stored as a field in each instance of Detachable. The field is serial-
ized so as to maintain the state of the instance while detached. While detached, only the
BitSet of modified fields will be modified. The structure is as follows.

Object[] jdoDetachedState;

82 February 28, 2006

Java Data Objects 2.0

jdoDetachedState[0]: the Object Id of the instance
jdoDetachedState[1l]: the Version of the instance
jdoDetachedState[2]: a BitSet of loaded fields
jdoDetachedState[3]: a BitSet of modified fields

package javax.jdo.spi;

public interface Detachable {
void jdoReplaceDetachedState() ;
}

This method calls the StateManager with the current detached state instance as a pa-
rameter and replaces the current detached state instance with the value provided by the
StateManager.

| JDO 2.0 83 February 28, 2006

Java Data Objects 2.0

JDOHelper

JDOHelper is a class with static methods that is intended for use by persistence-aware
classes. It contains methods that allow interrogation of the persistent state of an instance
of a persistence-capable class.

Each method delegates to the instance, if it implements PersistenceCapable. Other-
wise, it delegates to any JDO implementations registered with JDOImplHelper via the
StateInterrogation interface.

If no registered implementation recognizes the instance, then
¢ if the method returns a value of reference type, it returns null;
¢ if the method returns a value of boolean type, it returns false;

if the method returns void, there is no effect.If no registered implementation recognizes
the instance, then

¢ if the method returns a value of reference type, it returns null;
¢ if the method returns a value of boolean type, it returns false;

if the method returns void, there is no effect.If no registered implementation recognizes
the instance, then

¢ if the method returns a value of reference type, it returns null;
¢ if the method returns a value of boolean type, it returns false;
¢ if the method returns void, there is no effect.

package javax.jdo;

class JDOHelper {

static PersistenceManager getPersistenceManager (Object pc);

This method returns the associated PersistenceManager. It returns null if the in-
stance is transient or null or if its class is not persistence-capable.

See also PersistenceCapable.jdoGetPersistenceManager ().

static void makeDirty (Object pc, String fieldName) ;

This method marks the specified field dirty so that its values will be modified in the datas-
tore when the instance is flushed. The f£ieldName is the name of the field to be marked
as dirty, optionally including the fully qualified package name and class name of the field.
This method has no effect if the instance is transient or null, or if its class is not persis-
tence-capable; or fieldName is not a managed field.

8.1 Persistence Manager
8.2 Make Dirty
JDO 2.0

84 February 28, 2006

Java Data Objects 2.0

See also PersistenceCapable.jdoMakeDirty (String fieldName).

static Object getObjectId (Object pc);

This method returns the JDO identity of the instance for persistent and detached instances.
It returns nul1 if the instance is transient or null or if its class is not persistence-capable.
If the identity is being changed in a transaction, this method returns the identity as of the

See also PersistenceCapable.jdoGetObjectId() and PersistenceMan-
ager .getObjectId(Object pc).

static Object[] getObjectIds (Object[] pcs);
static Collection getObjectIds (Collection pcs);

These methods return the JDO identities of the parameter instances. For each instance in
the parameter, the getObjectId method is called. They return one identity instance for
each persistence-capable instance in the parameter. The order of iteration of the returned
Collection exactly matches the order of iteration of the parameter Collection.

static Object getTransactionalObjectId (Object pc);

This method returns the JDO identity of the instance. It returns nul1 if the instance is tran-
sient or null or does not implement PersistenceCapable. If the identity is being
changed in a transaction, this method returns the current identity in the transaction.

See also PersistenceCapable.jdoGetTransactionalObjectId()and Per-
sistenceManager.getTransactionalObjectId (Object pc).

static Object getVersion (Object pc);

This method returns the JDO version of the instance for persistent and detached instances.
It returns nul1l if the instance is transient or null or if its class is not persistence-capable.

The status interrogation methods return a boolean that represents the state of the in-

static boolean isDirty (Object pc);

Instances whose state has been changed in the current transaction return true. It returns
false if the instance is transient or null or if its class is not persistence-capable.

See also PersistenceCapable.jdoIsDirty () ;

static boolean isTransactional (Object pc);

Instances whose state is associated with the current transaction return true. It returns
false if the instance is transient or null or if its class is not persistence-capable.

See also PersistenceCapable.jdoIsTransactional ().

8.3 JDO Identity
beginning of the transaction.
8.4 JDO Version
8.5 Status interrogation
stance:
8.5.1 Dirty
8.5.2 Transactional
JDO 2.0

85 February 28, 2006

Java Data Objects 2.0

static boolean isPersistent (Object pc);

Instances that represent persistent objects in the datastore return true. It returns false
if the instance is transient or null or if its class is not persistence-capable.

See also PersistenceCapable.jdoIsPersistent () ;

static boolean isNew (Object pc);

Instances that have been made persistent in the current transaction return true. It returns
false if the instance is transient or null or if its class is not persistence-capable.

See also PersistenceCapable.jdoIsNew () ;

static boolean isDeleted (Object pc);

Instances that have been deleted in the current transaction return true. It returns false
if the instance is transient or null or if its class is not persistence-capable.

See also PersistenceCapable.jdoIsDeleted() ;

static boolean isDetached (Object pc);

Instances that have been detached return true. The method returns false if the instance is
transient or null or if its class is not detachable.

See also PersistenceCapable.jdoIsDetached();

PersistenceManagerFactory methods

PersistenceManagerFactory getPersistenceManagerFactory

(Map props, ClassLoader loader) ;

PersistenceManagerFactory getPersistenceManagerFactory

These methods return a PersistenceManagerFactory based on properties con-
tained in the Map parameter. In the method without a class loader parameter, the calling
thread’s current contextClassLoader is used to resolve the class name.

PersistenceManagerFactory getPersistenceManagerFactory

(File propsFile);

PersistenceManagerFactory getPersistenceManagerFactory

(File propsFile, ClassLoader loader) ;

PersistenceManagerFactory getPersistenceManagerFactory

8.5.3 Persistent

8.54 New

8.5.5 Deleted

8.5.6 Detached

8.6
public static
public static
(Map props) ;
public static
public static
public static
JDO 2.0

86 February 28, 2006

Java Data Objects 2.0

JDO 2.0

(String propsResourceName) ;
public static
PersistenceManagerFactory getPersistenceManagerFactory
(String propsResourceName, ClassLoader loader) ;
public static
PersistenceManagerFactory getPersistenceManagerFactory
(String propsResourceName, ClassLoader propsLoader,
ClassLoader pmfLoader) ;
public static
PersistenceManagerFactory getPersistenceManagerFactory
(InputStream stream) ;
public static
PersistenceManagerFactory getPersistenceManagerFactory
(InputStream stream, ClassLoader loader) ;public static
PersistenceManagerFactory getPersistenceManagerFactory
(String jndiLocation, Context context);
public static
PersistenceManagerFactory getPersistenceManagerFactory

(String jndiLocation, Context context, ClassLoader loader) ;

These methods use the parameter(s) passed as arguments to construct a Properties in-
stance, and then delegate to the static method getPersistenceManagerFactory in
the class named in the property javax.jdo.PersistenceManagerFactoryClass.
If there are any exceptions while trying to construct the Properties instance or to call
the static method, then either TJDOFatalUserException or JDOFatalInternal Ex-—
ception is thrown, depending on whether the exception is due to the user or the imple-
mentation. The nested exception indicates the cause of the exception.

The method taking a String as the propsResourceName argument uses the props-
Loader to load the properties and uses the pmfLoader to resolve the PersistenceM-
anagerFactory class name. The method taking a String as the propsResourceName
argument with one ClassLoader uses the parameter ClassLoader to load both the
properties and the PersistenceManagerFactory class name.The method taking a
String alone uses the context class loader for both purposes.

If the class named by the javax.jdo.PersistenceManagerFactoryClass prop-
erty cannot be found, or is not accessible to the user, then JDOFatalUserException is
thrown. If there is no public static implementation of the getPersistenceManager-
Factory (Map) method, then JDOFatalInternalException is thrown. If the im-
plementation of the static get PersistenceManagerFactory (Map) method throws
an exception, it is rethrown by this method.

The following are standard key values for the properties:
javax.jdo.PersistenceManagerFactoryClass

javax.jdo.option.Optimistic

87 February 28, 2006

Java Data Objects 2.0

JDO 2.0

javax.jdo.option.RetainValues
javax.jdo.option.RestoreValues
javax.jdo.option.IgnoreCache
javax.jdo.option.NontransactionalRead
javax.jdo.option.NontransactionalWrite
javax.jdo.option.Multithreaded
javax.jdo.option.ConnectionDriverName
javax.jdo.option.ConnectionUserName
javax.jdo.option.ConnectionPassword
javax.jdo.option.ConnectionURL
javax.jdo.option.ConnectionFactoryName
javax.jdo.option.ConnectionFactory2Name
javax.jdo.option.Mapping

JDO implementations are permitted to define key values of their own. Any key values not
recognized by the implementation must be ignored. Key values that are recognized but not
supported by an implementation must result ina JDOFatalUserException thrown by
the method.

The returned PersistenceManagerFactory is not configurable (the setXXX meth-
ods will throw an exception). JDO implementations might manage a map of instantiated
PersistenceManagerFactory instances based on specified property key values, and
return a previously instantiated PersistenceManagerFactory instance. In this case,
the properties of the returned instance must exactly match the requested properties.

public static
PersistenceManagerFactory getPersistenceManagerFactory
(String jndiName, Context context);

This method looks up the PersistenceManagerFactory using the naming context
and name supplied. The implementation’s factory method is not called. The behavior of
this method depends on the implementation of the context and its interaction with the
saved PersistenceManagerFactory object. As with the other factory methods, the
returned PersistenceManagerFactory is not configurable.

88 February 28, 2006

Java Data Objects 2.0

JDOImplHelper

This class is a public helper class for use by JDO implementations. It contains a registry of
metadata by class. Use of the methods in this class avoids the use of reflection at runtime.
PersistenceCapable classes register metadata with this class during class initializa-
tion.

NOTE: This interface is not intended to be used by application programmers.
It is for use only by implementations.

package javax.jdo.spi;

public class JDOImplHelper {

public static JDOImplHelper getInstance()
throws SecurityException;

This method returns an instance of the JDOImplHelper class if the caller is authorized
for JDOPermission (“getMetadata”), and throws SecurityException if not
authorized. This instance gives access to all of the other methods, except for register-
Class, which is static and does not need any authorization.

public String[] getFieldNames (Class pcClass);

This method returns the names of persistent and transactional fields of the parameter
class. If the class does not implement PersistenceCapable, or if it has not been en-
hanced correctly to register its metadata, a JDOFatalUserException is thrown.

Otherwise, the names of fields that are either persistent or transactional are returned, in
order. The order of names in the returned array are the same as the field numbering. Rel-
ative field 0 refers to the first field in the array. The length of the array is the number of
persistent and transactional fields in the class.

public Class[] getFieldTypes (Class pcClass);

This method returns the types of persistent and transactional fields of the parameter class.
If the parameter does not implement PersistenceCapable, or if it has not been en-
hanced correctly to register its metadata, a JDOFatalUserException is thrown.

Otherwise, the types of fields that are either persistent or transactional are returned, in or-
der. The order of types in the returned array is the same as the field numbering. Relative
tield O refers to the first field in the array. The length of the array is the number of persistent
and transactional fields in the class.

public byte[] getFieldFlags (Class pcClass);

9.1 JDOImplHelper access
9.2 Metadata access
JDO 2.0

89 February 28, 2006

Java Data Objects 2.0

This method returns the field flags of persistent and transactional fields of the parameter
class. If the parameter does not implement PersistenceCapable, or if it has not been
enhanced correctly to register its metadata, a JDOFatalUserException is thrown.

Otherwise, the types of fields that are either persistent or transactional are returned, in or-
der. The order of types in the returned array is the same as the field numbering. Relative
field O refers to the first field in the array. The length of the array is the number of persistent
and transactional fields in the class.

public Class getPersistenceCapableSuperclass (Class pcClass);

This method returns the PersistenceCapable superclass of the parameter class, or
null if there is none.

Persistence-capable instance factory

public PersistenceCapable newInstance (Class pcClass,

public PersistenceCapable newInstance (Class pcClass, StateMan-

If the class does not implement PersistenceCapable, or if it has not been enhanced
correctly to register its metadata, a JDOFatalUserException is thrown. If the class is
abstract, a JDOFatalInternalException is thrown.

Otherwise, a new instance of the class is constructed and initialized with the parameter
StateManager. The new instance has its jdoFlags set to LOAD_REQUIRED but has no
defined state. The behavior of the instance is determined by the owning StateManager.

The second form of the method returns a new instance of PersistenceCapable that
has had its key fields initialized by the ObjectId parameter instance. If the class has been
enhanced for datastore identity, then the oid parameter is ignored.

See also PersistenceCapable.jdoNewInstance (StateManager sm) and
PersistenceCapable.jdoNewInstance (StateManager sm, Object oid).

Registration of PersistenceCapable classes
public static void registerClass
(Class pcClass, String[] fieldNames,
Class[] fieldTypes,
byte[] fieldFlags,
Class persistenceCapableSuperclass,
PersistenceCapable pcInstance) ;

This method registers a PersistenceCapable class so that the other methods can re-
turn the correct information. The registration must be done in a static initializer for the per-

Notification of PersistenceCapable class registrations
addRegisterClassListener (RegisterClassListener rcl);

This method registers a RegisterClassListener to be notified upon new Persis-
tenceCapable Class registrations. A RegisterClassEvent instance is generated

9.3
StateManager sm) ;
ager sm, Object oid);
94
sistence-capable class.
9.4.1
JDO 2.0

90 February 28, 2006

Java Data Objects 2.0

for each class registered already plus classes registered in future, which is sent to each reg-
istered listener. The same event instance might be sent to multiple listeners.

removeRegisterClassListener (RegisterClassListener rcl);

This method removes a RegisterClassEvent from the list to be notified upon new
PersistenceCapable Class registrations.

RegisterClassEvent

public class RegisterClassEvent extends java.util.EventObject {

An instance of this class is generated for each class that registers itself, and is sent to each
registered listener.

public Class getRegisteredClass();
Returns the newly registered Class.
public String[] getFieldNames/() ;
Returns the field names of the newly registered Class.
public Class[] getFieldTypes();
Returns the field types of the newly registered Class.
public bytel[] getFieldFlags() ;
Returns the field flags of the newly registered Class.
public Class getPersistenceCapableSuperclass() ;
Returns the PersistenceCapable superclass of the newly registered Class.

} // class RegisterClassEvent

RegisterClassListener
public interface RegisterClassListener extends
java.util.EventListener {

This interface must be implemented by classes that register as listeners to be notified
of registrations of PersistenceCapable classes.

void registerClass (RegisterClassEvent rce);
This method is called for each PersistenceCapable class that registers itself.

} // interface RegisterClassListener

9.5

JDO 2.0

Security administration
public static void registerAuthorizedStateManagerClass
(Class smClass) ;

This method manages the list of classes authorized to execute replaceStateManager.
During execution of this method, the security manager, if present, is called to validate that
the caller is authorized for JDOPermission (“*setStateManager”). If successful, the
parameter class is added to the list of authorized StateManager classes.

This method provides for a fast security check during makePersistent. An implemen-
tation of StateManager should register itself with the JDOImplHelper to take advan-
tage of this fast check.

public static void checkAuthorizedStateManager (StateManager sm) ;

91 February 28, 2006

Java Data Objects 2.0

This method is called by enhanced persistence-capable class method replaceStateM-
anager. If the parameter instance is of a class in the list of authorized StateManager
classes, then this method returns silently. If not, then the security manager, if present, is
called to validate that the caller is authorized for JDOPermission (“setStateMan-
ager”). If successful, the method returns silently. If not, a SecurityException is
thrown.

9.6

Application identity handling
public Object newObjectIdInstance(Class pcClass) ;

This method creates a new instance of the ObjectId class for the PersistenceCa-
pable class. If the class uses datastore identity, then null is returned. If the class is ab-
stract, a JDOFatalInternalException is thrown.

public Object newObjectIdInstance(Class pcClass, Object key);

This method creates a new instance of the ObjectId class for the PersistenceCa-
pable class, using the appropriate constructor of the object id class. If the class uses datas-
tore identity, then null is returned. If the «class is abstract, a
JDOFatalInternalException is thrown.

public Object newObjectIdInstance (PersistenceCapable pc);

This method returns an instance of the ObjectId class for the parameter Persis-
tenceCapable instance. If the class of the instance uses an immutable ObjectId class,
then the oid instance associated with the persistent instance might be returned. If the class
of the instance uses datastore identity, then null is returned.

public wvoid copyKeyFieldsToObjectId (Class pcClass, Persis-
tenceCapable.ObjectIdFieldSupplier fs, Object oid);

This method copies key fields from the field manager to the ObjectId instance oid. This
is intended for use by the implementation to copy fields from a datastore-specific repre-
sentation to the ObjectId. If the class is abstract,a JDOFatalInternalExceptionis
thrown.

public void copyKeyFieldsFromObjectId (Class pcClass, Persis-
tenceCapable.ObjectIdFieldConsumer fc, Object oid);

This method copies key fields to the field manager from the ObjectId instance oid. This
is intended for use by the implementation to copy fields to a datastore-specific representa-
tion from the ObjectId. If the class is abstract, a JDOFatalInternalException is
thrown.

9.7

JDO 2.0

Persistence-capable class state interrogation

For JDO implementations that do not support BinaryCompatibility, an instance of
StateInterrogation mustbe registered with JDOImplHelper to handle JDOHelper
methods for instances that do not implement PersistenceCapable.

The stateInterrogation interface is implemented by a JDO implementation class to
take responsibility for determining the life cycle state and object identity, and for marking
fields dirty.

package javax.jdo.spi;
public interface StateInterrogation {
Boolean isPersistent (Object pc);

92 February 28, 2006

Java Data Objects 2.0

JDO 2.0

Boolean isTransactional (Object pc);

Boolean isDirty (Object pc);

Boolean isNew (Object pc);

Boolean isDeleted(Object pc);

Boolean isDetached (Object pc);
PersistenceManager getPersistenceManager (Object pc);
Object getObjectId(Object pc);

Object getTransactionalObjectId(Object pc);
boolean makeDirty (Object pc, String fieldName) ;
Object getVersion (Object pc);

}

For methods returning Boolean, PersistenceManager, and Object, if the StateIn-
terrogation instance does not recognize the parameter instance, null is returned, and
the next registered StateInterrogation instance is called.

FormakeDirty, if the StateInterrogation instance does not recognize the parameter
instance, false is returned, and the next registered StateInterrogation instance is
called.

public void addStateInterrogation(StateInterrogation si);
This method of JDOImplHelper registers an instance of StateInterrogation for del-
egation of life cycle state queries made on JDOHelper.

public void removeStateInterrogation(StateInterrogation si);
This method of JDOImplHelper removes an instance of StateInterrogation, so itis
no longer called by JdDOHelper for life cycle state queries.

93 February 28, 2006

Java Data Objects 2.0

10

InstanceCallbacks

Instance callbacks provide a mechanism for instances to take some action on specific JDO
instance life cycle events. For example, classes that include non-persistent fields might use
callbacks to correctly populate the values in these fields. Classes that affect the runtime en-
vironment might use callbacks to register and deregister themselves with other objects.
This interface defines the methods executed by the StateManager for these life cycle
events.

These methods will be called only on instances for which the class implements the corre-
sponding callback interface . For backward compatibility, InstanceCallbacks is rede-
fined as follows:

package javax.jdo;

public interface InstanceCallbacks extends
javax.jdo.listener.LoadCallback,
javax.jdo.listener.StoreCallback,
javax.jdo.listener.ClearCallback,

javax.jdo.listener.DeleteCallback ({

10.1

jdoPostLoad

package javax.jdo.listener;
public interface LoadCallback {
void jdoPostLoad() ;

}

This method is called after values have been loaded from the StateManager into the in-
stance, if an active fetch group has been defined with the post-1oad attribute set to true.
Non-persistent fields whose value depends on values of loaded fields should be initialized
in this method. This method is not modified by the enhancer. Only fields that are loaded
by an active fetch group should be accessed by this method, as other fields are not guaran-
teed to be initialized. This method might register the instance with other objects in the
runtime environment.

The context in which this call is made does not allow access to other persistent JDO in-
stances.

10.2

JDO 2.0

jdoPreStore

package javax.jdo.listener;

public interface StoreCallback {

94 February 28, 2006

Java Data Objects 2.0

void jdoPreStore() ;
}

This method is called before the values are stored from the instance to the datastore. This
happens during beforeCompletion and flush for persistent-new and persistent-
dirty instances of persistence-capable classes that implement StoreCallback. Datas-
tore fields that might have been affected by modified non-persistent fields should be up-
dated in this method. This method is modified by the enhancer so that changes to
persistent fields will be reflected in the datastore.

The context in which this call is made allows access to the PersistenceManager and
other persistent JDO instances.

This method is not called for deleted instances.

10.3

jdoPreClear

package javax.jdo.listener;
public interface ClearCallback {

void jdoPreClear () ;
}

This method is called before the implementation clears the values in the instance to their
Java default values. This happens during an application call to evict, and inafterCom-
pletion for commit with RetainValues false and rollback with RestorevValues
false. The method is called during any state transition to hollow. Non-persistent, non-
transactional fields should be cleared in this method. Associations between this instance
and others in the runtime environment should be cleared. This method is not modified by
the enhancer, so access to fields is not mediated.

104

jdoPreDelete

package javax.jdo.listener;
public interface DeleteCallback {
void jdoPreDelete() ;

}

This method is called during the execution of deletePersistent before the state tran-
sition to persistent-deleted or persistent-new-deleted. Access to field values within this
call are valid. Access to field values after this call are disallowed. This method is modified
by the enhancer so that fields referenced can be used in the business logic of the method.

To implement a containment aggregate, the user could implement this method to delete
contained persistent instances.

10.5

JDO 2.0

jdoPreDetach and jdoPostDetach
package javax.jdo.listener;
public interface DetachCallback {
void jdoPreDetach() ;

95 February 28, 2006

Java Data Objects 2.0

This method is called during the execution of detachCopy on the persistent instance be-
fore the copy is made.

public void jdoPostDetach (Object detached) ;

This method is called during the execution of detachCopy on the detached instance after
the copy is made. The parameter is the corresponding persistent instance.

}

10.6

JDO 2.0

jdoPreAttach and jdoPostAttach

package javax.jdo.listener;
public interface AttachCallback {
void jdoPreAttach() ;

This method is called during the execution of makePersistent on the detached in-
stance before the copy is made.

public void jdoPostAttach (Object attached) ;

This method is called during the execution of makePersistent on the persistent in-
stance after the copy is made. The parameter is the corresponding detached instance.
}

96 February 28, 2006

Java Data Objects 2.0

11

PersistenceManagerFactory

This chapter details the PersistenceManagerFactory, which is responsible for cre-
ating PersistenceManager instances for application use.

package javax.jdo;

public interface PersistenceManagerFactory {

111

JDO 2.0

Interface PersistenceManagerFactory

A JDO vendor must provide a class that implements PersistenceManagerFactory
and is permitted to provide a PersistenceManager constructor[s].

A non-managed JDO application might choose to use a PersistenceManager con-
structor (JDO vendor specific) or use a PersistenceManagerFactory (provided by
the JDO vendor). A portable JDO application must use the PersistenceManagerFac-
tory.

In a managed environment, the JDO PersistenceManager instance is acquired by a
two step process: the application uses JNDI lookup to retrieve an environment-named ob-
ject, which is then cast to javax. jdo.PersistenceManagerFactory; and then calls
one of the factory’s get PersistenceManager methods.

In a non-managed environment, the JDO PersistenceManager instance is acquired by
lookup as above; by constructing a javax.jdo.PersistenceManager; or by con-
structing a javax.jdo.PersistenceManagerFactory, configuring the factory,
and then calling the factory’s getPersistenceManager method. These constructors
are not part of the JDO standard. However, the following is recommended to support por-
table applications.

Configuring the PersistenceManagerFactory follows the Java Beans pattern. Sup-
ported properties have a get method and a set method.

The following properties, if set in the PersistenceManagerFactory, are the default
settings of all PersistenceManager instances created by the factory:

* Optimistic: the transaction mode that specifies concurrency control

* RetainValues: the transaction mode that specifies the treatment of persistent
instances after commit

* RestoreValues: the transaction mode that specifies the treatment of persistent
instances after rollback

* IgnoreCache: the query mode that specifies whether cached instances are
considered when evaluating the filter expression

e NontransactionalRead: the PersistenceManager mode that allows
instances to be read outside a transaction

97 February 28, 2006

Java Data Objects 2.0

e NontransactionalWrite: the PersistenceManager mode that allows
instances to be written outside a transaction

e Multithreaded: the PersistenceManager mode that indicates that the
application will invoke methods or access fields of managed instances from
multiple threads.

e DetachAllOnCommit: the PersistenceManager mode that indicates that
instances will be detached when the transaction commits.

The following properties can only be set in the PersistenceManagerFactory:

Mapping: the name of the mapping model for object-to-datastore mappingCatalog: the
name of the catalog for object-to-relational mappingSchema: the name of the schema for
object-to-relational mapping

The following properties are for convenience, if there is no connection pooling or other
need for a connection factory:

* ConnectionUserName: the name of the user establishing the connection
* ConnectionPassword: the password for the user

¢ ConnectionURL: the URL for the data source

* ConnectionDriverName: the class name of the driver

For a portable application, if any other connection properties are required, then a connec-
tion factory must be configured.

The following properties are for use when a connection factory is used, and override the
connection properties specified in ConnectionURL, ConnectionUserName, or Con-
nectionPassword.

* ConnectionFactory: the connection factory from which datastore connections
are obtained

* ConnectionFactoryName: the name of the connection factory from which
datastore connections are obtained. This name is looked up with JNDI to locate the
connection factory.

If multiple connection properties are set, then they are evaluated in order:
¢ if ConnectionFactory isspecified (not null), all other properties are ignored;

¢ else if ConnectionFactoryName is specified (not null), all other properties
are ignored.

For the application server environment, connection factories always return connections
that are enlisted in the thread’s current transaction context. To use optimistic transactions
in this environment requires a connection factory that returns connections that are not en-
listed in the current transaction context. For this purpose, the following two properties are
used:

* ConnectionFactory2: the connection factory from which nontransactional
datastore connections are obtained

* ConnectionFactory2Name: the name of the connection factory from which
nontransactional datastore connections are obtained. This name is looked up with
JNDI to locate the connection factory.

| JDO 2.0 98 February 28, 2006

Java Data Objects 2.0

JDO 2.0

Construction by Properties

An implementation must provide a method to construct a PersistenceManagerFac-
tory by a Map instance. This static method is called by the JDOHelper method get-
PersistenceManagerFactory (Map props).

static PersistenceManagerFactory getPersistenceManagerFactory
(Map props) ;

The properties consist of: “javax.jdo.PersistenceManagerFactoryClass”,
whose value is the name of the implementation class; any JDO vendor-specific properties;
and the following standard property names, which correspond to the properties as docu-
mented in this chapter:

e "javax.jdo.option.Optimistic"

e "javax.jdo.option.RetainValues"

e "javax.Jjdo.option.RestoreValues"

e "javax.jdo.option.IgnoreCache"

e "javax.jdo.option.NontransactionalRead"
e "javax.Jjdo.option.NontransactionalWrite"
e "javax.jdo.option.Multithreaded"

e "javax.jdo.option.DetachAllOnCommit"

e "javax.jdo.option.ConnectionUserName"

e "javax.jdo.option.ConnectionPassword"

e "javax.jdo.option.ConnectionURL"

e "javax.jdo.option.ConnectionDriverName"
e "javax.jdo.option.ConnectionFactoryName"
e "javax.jdo.option.ConnectionFactory2Name"
e "javax.jdo.option.Mapping"

e "javax.jdo.mapping.Catalog"

e "javax.jdo.mapping.Schema"

The property “javax.jdo.PersistenceManagerFactoryClass” is the fully
qualified class name of the PersistenceManagerFactory.

The String type properties are taken without change from the value of the correspond-
ing keys. Boolean type properties treat the String value as representing true if the
value of the String compares equal, ignoring case, to “true”, and false if the value
of the String is anything else.

Any property not recognized by the implementation must be silently ignored. Any stan-
dard property corresponding to an optional feature not supported by the implementation
must throw JDOUnsupportedOptionException.

The Mapping property specifies the object-data store mapping to be used by the imple-
mentation. The property is used to construct the names of resource files containing meta-
data. For more information on the use of this property, see Chapters 15 and 18.

99 February 28, 2006

Java Data Objects 2.0

Default values for properties not specified in the props parameter are provided by the im-
plementation. A portable application must specify all values for properties needed by the
application.

There are properties that are provided by the JDOHe1lper methods in the following cases.

e If the user uses the methods getPersistenceManagerFactory(File
file) or getPersistenceManagerFactory (File file,
ClassLoader loader) then the Map instance passed to the static method will
contain a property with a key of “javax.jdo.spi.PropertiesFileName”,
and a value equal to the result of calling getAbsolutePath() on the file
parameter. Absence of this property means that neither of these methods was
used.

e If the user uses the methods getPersistenceManagerFactory (String
resourceName) or getPersistenceManagerFactory (String
resourceName, ClassLoader loader) then the Properties instance
passed to the static method will contain a property with a key of
"javax.jdo.spi.PropertiesResourceName”, and a value equal to the
name of the resource. Absence of this property means that neither of these
methods was used.

11.2 ConnectionFactory

For implementations that layer on top of standard Connector implementations, the con-
tiguration will typically support all of the associated ConnectionFactory properties.

When used in a managed environment, the ConnectionFactory will be obtained from
a ManagedConnectionFactory, which is then responsible for implementing the re-
source adapter interactions with the container.

The following properties of the ConnectionFactory should be used if the data source
has a corresponding concept:

¢ URL: the URL for the data source

* UserName: the name of the user establishing the connection

* Password: the password for the user

* DriverName: the driver name for the connection

* ServerName: name of the server for the data source

* PortNumber: port number for establishing connection to the data source
* MaxPool: the maximum number of connections in the connection pool

* MinPool: the minimum number of connections in the connection pool

e MsWait: the number of milliseconds to wait for an available connection from the
connection pool before throwing a JDODataStoreException

* LogWriter: the PrintWriter to which messages should be sent

e LoginTimeout: the number of seconds to wait for a new connection to be
established to the data source

In addition to these properties, the PersistenceManagerFactory implementation
class can support properties specific to the data source or to the PersistenceManager.

| JDO 2.0 100 February 28, 2006

Java Data Objects 2.0

Aside from vendor-specific configuration APIs, there are these required methods for Per -
sistenceManagerFactory:

PersistenceManager getPersistenceManager () ;

PersistenceManager getPersistenceManager (String userid, String

Returns a PersistenceManager instance with the configured properties. The instance
might have come from a pool of instances. The default values for option settings are reset
to the value specified in the PersistenceManagerFactory before returning the in-
stance.This method will never return the same instance as was returned by a previous in-
vocation of the method. Note that this implies that pooled implementations must use
proxies and not return the identical pooled instance.

After the first use of get PersistenceManager, none of the set methods will succeed.
The settings of operational parameters might be modified dynamically during runtime via

If the method with the userid and password is used to acquire the PersistenceMan-
ager, then all accesses to the connection factory during the life of the PersistenceM-
anager will use the userid and password to get connections. If PersistenceManager
instances are pooled, then only PersistenceManager instances with the same userid
and password will be used to satisfy the request.

Close the PersistenceManagerFactory

During operation of JDO, resources might be acquired on behalf of a PersistenceMan-
agerFactory, e.g. connection pools, persistence manager pools, compiled queries,
cached metadata, etc. If a PersistenceManagerFactory is no longer needed, these re-
sources should be returned to the system. The close method disables the Persistence-
ManagerFactory and allows cleanup of resources.

Premature close of a PersistenceManagerFactory has a significant impact on the op-
eration of the system. Therefore, a security check is performed to check that the caller has
the proper permission. The security check is for JDOPermission("closePersis-
tenceManagerFactory"). If the security check fails, the close method throws Securi-

Close this PersistenceManagerFactory. Check for JDOPermission("closePer-
sistenceManagerFactory") and if not authorized, throw SecurityException.

If the authorization check succeeds, check to see that all PersistenceManager instances
obtained from this PersistenceManagerFactory have no active transactions. If any
PersistenceManager instances have an active transaction, throw a JDOUserExcep-
tion, with one nested JDOUserException for each PersistenceManager with an ac-

If there are no active transactions, then close all PersistenceManager instances ob-
tained from this PersistenceManagerFactory and mark this PersistenceMan-
agerFactory as closed. After close completes, disallow all methods except close,

11.3 PersistenceManager access
password) ;
a vendor-specific interface.
114
tyException.
void close();
tive Transaction.
JDO 2.0

101 February 28, 2006

Java Data Objects 2.0

isClosed, and get methods except for getPersistenceManager. If any disallowed
method is called after close, then JDOUserException is thrownboolean is-
Closed () ;

Return true if this PersistenceManagerFactory is closed; and false otherwise.

The JDO vendor might store certain non-configurable properties and make those proper-
ties available to the application via a Properties instance. This method retrieves the

Properties getProperties|();

The application is not prevented from modifying the instance.

Each key and value is a String. The keys defined for standard JDO implementations are:
e VendorName: The name of the JDO vendor.
* VersionNumber: The version number string.

Other properties are vendor-specific.

Collection supportedOptions() ;

The JDO implementation might optionally support certain features, and will report the
features that are supported. The supported query languages are included in the returned

This method returns a Collection of String, each String instance representing an
optional feature of the implementation or a supported query language. The following are
the values of the String for each optional feature in the JDO specification:

javax.jdo.option.TransientTransactional

The JDO implementation supports the transient transactional life cycle states.
javax.jdo.option.NontransactionalRead

The JDO implementation supports reading and querying outside a transaction.
javax.jdo.option.NontransactionalWrite

The JDO implementation supports the persistent-nontransactional-dirty life cycle state.
javax.jdo.option.RetainValues

The JDO implementation supports retaining values of persistent instances after commit.
javax.jdo.option.Optimistic

The JDO implementation supports the optimistic transaction semantics.
javax.jdo.option.ApplicationIdentity

The JDO implementation supports application identity for persistent classes.
javax.jdo.option.DatastorelIdentity

The JDO implementation supports datastore identity for persistent classes.
javax.jdo.option.NonDurableIdentity

The JDO implementation supports nondurable identity for persistent classes

11.5 Non-configurable Properties
Properties instance.
11.6 Optional Feature Support
Collection.
JDO 2.0

102 February 28, 2006

Java Data Objects 2.0

JDO 2.0

javax.jdo.option.ArrayList

The JDO implementation supports persistent field types of ArrayList.
javax.jdo.option.LinkedList

The JDO implementation supports persistent field types of LinkedList.
javax.jdo.option.TreeMap

The JDO implementation supports persistent field types of TreeMap.
javax.jdo.option.TreeSet

The JDO implementation supports persistent field types of TreeSet.
javax.jdo.option.Vector

The JDO implementation supports persistent field types of Vector.
javax.jdo.option.List

The JDO implementation supports persistent field types of List. This is now a require-
ment but the option is for compatibility with JDO 1.0 where this support was optional.

javax.jdo.option.Array
The JDO implementation supports persistent field types of array.
javax.jdo.option.NullCollection

The JDO implementation allows null collections to be stored. Most relational implementa-
tions do not distinguish between empty and null collections, and this option will not be set
for those implementations.

javax.jdo.option.ChangelApplicationIdentity

The JDO implementation supports changing of the application identity of instances.
javax.jdo.option.BinaryCompatibility

The JDO implementation supports the binary compatibility contract.
javax.jdo.option.GetDataStoreConnection

The JDO implementation supports use of a direct datastore connection.
javax.jdo.option.GetJDBCConnection

The JDO implementation supports use of a direct datastore connection that implements
the java.sgl.Connection interface.

javax.jdo.query.SQL

The JDO implementation supports SQL for queries executed via the javax. jdo.Query
interface.

javax.jdo.option.UnconstrainedQueryVariables

The JDO implementation supports JDOQL queries that contain a variable without a con-
tains clause to constrain the variable.

javax.jdo.option.version.DateTime

The JDO implementation supports use of a the date-time strategy for version checking.
javax.jdo.option.version.StateImage

The JDO implementation supports use of the state-image strategy for version checking.
javax.jdo.option.PreDirtyEvent

The JDO implementation supports event notifications of changes made to persistent in-
stances before the instance is made dirty.

103 February 28, 2006

Java Data Objects 2.0

javax.jdo.option.mapping.HeterogeneousObjectType

The JDO implementation supports mapping a persistent field of type Object to multiple
types. There is no standard way to map this support.

javax.jdo.option.mapping.HeterogeneousInterfaceType

The JDO implementation supports mapping a persistent field of a persistent interface type
to multiple types. There is no standard way to map this support.

javax.jdo.option.mapping.JoinedTablePerClass

The JDO implementation supports mapping persistent class inheritance hierarchies to ta-
bles in which each class, including abstract classes, is mapped to a table; and each table
mapped to a subclass defines a primary key that has a foreign key relationship to the pri-
mary key of the table mapped by the superclass.

javax.jdo.option.mapping.JoinedTablePerConcreteClass

The JDO implementation supports mapping persistent class inheritance hierarchies to ta-
bles in which each concrete class (excluding abstract classes) is mapped to a table; and each
table mapped to a subclass defines a primary key that has a foreign key relationship to the
primary key of the table mapped by the superclass.

javax.jdo.option.mapping.NonJoinedTablePerConcreteClass

The JDO implementation supports mapping persistent class inheritance hierarchies to ta-
bles in which each concrete class (excluding abstract classes) is mapped to a table; and
there is not necessarily any foreign key relationship among the mapped tables.

javax.jdo.option.mapping.RelationSubclassTable

The JDO implementation supports mapping persistent fields containing relationships to
classes in an inheritance relationship that use subclass-table as the field mapping strategy.

The standard JDO query must be returned as the String:
javax.jdo.query.JDOQL

Other query languages are represented by a String not defined in this specification.

11.7

JDO 2.0

Static Properties constructor
public static PersistenceManagerFactory
getPersistenceManagerFactory (Map props) ;

This static method is not a method defined in the PersistenceManagerFactory in-
terface, but rather must be defined on the class that implements PersistenceMan-
agerFactory. It returns an instance of PersistenceManagerFactory based on the
properties in the parameter.

The method is used by JDOHelper to construct an instance of PersistenceManager-
Factory based on user-specified properties.

The following are standard key values for the props:
javax.jdo.PersistenceManagerFactoryClass
javax.jdo.option.Optimistic
javax.jdo.option.RetainValues
javax.jdo.option.RestoreValues

javax.jdo.option.IgnoreCache

104 February 28, 2006

Java Data Objects 2.0

javax.jdo.option.NontransactionalRead
javax.jdo.option.NontransactionalWrite
javax.jdo.option.Multithreaded
javax.jdo.option.ConnectionUserName
javax.jdo.option.ConnectionPassword
javax.jdo.option.ConnectionURL
javax.jdo.option.ConnectionFactoryName
javax.jdo.option.ConnectionFactory2Name
javax.jdo.option.Mapping
javax.jdo.mapping.Catalog
javax.jdo.mapping.Schema

JDO implementations are permitted to define key values of their own. Any key values not
recognized by the implementation must be ignored. Key values that are recognized but not
supported by an implementation must result ina JDOFatalUserException thrown by
the method.

The returned PersistenceManagerFactory is not configurable (the setXXX meth-
ods will throw an exception). JDO implementations might manage a map of instantiated
PersistenceManagerFactory instances based on specified property key values, and
return a previously instantiated PersistenceManagerFactory instance. In this case,
the properties of the returned instance must exactly match the requested properties.

11.8

JDO 2.0

Second-level cache management

Most JDO implementations allow instances to be cached in a second-level cache, and allow
direct management of the cache by knowledgeable applications. The second-level cache is
typically a single VM cache and is used for persistent instances associated with a single
PersistenceManagerFactory. For the purpose of standardizing this behavior, the
DataStoreCache interface is used.

To obtain a reference to the cache manager, the getDataStoreCache () method of Per-
sistenceManagerFactory is used.

DataStoreCache getDataStoreCache() ;
If there is no second-level cache, the returned instance silently does nothing.
package javax.jdo.datastore;

public interface DataStoreCache {

Evicting objects from the cache
void evict (Object oid);
void evictAll();
void evictAll (Object[] oids);
void evictAll (Collection oids);
void evictAll (Class pcClass, boolean subclasses);

The evict methods are hints to the implementation that the instances referred to by the ob-
ject ids are stale and should be evicted from the cache. Evicting an instance does not unpin
it.

105 February 28, 2006

Java Data Objects 2.0

Pinning objects in the cache
void pin(Object oid);
void pinAll (Collection oids);
void pinAll (Object[] oids);
void pinAll (Class pcClass, boolean subclasses) ;

The pin methods are hints to the implementation that the instances referred to by the object
ids should be pinned in the cache (not subject to algorithm-based eviction, but subject to
explicit eviction). There is no requirement that an instance be in the cache in order to pin
or unpin it. The pinA11 method with the Class parameter automatically pins all instanc-
es of that class, including those instances already in the cache and future instances of the
class. When a class is pinned, pin and unpin methods on instances of the pinned class are
ignored.

Unpinning objects in the cache
void unpin (Object oid);
void unpinAll (Collection oids) ;
void unpinAll (Object[] oids);
void unpinAll (Class pcClass, boolean subclasses);

The unpin methods are hints to the implementation that the instances referred to by the
object ids should be unpinned (subject to eviction based on algorithm). There is no require-
ment that an instance be in the cache in order to pin or unpin it. The unpinaAll method
with the Class parameter automatically unpins all instances of that class, including those
instances already in the cache and future instances of the class. When a class is pinned, pin
and unpin methods on instances of the pinned class are ignored.

}

119

JDO 2.0

Registering for life cycle events

void addInstancelLifecyclelListener (InstanceLifecyclelListener lis-
tener, Class[] classes);

This PersistenceManagerFactory method adds the listener to the list of instance life-
cycle event listeners set as the initial listeners for each PersistenceManager created by
this PersistenceManagerFactory. The classes parameter identifies all of the classes of
interest. If the classes parameter is specified as null, events for all persistent classes and
interfaces are generated. If the classes specified have persistence-capable subclasses, all
such subclasses are registered implicitly.

The listener will be called for each event for which it implements the corresponding listen-
er interface.

void removelInstanceLifecycleListener (InstancelLifecyclelListener
listener) ;

This PersistenceManagerFactory method removes the listener from the list of event
listeners set as the initial listeners for each PersistenceManager created by this Per-
sistenceManagerFactory.

The addInstancelLifecycleListener and removeInstancelLifecyclelListener
methods are considered to be configuration methods and can only be called when the
PersistenceManagerFactory is configurable (before the first getPersistenceM-
anager is called).

106 February 28, 2006

Java Data Objects 2.0

12

PersistenceManager

This chapter specifies the JDO PersistenceManager and its relationship to the appli-
cation components, JDO instances, and J2EE Connector.

The JDO PersistenceManager is the primary interface for J[DO-aware application
components. It is the factory for the Query interface and contains methods for managing
the life cycle of persistent instances.

The JDO PersistenceManager interface is architected to support a variety of environ-
ments and data sources, from small footprint embedded systems to large enterprise appli-
cation servers. It might be a layer on top of a standard Connector implementation such as
JDBC or JMS, or itself include connection management and distributed transaction sup-

J2EE Connector support is optional . If it is not supported by a JDO implementation, then
a constructor for the JDO PersistenceManager or PersistenceManagerFactory
is required. The details of the construction of the PersistenceManager or Persis-
tenceManagerFactory are not specified by JDO.

The architecture of the PersistenceManager has the following goals:

* No changes to application programs to change to a different vendor’s
PersistenceManager if the application is written to conform to the portability

¢ Application to non-managed and managed environments with no code changes

Architecture: JDO PersistenceManager

The JDO PersistenceManager instance is visible only to certain application compo-
nents: those that explicitly manage the life cycle of JDO instances; and those that query for
JDO instances. The JDO PersistenceManager is not required to be used by JDO in-

There are three primary environments in which the JDO PersistenceManager is ar-

* non-managed (non-application server), minimum function, single transaction,
single JDO PersistenceManager where compactness is the primary metric;

* non-managed but where extended features are desired, such as multiple
PersistenceManager instances to support multiple data sources, XA
coordinated transactions, or nested transactions; and

12.1 Overview

port.
12.2 Goals

guidelines

12.3

stances.

chitected to work:

JDO 2.0

107 February 28, 2006

Java Data Objects 2.0

* managed, where the full range of capabilities of an application server is required.

Support for these three environments is accomplished by implementing transaction com-
pletion APIs on a companion JDO Transaction instance, which contains transaction
policy options and local transaction support.

12.4

Threading

It is a requirement for all JDO implementations to be thread-safe. That is, the behavior of
the implementation must be predictable in the presence of multiple application threads.
Operations implemented by the PersistenceManager directly or indirectly via access
or modification of persistent or transactional fields of persistence-capable classes must be
treated as if they were serialized. The implementation is free to serialize internal data
structures and thus order multi-threaded operations in any way it chooses. The only ap-
plication-visible behavior is that operations might block indefinitely (but not infinitely)
while other operations complete.

Since synchronizing the PersistenceManager is a relatively expensive operation, and
not needed in many applications, the application must specify whether multiple threads
might access the same PersistenceManager or instances managed by the Persis-
tenceManager (persistent or transactional instances of persistence-capable classes; in-
stances of Transaction or Query; query results, etc.).

If applications depend on serializing operations, then the applications must implement the
appropriate synchronizing behavior, using instances visible to the application. This in-
cludes some instances of the JDO implementation (e.g. PersistenceManager, Query,
etc.) and instances of persistence-capable classes.

The implementation must not use user-visible instances (instances of PersistenceM-
anagerFactory, PersistenceManager, Transaction, Query, etc.) as synchroni—
zation objects, with one exception. The implementation must synchronize instances of
persistence-capable classes during state transitions that replace the StateManager. This
is to avoid race conditions where the application attempts to make the same instance per-
sistent in multiple PersistenceManagers.

12.5

JDO 2.0

Class Loaders

JDO requires access to class instances in several situations where the class instance is not
provided explicitly. In these cases, the only information available to the implementation is
the name of the class.

To resolve class names to class instances, JDO implementations will use Class . forName

(String name, boolean initialize, ClassLoader loader) with up to
three loaders. The initialize parameter can be either true or false depending on the
implementation.

These loaders will be used in this order:

1. The loader that loaded the class or instance referred to in the API that caused this class
to be loaded.

* In case of query, this is the loader of the candidate class, or the loader of the object
passed to the newQuery method.

* In case of navigation from a persistent instance, this is the loader of the class of the
instance.

108 February 28, 2006

Java Data Objects 2.0

¢ In the case of getExtent with subclasses, this is the loader of the candidate class.
¢ In the case of getObjectById, this is the loader of the object id instance.
¢ Other cases do not have an explicit loader.

2. The loader returned in the current context by Thread.getContextClassLoad-
er().

3. The loader returned by Thread.getContextClassLoader () atthe time the appli-
cation calls PersistenceManagerFactory.getPersistenceManager (). This
loader is saved with the PersistenceManager and cleared when the Persistence-
Manager is closed.

12.6

JDO 2.0

Interface PersistenceManager

AJDO PersistenceManager instance supports any number of JDO instances at a time.
It is responsible for managing the identity of its associated JDO instances. A JDO instance
is associated with either zero or one JDO PersistenceManager. It will be zero if and
only if the JDO instance is in the transient or detached state. As soon as a transient instance
is made persistent or transactional, it will be associated with exactly one JDO Persis-
tenceManager.Detached instances are never associated with a PersistenceMan-
ager.

AJDO PersistenceManager instance supports one transaction at a time, and uses one
connection to the underlying data source at a time. The JDO PersistenceManager in-
stance might use multiple transactions serially, and might use multiple connections serial-
ly.

Therefore, to support multiple concurrent connection-oriented data sources in an applica-
tion, multiple JDO PersistenceManager instances are required.

In this interface, for implementations that support BinaryCompatibility, JDO instances
passed as parameters and returned as values must implement PersistenceCapable.
The interface defines these formal parameters as Object because binary compatibility is
optional.

package javax.jdo;

public interface PersistenceManager {
boolean isClosed() ;

void close();

The isClosed method returns false upon construction of the PersistenceMan-
ager instance, or upon retrieval of a PersistenceManager from a pool. It returns
true only after the close method completes successfully. After being closed, the Per-
sistenceManager instance might be returned to the pool or garbage collected, at the
choice of the JDO implementation. Before being used again to satisfy a getPersis-
tenceManager request, the options will be reset to their default values as specified in the
PersistenceManagerFactory.

In a non-managed environment, if the current transaction is active, close throws
JDOUserException.

After close completes, all methods on the PersistenceManager instance except is-
Closed(), close(), and get methods throw a JDOFatalUserException.

109 February 28, 2006

Java Data Objects 2.0

12.6.1

JDO 2.0

State Transitions for persistent instances at close

The behavior of persistent instances at close of the corresponding PersistenceManager
is not further defined in this specification.

Null management

In the APIs that follow, Object [] and Collection are permitted parameter types. As
these may contain nulls, the following rules apply.

Null arguments to APIs that take an Object parameter cause the API to have no effect.
Null arguments to APIs that take Object [] or Collection will cause the API to throw
NullPointerException. Non-null Object[] or Collection arguments that con-
tain null elements will have the documented behavior for non-null elements, and the
null elements will be ignored.

Cache management

Normally, cache management is automatic and transparent. When instances are queried,
navigated to, or modified, instantiation of instances and their fields and garbage collection
of unreferenced instances occurs without any explicit control. When the transaction in
which persistent instances are created, deleted, or modified completes, eviction is auto-
matically done by the transaction completion mechanisms. Therefore, eviction is not nor-
mally required to be done explicitly. However, if the application chooses to become more
involved in the management of the cache, several methods are available.

The non-parameter version of these methods applies the operation to each appropriate
JDO instance in the cache. For evictall, these are all persistent-clean instances; for re-
freshAll, all transactional instances.

void evict (Object pc);

void evictAll ();

void evictAll (Object[] pcs);

void evictAll (Collection pcs);

Eviction is a hint to the PersistenceManager that the application no longer needs the
parameter instances in the cache. Eviction allows the parameter instances to be subse-
quently garbage collected. Evicted instances will not have their values retained after trans-
action completion, regardless of the settings of the retainValues or restoreValues
flags.

If evictAll with no parameters is called, then all persistent-clean instances are evicted
(they transition to hollow). If users wish to automatically evict transactional instances at
transaction commit time, then they should set RetainvValues to false. Similarly, to au-
tomatically evict transactional instances at transaction rollback time, then they should set
RestoreValues to false.

If the parameter instance is detached, then JDOUserException is thrown.

For each persistent-clean and persistent-nontransactional instance that the JDO Persis-
tenceManager evicts, it:

e calls the jdoPreClear method on each instance, if the class of the instance
implements InstanceCallbacks

¢ clears persistent fields on each instance (sets the value of the field to its Java default
value);

¢ changes the state of instances to hollow.

110 February 28, 2006

Java Data Objects 2.0

JDO 2.0

void refresh (Object pc);

void refreshAll ();

void refreshAll (Object[] pcs);
void refreshAll (Collection pcs);
void refreshAll (JDOException ex);

The refresh method updates the values in the parameter instance[s] from the data in the
datastore. The intended use is for optimistic transactions where the state of the JDO in-
stance is not guaranteed to reflect the state in the datastore, and for datastore transactions
to undo the changes to a specific set of instances instead of rolling back the entire transac-
tion. This method can be used to minimize the occurrence of commit failures due to mis-
match between the state of cached instances and the state of data in the datastore.

When called with a transaction active, the refreshA11 method with no parameters caus-
es all transactional instances to be refreshed. If a transaction is not in progress, then this
call has no effect.

If there is a fetch plan in effect, then the fetch plan affects the results of this method. All
modified fields and all fields in the current fetch plan are unloaded and then fields in the
current fetch plan are fetched from the datastore.

Note that this method will cause loss of changes made to affected instances by the appli-
cation due to refreshing the contents from the datastore.

When used with the JDOException parameter, the JDO PersistenceManager re-
freshes all instances in the exception, including instances in nested exceptions, that failed
verification. Updated and unchanged instances that failed verification are reloaded from
the datastore. Datastore instances corresponding to new instances that failed due to dupli-
cate key are loaded from the datastore.

If the parameter instance is detached, then JDOUserException is thrown.
The JDO PersistenceManager:
* loads persistent values from the datastore into the instance;

¢ calls the jdoPostLoad method on each persistent instance, if the class of the
instance implements InstanceCallbacks; and

* changes the state of persistent-dirty instances to persistent-clean in a datastore
transaction; or persistent-nontransactional in an optimistic transaction.

void retrieve (Object pc);

void retrieve (Object pc, boolean FGOnly) ;

void retrieveAll (Collection pcs);

void retrieveAll (Collection pcs, boolean FGOnly) ;
void retrieveAll (Object[] pcs);

void retrieveAll (Object[] pcs, boolean FGOnly) ;

These methods request the PersistenceManager to load persistent fields into the pa-
rameter instances. Subsequent to this call, the application might callmakeTransient on
the parameter instances, and the fields can no longer be touched by the Persistence-
Manager. The PersistenceManager might also retrieve related instances according
to the current fetch plan or a vendor-specific pre-read policy (not specified by JDO).

111 February 28, 2006

Java Data Objects 2.0

12.6.2

12.6.3

12.6.4

JDO 2.0

If the FGOnly parameter is false, or the method without the FGOnly parameter is in-
voked, all fields must be loaded from the datastore.

If the FGOnly parameter is true, and the fetch plan has not been modified from its de-
fault setting (see 12.7.5), then this is a hint to the implementation that only the fields in the
current fetch group need to be retrieved. A compliant implementation is permitted to re-
trieve all fields regardless of the setting of this parameter. After the call with the FGOnly
parameter true, all fields in the current fetch group must have been fetched, but other
fields might be fetched lazily by the implementation.

If the FGOnly parameter is t rue, and the fetch plan has been changed, then only the fields
specified by the fetch plan are loaded.

If the parameter instance or instances are detached, then JDOUserException is thrown.
The JDO PersistenceManager:
¢ loads persistent values from the datastore into the instance;

e for hollow instances, changes the state to persistent-clean in a datastore
transaction; or persistent-nontransactional in an optimistic transaction;

¢ if the class of the instance implements LoadCallback calls jdoPostLoad;

¢ calls postLoad for all LifecycleListener instances that are registered for
load callbacks for the class of the loaded instances.

Transaction factory interface
Transaction currentTransaction() ;

The currentTransaction method returns the Transaction instance associated
with the PersistenceManager. The identical Transaction instance will be returned
by all currentTransaction calls to the same PersistenceManager until close.
Note that multiple transactions can be begun and completed (serially) with this same in-
stance.

Even if the Transaction instance returned cannot be used for transaction completion
(due to external transaction management), it still can be used to set flags.

Query factory interface

The query factory methods are detailed in the Query chapter .
void setIgnoreCache (boolean flag);

boolean getIgnoreCache ();

These methods get and set the value of the IgnoreCache option for all Query instances
created by this PersistenceManager [see Query options]. The IgnoreCache option
if set to true, is a hint to the query engine that the user expects queries to be optimized to
return approximate results by ignoring changed values in the cache.

The IgnoreCache option also affects the iterator obtained from Extent instances ob-
tained from this PersistenceManager.

The IgnoreCache option is preserved for query instances constructed from other query
instances.

Extent Management

Extents are collections of datastore objects managed by the datastore, not by explicit user
operations on collections. Extent capability is a boolean property of persistence capable
classes and interfaces. If an instance of a class or interface that has a managed extent is

112 February 28, 2006

Java Data Objects 2.0

12.6.5

JDO 2.0

made persistent via reachability, the instance is put into the extent implicitly. If an instance
of a class that implements an interface that has a managed extent is made persistent, then
that instance is put into the interface’s extent.

Extent getExtent (Class persistenceCapable, boolean subclass-
es);

Extent getExtent (Class persistenceCapable);

The getExtent method returns an Extent that contains all of the instances in the pa-
rameter class or interface, and if the subclasses flag is true, all of the instances of the pa-
rameter class and its subclasses. The method with no subclasses parameter is treated as
equivalent to getExtent (persistenceCapable, true).

If the metadata does not indicate via the requires-extent attribute in the class or in-
terface element that an extent is managed for the parameter class or interface, then
JDOUserException is thrown. The extent might not include instances of those subclass-
es for which the metadata indicates that an extent is not managed for the subclass.

This method can be called whether or not a transaction is active, regardless of whether
NontransactionalRead is supported. If NontransactionalRead is not supported,
then the iterator method will throw a JDOUnsupportedOptionException if called
outside a transaction.

It might be a common usage to iterate over the contents of the Extent, and the Extent
should be implemented in such a way as to avoid out-of-memory conditions on iteration.

The primary use for the Extent returned as a result of this method is as a candidate col-
lection parameter to a Query instance. For this usage, the elements in the Extent typi-
cally will not be instantiated in the Java VM; it is used only to identify the prospective
datastore instances.

Extents of interfaces

If the Class parameter of the get Extent method is an interface, then the interface must
be identified in the metadata as having its extent managed.

JDO Identity management

Object getObjectById (Object oid);

The getObjectByIdmethod attempts to find an instance in the cache with the specified
JDO identity. This method behaves exactly as the method getObjectById (Object
oid, boolean validate) with the validate flag set to true.

Object getObjectById (Object oid, boolean validate) ;

The getObjectByIdmethod attempts to find an instance in the cache with the specified
JDO identity. The oid parameter object might have been returned by an earlier call to ge-
tObjectIdorgetTransactionalObjectId, or might have been constructed by the
application.

If the PersistenceManager is unable to resolve the oid parameter to an ObjectId
instance, then it throws a JDOUserException. This might occur if the implementation
does not support application identity, and the parameter is an instance of an object identity
class.

¢ Ifthevalidate flagis false:

¢ If there is already an instance in the cache with the same JDO identity as the oid
parameter, then this method returns it. There is no change made to the state of the
returned instance.

113 February 28, 2006

Java Data Objects 2.0

JDO 2.0

If there is not an instance already in the cache with the same JDO identity as the
oid parameter, then this method creates an instance with the specified JDO
identity and returns it. If there is no transaction in progress, the returned instance
will be hollow or persistent-nontransactional, at the choice of the implementation.
e If there is a transaction in progress, the returned instance will be hollow,
persistent-nontransactional, or persistent-clean, at the choice of the
implementation.
¢ It is an implementation decision whether to access the datastore, if required to
determine the exact class. This will be the case of inheritance, where multiple
persistence-capable classes share the same Object Id class.
¢ If the instance does not exist in the datastore, then this method might not fail. It is
an implementation choice if the method fails immediately with a
JDOObjectNotFoundException. Butasubsequent access of the fields of the
instance will throw a JDOObjectNotFoundException if the instance does
not exist at that time. Further, if a relationship is established to this instance, and
the instance does not exist when the instance is flushed to the datastore, then the
transaction in which the association was made will fail.
¢ If thevalidate flagis true:

¢ If there is already a transactional instance in the cache with the same jdo identity
as the oid parameter, then this method returns it. There is no change made to the
state of the returned instance.

¢ [f there is an instance already in the cache with the same jdo identity as the oid
parameter, the instance is not transactional, and the instance does not exist in the
datastore, then a JDOObjectNotFoundException is thrown.

e If there is not an instance already in the cache with the same jdo identity as the oid
parameter, then this method creates an instance with the specified jdo identity,
verifies that it exists in the datastore, and returns it. If the instance does not exist
in the datastore, then a JDOObjectNotFoundException is thrown. If the
fetch plan has been changed from its original value, the fetch plan governs which
fields are fetched from the datastore and which related objects are also fetched
with them.

e If there is no transaction in progress, the returned instance will be hollow or
persistent-nontransactional, at the choice of the implementation.

¢ If there is a datastore transaction in progress, the returned instance will be
persistent-clean.

¢ If there is an optimistic transaction in progress, the returned instance will be
persistent-nontransactional.

Object getObjectId (Object pc);

The getObjectId method returns an ObjectId instance that represents the object
identity of the specified JDO instance. The identity is guaranteed to be unique only in the
context of the JDO PersistenceManager that created the identity, and only for two
types of JDO Identity: those that are managed by the application, and those that are man-
aged by the datastore.

If the object identity is being changed in the transaction, by the application modifying one
or more of the application key fields, then this method returns the identity as of the begin-
ning of the transaction. The value returned by getObjectId will be different following
afterCompletion processing for successful transactions.

Within a transaction, the ObjectId returned will compare equal to the ObjectId re-
turned by only one among all JDO instances associated with the PersistenceManager
regardless of the type of ObjectId.

114 February 28, 2006

Java Data Objects 2.0

JDO 2.0

The ObjectIddoesnot necessarily contain any internal state of the instance, nor is it nec-
essarily an instance of the class used to manage identity internally. Therefore, if the appli-
cation makes a change to the ObjectId instance returned by this method, there is no
effect on the instance from which the ObjectId was obtained.

The getObjectById method can be used between instances of PersistenceMan-
ager of different JDO vendors only for instances of persistence capable classes using ap-
plication-managed (primary key) JDO identity. If it is used for instances of classes using
datastore identity, the method might succeed, but there are no guarantees that the param-
eter and return instances are related in any way.

If the parameter pc is not persistent, or is null, then null is returned.
Object getTransactionalObjectId (Object pc);

If the object identity is being changed in the transaction, by the application modifying one
or more of the application key fields, then this method returns the current identity in the
transaction. If there is no transaction in progress, or if none of the key fields is being mod-
ified, then this method has the same behavior as getObjectId.

To get an instance in a PersistenceManager with the same identity as an instance
from a different PersistenceManager, use the following: aPersistenceMan-
ager .getObjectById (JDOHelper.getObjectId(pc), validate).Theval-
idate parameter has a value of true or false depending on your application
requirements.

Getting Multiple Persistent Instances

Collection getObjectsById (Collection oids);

Object[] getObjectsById (Object[] oids);

Collection getObjectsById (Collection oids, boolean validate);
Object[] getObjectsById (Object[] oids, boolean validate) ;

The getObjectsById method attempts to find instances in the cache with the specified
JDO identities. The elements of the oids parameter object might have been returned by
earlier calls to getObjectId or getTransactionalObjectId, or might have been
constructed by the application.

If a method with no validate parameter is used, the method behaves exactly as the cor-
responding method with the validate flag set to true.

If the Object [] form of the method is used, the returned objects correspond by position
with the object ids in the oids parameter. If the Collection form of the method is used,
the iterator over the returned Collection returns instances in the same order as the oids
returned by an iterator over the parameter Collection. The cardinality of the return
value is the same as the cardinality of the oids parameter.

Getting an Object by Class and Key
Object getObjectById (Class cls, Object key);

The getObjectById method attempts to find an instance in the cache with the derived
JDO identity. The key parameter is either the string representation of the object id, or is an
object representation of a single field identity key.

This is a convenience method that exactly matches the behavior of calling pm.getOb-
jectById (pm.newObjectIdInstance (cls, key), true).

115 February 28, 2006

Java Data Objects 2.0

12.6.6

12.6.7

JDO 2.0

Persistent instance factory

The following method is used to create an instance of a persistence-capable interface, or of
a concrete or abstract class.

Object newInstance(Class persistenceCapable) ;

The parameter must be one of the following:
* an abstract class that is declared in the metadata using the class element, or
* an interface that is declared in the metadata using the interface element, or

* aconcrete class that is declared in the metadata as persistence-capable. In this case,
the concrete class must declare a public no-args constructor.

The returned instance is transient, and is an “instanceof” the parameter. Applications
might use the instance via the get and set property methods and change its life cycle
state exactly as if it were an instance of a persistence-capable class.

In order for the newInstance method to be used, the parameter interface must be com-
pletely mapped. For relational implementations, the interface must be mapped to a table
and all persistent properties must be mapped to columns. Additionally, interfaces that are
the targets of all relationships from persistent properties must also be mapped. Otherwise,
JDOUserException is thrown by the newInstance method.

For interfaces and classes that use a SingleFieldIdentity as the object-id class, if the
returned instance is subsequently made persistent, the target class stored in the object-id
instance is the parameter of the newInstance method that created it.

JDO Instance life cycle management
The following methods take either a single instance or multiple instances as parameters.

If a collection or array of instances is passed to any of the methods in this section, and one
or more of the instances fail to complete the required operation, then all instances will be
attempted, and a IDOUserException will be thrown which contains a nested exception
array, each exception of which contains one of the failing instances. The succeeding in-
stances will transition to the specified life cycle state, and the failing instances will remain
in their current state.

Make instances persistent

Object makePersistent (Object pc);

Object [] makePersistentAll (Object[] pcs);
Collection makePersistentAll (Collection pcs);

These methods make transient instances persistent and apply detached instance changes
to the cache. They must be called in the context of an active transaction, or a JDOUserEx-
ception is thrown. For a transient instance, they will assign an object identity to the in-
stance and transition it to persistent-new. Any transient instances reachable from this
instance via persistent fields of this instance will become provisionally persistent, transi-
tively. That is, they behave as persistent-new instances (return true to isPersistent,
isNew, and isDirty). But at commit time, the reachability algorithm is run again, and
instances made provisionally persistent that are not currently reachable from persistent in-
stances will revert to transient.For a detached instance, they locate or create a persistent
instance with the same JDO identity as the detached instance, and merge the persistent
state of the detached instance into the persistent instance. Only the state of persistent fields
is merged. If non-persistent state needs to be copied, the application should use the
jdoPostAttach callback or the postAttach lifecycle event listener. Any references to

116 February 28, 2006

Java Data Objects 2.0

JDO 2.0

the detached instances from instances in the closure of the parameter instances are modi-
fied to refer to the corresponding persistent instance instead of to the detached instance.

During application of changes of the detached state, if the JDO implementation can deter-
mine that there were no changes made during detachment, then the implementation is not
required to mark the corresponding instance dirty. If it cannot determine if changes were
made, then it must mark the instance dirty.

No consistency checking is done during makePersistent of detached instances. If con-
sistency checking is required by the application, then flush or checkConsistency
should be called after attaching the instances.

These methods have no effect on parameter persistent instances already managed by this
PersistenceManager. They will throw a JDOUserException if the parameter in-
stance is managed by a different PersistenceManager.

If an instance is of a class whose identity type (application, datastore, or none)is
not supported by the JDO implementation, then a JDOUserException will be thrown
for that instance.The return value for instances in the transient or persistent states is the
same as the parameter value. The return value for detached instances is the persistent in-
stance corresponding to the detached instance.

The return values for makePersistentAll methods correspond by position to the pa-
rameter instances.

Delete persistent instances

void deletePersistent (Object pc);

void deletePersistentAll (Object[] pcs);
void deletePersistentAll (Collection pcs);

These methods delete persistent instances from the datastore. They must be called in the
context of an active transaction, or a JDOUserException is thrown. The representation
in the datastore will be deleted when this instance is flushed to the datastore (via commi t
or evict).

Note that this behavior is not exactly the inverse of makePersistent, due to the transi-
tive nature of makePersistent. The implementation might delete dependent datastore
objects depending on implementation-specific policy options that are not covered by the
JDO specification. However, if a field is marked as containing a dependent reference, the
dependent instance is deleted as well.

These methods have no effect on parameter instances already deleted in the transaction or
on embedded instances. Embedded instances are deleted when their owning instance is
deleted.

If deleting an instance would violate datastore integrity constraints, it is implementation-
defined whether an exception is thrown at commit time, or the delete operation is simply
ignored. Portable applications should use this method to delete instances from the datas-
tore, and not depend on any reachability algorithm to automatically delete instances.

If the parameter instance of deletePersistent () is a detached instance, the method
applies to the associated persistent instance. Similarly, if any of the parameter instances of
deletePersistentAll () is a detached instance, the method applies to the associated
persistent instances. If the class of any instance to be deleted implements DeleteCall-
back, or if there are any InstanceLifecycleListeners registered for deletion call-
backs of instances of any detached objects’ class, then the parameter persistent instances

117 February 28, 2006

Java Data Objects 2.0

JDO 2.0

of those classes are instantiated, the callback is executed and/or the listeners are called
with the event, as described in section 12.15.

These methods will throw a JDOUserException if the parameter instance is managed
by a different PersistenceManager.These methods will throw a JDOUserExcep-
tion if the parameter instance is transient.

Make instances transient

void makeTransient (Object pc);

void makeTransientAll (Object[] pcs);
void makeTransientAll (Collection pcs);

These methods make persistent instances transient, so they are no longer associated with
the PersistenceManager instance. They do not affect the persistent state in the datas-
tore. They can be used as part of a sequence of operations to move a persistent instance to
another PersistenceManager. The instance transitions to transient, and it loses its
JDO identity. If the instance has state (persistent-nontransactional or persistent-clean) the
state in the cache is preserved unchanged. If the instance is dirty, a JDOUserException
is thrown.

The effect of these methods is immediate and not subject to rollback. Field values in the
instances are not modified. To avoid having the instances become persistent by reachabil-
ity at commit, the application should update all persistent instances containing references
to the parameter instances to avoid referring to them, or make the referring instances tran-
sient.

If the parameter instance or instances are detached, then JDOUserException is thrown.
These methods will be ignored if the instance is transient.

void makeTransient (Object pc, boolean useFetchPlan) ;

void makeTransientAll (Object[] pcs, boolean useFetchPlan) ;
void makeTransientAll (Collection pcs, boolean useFetchPlan) ;

If the useFetchPlan parameter is false, these methods behave exactly as the corre-
sponding makeTransient methods.

If the useFetchPlan parameter is true, the current FetchPlan, including MaxFetch-
Depth, DETACH_LOAD_FIELDS, and DETACH_UNLOAD_FIELDS, is applied to the pc or
pcs parameter instance(s) to load fields and instances from the datastore. The Detach-
mentRoots is not affected. After the fetch plan is used to load instances, the entire graph
of instances reachable via loaded fields of the parameter instances is made transient. Tran-
sient fields are not modified by the method.

If the parameter instance or instances are detached, then JDOUserException is thrown.
Make instances transactional

void makeTransactional (Object pc);

void makeTransactionalAll (Object[] pcs);

void makeTransactionalAll (Collection pcs);

These methods make transient instances transactional and cause a state transition to tran-
sient-clean. After the method completes, the instance observes transaction boundaries. If
the transaction in which this instance is made transactional commits, then the transient in-
stance retains its values. If the transaction is rolled back, then the transient instance takes
its values as of the call to makeTransactional if the call was made within the current

118 February 28, 2006

Java Data Objects 2.0

12.6.8

JDO 2.0

transaction; or the beginning of the transaction, if the call was made prior to the beginning
of the current transaction.

If the implementation does not support TransientTransactional, and the parame-
ter instance is transient, then JDOUnsupportedOptionException is thrown.

If the parameter instance or instances are detached, then JDOUserException is thrown.

These methods are also used to mark a nontransactional persistent instance as being part
of the read-consistency set of the transaction. In this case, the call must be made in the con-
text of an active transaction, or a JDOUserException is thrown.

The effect of these methods is immediate and not subject to rollback.

Make instances nontransactional

void makeNontransactional (Object pc);

void makeNontransactionalAll (Object[] pcs);
void makeNontransactionalAll (Collection pcs);

These methods make transient-clean instances nontransactional and cause a state transi-
tion to transient. After the method completes, the instance does not observe transaction
boundaries.

These methods make persistent-clean instances nontransactional and cause a state transi-
tion to persistent-nontransactional.

If the parameter instance or instances are detached, then JDOUserException is thrown.

If this method is called with a dirty parameter instance, a JDOUserException is
thrown.

The effect of these methods is immediate and not subject to rollback.

Detaching and attaching instances

These methods provide a way for an application to identify persistent instances, obtain
copies of these persistent instances, modify the detached instances either in the same JVM
or in a different JVM, apply the changes to the same or different PersistenceManager,
and commit the changes.

There are three ways to cause the creation of detached instances:
¢ explicitly via methods defined on PersistenceManager;

¢ implicitly by committing the transaction while the DetachAllOnCommit flag is
true;

* or implicitly by serializing persistent instances.

Committing the transaction with DetachAllOnCommit
boolean getDetachAllOnCommit () ;

The value of the DetachAllOnCommit flag is returned.
void setDetachAllOnCommit (boolean flag);

The value of the DetachAllOnCommit flag is set to the parameter value. The flag takes
effect during the next commit after being called. This method is allowed at any time except
during transaction completion (beforeCompletion and afterCompletion).

In JDO 1.0, the behavior of persistent instances after closing the associated Persis-
tenceManager is undefined. JDO 2 defines a new property called DetachAllOnCommit

119 February 28, 2006

Java Data Objects 2.0

JDO 2.0

which changes this behavior. With this flag set to false, the state of persistent instances
in the cache after commit is defined by the retainvalues flag.

With this flag set to true, during beforeCompletion all cached instances are prepared
for detachment according to the fetch plan in effect at commit. Loading fields and unload-
ing fields required by the fetch plan is done after calling the user’s beforeCompletion
callback. During afterCompletion, before calling the user’s afterCompletion call-
back, all detachable persistent instances in the cache transition to detached; non-detach-
able persistent instances transition to transient; and detachable instances can be serialized
as detached instances. Transient transactional instances are unaffected by this flag.

Serializing Persistent Instances

The JDO 1.0 specification requires that serialized instances be made ready for serialization
by instantiating all serializable persistent fields before calling writeObject. For binary-
compatible implementations, this is done by the enhancer adding a call to the StateM-
anager prior to invoking the user's writeObject method. The behavior is the same in
JDO 2.0, with the additional requirement that restored detachable serialized instances are
treated as detached instances.

Explicit detach

Object detachCopy (Object pc);

Collection detachCopyAll (Collection pcs);
Object[] detachCopyAll (Object[] pcs);

This method makes detached copies of the parameter instances and returns the copies as
the result of the method. The order of instances in the parameter Collection’s iteration
corresponds to the order of corresponding instances in the returned Collection’s itera-
tion.Only persistent fields are copied by the JDO implementation. If transient fields need
to be copied, the application should implement the jdoPreDetach callback or the pre-
Detach lifecycle event listener.

If a detachCopy method is called with an active transaction, the parameter Collection
of instances is first made persistent, and the reachability algorithm is run on the instances.
This ensures that the closure of all of the instances in the the parameter Collection is
persistent.

If a detachCopy method is called outside an active transaction, the reachability algorithm
will not be run; if any transient instances are reachable via persistent fields, a JDOUser-
Exception is thrown for each persistent instance containing such fields.

If the parameter instance is detached, then JDOUserException is thrown.

If a detachCopy method is called outside an active transaction, the Nontransaction-
alRead property must be true or JDOUserException is thrown.

For each instance in the parameter Collection, a corresponding detached copy is re-
turned. Each field in the persistent instance is handled based on its type and whether the
field is contained in the fetch group for the persistence-capable class. If there are duplicates
in the parameter Collection, the corresponding detached copy is used for each such du-
plicate.

Instances in the persistent-new and persistent-dirty state are updated with their current
object identity and version (as if they had been flushed to the datastore prior to copying
their state). This ensures that the object identity and version (if any) is properly set prior
to creating the copy. The transaction in which the flush is performed is assumed to com-
mit; if the transaction rolls back, then the detached instances become invalid (they no long-

120 February 28, 2006

Java Data Objects 2.0

er refer to the correct version of the datastore instances). This situation will be detected at
the subsequent attempt to commit or flush a transaction after attaching the detached in-
stances.

If instances in a deleted state (either persistent-deleted or persistent-new-deleted) are at-
tempted to be detached, a JDOUserException is thrown with nested JDOUserExcep-
tions, one for each such instance.

Instances to be detached that are not of a Detachable class are detached as transient in-
stances.

The FetchPlan in effect in the PersistenceManager at the time of detachment deter-
mines the fields to be fetched in the closure of the persistent instances. If the default fetch
planis active, instances are detached in their current state. If the user has changed the fetch
plan, then each instance to be detached will have the fetch plan applied to it, including de-
tachment options. The DETACH_LOAD_FIELDS causes the fields in the fetch plan to be
loaded before the instances are detached. The DETACH_UNLOAD_FIELDS causes load-
ed fields that are not in the fetch plan to be unloaded before detachment.

Fields in the FetchPlan of primitive and wrapper types are set to their values from the
datastore. Fields of references to persistence-capable types are set to the detached copy
corresponding to the persistent instance. Fields of Collections and Maps are set to de-
tached SCO instances containing references to detached copies corresponding to persis-
tent instances in the datastore.

The result of the detachCopyAll method isa Collection or array of detached instanc-
es whose closure contains copies of detached instances. Among the closure of detached in-
stances there are no references to persistent instances; all such references from the
persistent instances have been replaced by the corresponding detached instance.

There might or might not be a transaction active when the detachCopy method is called.

Behavior of Detached Instances

While detached, any field access to a field that was not loaded throws JDODetached-
FieldAccessException.

While detached, each detached instance has a persistent identity that can be obtained via
the static JDOHelper method getObjectId (Object pc). The version of detached in-
stances can be obtained by the static JDOHelper method getVersion (Object pc).

While detached, identity fields of application-identity classes might be modified by the ap-
plication. These fields are marked as modified by the detached instance, but the object id
of the detached instance does not change. Upon attachment, the change will be rejected if
the jdo implementation does not support application identity change. See Persistence-
ManagerFactory property javax.jdo.option.ChangeApplicationIdenti-
ty.

Changes made to embedded instances of mutable types including persistence-capable
types are tracked by the detached instance if they are replaced or modified. Changes are
reflected by marking the detached instance’s field as modified.

To apply changes made to instances while detached, use the makePersistent method
with the detached instance as parameter.

12.7

JDO 2.0

Fetch Plan

A fetch plan defines rules for instantiating the loaded state for an object graph. It specifies
fields to be loaded for all of the instances in the graph. Using fetch plans, users can control

121 February 28, 2006

Java Data Objects 2.0

12.7.1

JDO 2.0

the field fetching behavior of many JDO APIs. A fetch plan can be associated with a Per-
sistenceManager and, independently, with a Query and with an Extent.

A fetch plan also defines rules for creating the detached object graph for the detach APIs
and for automatic detachment at commit with DetachAl1lOnCommit set to true.

A fetch plan consists of a number of fetch groups that are combined additively for each af-
fected class; a fetch size that governs the number of instances of multi-valued fields re-
trieved by queries; a recursion-depth per field that governs the recursion depth of the
object graph fetched for that field; a maximum fetch depth that governs the depth of the
object graph fetched starting with the root objects; and flags that govern the behavior of
detachment.

The default fetch plan contains exactly one fetch group, "default". It has a fetch size of 0,
and detachment option DETACH_LOAD_FIELDS. The default fetch plan is in effect when
the PersistenceManager is first acquired from the PersistenceManagerFactory.

With the default fetch plan in effect, the behavior of JDO 2 is very similar to the behavior
of JDO 1. That is, when instances are loaded into memory in response to queries or navi-
gation, fields in the default fetch group are loaded, and the jdoPostLoad callback is ex-
ecuted the first time an instance is fetched from the datastore. The implementation is
allowed to load additional fields, as in JDO 1. Upon detachment, fields that are have been
loaded into the detached instances are preserved, regardless of whether they were loaded
automatically by the implementation or loaded in response to application access; and
fields that have not been loaded are marked in the detached instances as not loaded.

This behavior is sufficient for the most basic use case for detachment, where the detached
instances are simply “data transfer objects” containing primitive fields. The detached in-
stances can be modified in place or serialized and sent to another tier to be changed and
sent back. Upon being received back, the instances can be attached and if there are no ver-
sion conflicts, the changes can be applied to the datastore.

The most common use case for fetch groups is to restrict the fields loaded for an instance
to the primitive values and avoid loading related instances for queries. For more control
over the default behavior, the “default” fetch group can simply be redefined for specific
classes. For example, a String field that contains a typically large document can be de-
fined as not part of the default fetch group, and the field will be loaded only when accessed
by the application. Similarly, an Order field associated with OrderLine might be defined
as part of the default fetch group of OrderLine, and queries on OrderLine will always
load the corresponding Order instance as well. This can easily improve the performance
of applications that always need the Order whenever OrderLine instances are loaded.

For explicit detachment, the parameters of the detach method are each treated as roots for
the purpose of determining the detached object graph. The fetch plan is applied to each of
the roots as if no other roots were also being detached. The roots and their corresponding
object graphs are combined and the resulting object graph is detached in its entirety.

Fetch Groups

Fetch groups are used to identify the list of fields and their associated field recursion-
depth for each class for which the fetch plan is applied.

Fetch groups are identified by name and apply to one or more classes. Names have global
scope so the same fetch group name can be used for any number of classes. This makes it
possible to specify fetch groups per PersistenceManager instead of per extent. This
greatly simplifies the use of fetch groups in an application.

The default fetch group (named "default") for each class is created by the JDO imple-
mentation according to the rules in the JDO 1.0.1 specification. That is, it includes all fields

122 February 28, 2006

Java Data Objects 2.0

12.7.2

JDO 2.0

that by default belong to the default fetch group (i.e. single-valued fields), and causes the
jdoPostLoad method to be called the first time fields are loaded. The default fetch group
may also be defined by the user in the metadata like any other fetch group, in order to
make use of JDO 2 features.

The implementation must also define another fetch group named "all" for each class. The
"all" group contains all fields in the class, but can be redefined by the user, for example
to add recursion-depth to certain fields, or to exclude some fields from being loaded.

If a fetch plan other than the default fetch plan is active for a PersistenceManager, the
behavior of several APIs changes:

* For detachCopy the JDO implementation must ensure that the graph specified by
the active fetch groups is copied, based on the DETACH_LOAD_FIELDS and
DETACH_UNLOAD_FIELDSﬂag&

* For refresh, after clearing fields in the instances, the JDO implementation uses
the fetch plan to determine which fields to load from the datastore.

* For retrieve with FGonly true, the implementation uses the fetch plan to
determine which fields are loaded from the datastore. With FGonly false, the
implementation reverts to JDO 1 behavior, which loads all fields from the
datastore; in this case, no related instances are loaded.

* When executing a query the JDO implementation loads the fields as specified in
the fetch plan associated with the Query instance.

* When the application dereferences an unloaded field, the JDO implementation
uses the current fetch plan and the load-fetch-group of the field to create the fetch
strategy for the field. The specific behavior depends on whether the unloaded field
is a relation to another persistence-capable class.

¢ for non-relation fields, the current fetch plan is applied to the field’s owning
instance, and the fields in the field’s load-fetch-group, plus the field itself are
added to the list of fields.

* for relation fields, the fields in the owning instance are fetched as immediately
above, and additionally the instances referred by the field are loaded using the
current fetch plan plus the field’s load-fetch-group.

FetchPlan getFetchPlan() ;

This method retrieves the fetch plan associated with the PersistenceManager. It al-
ways returns the identical instance for the same PersistenceManager.

MaxFetchDepth

When relationship fields are included in the active fetch plan, it may be possible to retrieve
the entire contents of the datastore, which might not be the desired effect. To avoid this
behavior, and to allow the application to control the amount of data retrieved from the
datastore, the MaxFetchDepth property of the fetch plan is used. The MaxFetchDepth
is the depth of references (fields of relationship types) to instantiate, starting with the root
instances.

Setting MaxFetchDepth to 1 limits the instances retrieved to the root instances and in-
stances directly reachable from the root instances through a field in the fetch plan for the
root class(es). Setting MaxFetchDepth to 0 has no meaning, and JDOUserException will
be thrown. Setting MaxFetchDepth to -1 does not limit the instances retrieved via rela-
tionship fields in the fetch plan. Caution should be exercised to avoid retrieving more in-
stances than desired.

123 February 28, 2006

Java Data Objects 2.0

12.7.3

12.7.4

12.7.5

JDO 2.0

For example, assume the class Employee defines field dept of type Department, and
class Department defines field comp of type Company. When a query for Employee is
executed, with a fetch plan that includes Employee.dept and Department . comp and
with MaxFetchDepth set to 1, the Departments referenced by Employees returned
from the query are instantiated, but the Company field is not instantiated. With the
MaxFetchDepth set to 2, Departments and their corresponding Companys are instanti-
ated for the Employee instances returned by the query.

Root instances

Root instances are parameter instances for retrieve, detachCopy, and refresh; result
instances for queries. Root instances for DetachAl1lOnCommit are defined explicitly by
the user via the FetchPlan property DetachmentRoots or DetachmentRootClass-
es. If not set explicitly, the detachment roots consist of the union of all root instances of
methods executed since the last commit or rollback.

Once set explicitly, the detachment roots will not be changed until commit, at which time
the detachment roots will be set to the empty collection.

Detachment roots and root classes are ignored for all Fet chPlans except those associated
directly with the PersistenceManager. Detachment root classes are never changed by
the JDO implementation; they are completely controlled by the user. Detachment root
classes is an empty Class[] when the PersistenceManager is first acquired from the
PersistenceManagerFactory.

Recursion-depth

For object models with bidirectional relationships or self-referencing relationships, it is
useful to limit the depth of the object graph retrieved through these relationships recur-
sively. The recursion-depth attribute of the field element is used for this purpose. The re-
cursion-depth for a relationship field specifies the number of times an instance of the same
class, subclass, or superclass can be fetched via traversing this field.

A value of -1 means that the recursion-depth is not limited by traversing this field. If a field
is defined in multiple fetch groups, the recursion-depth is the largest of the values speci-
fied, treating -1 as a very large positive number. If not specified in any fetch group or in
the base field definition, the default is 1.

For example, assume a class Directory with a field parent of type Directory and a
field children of type Set<Directory>, and assume the recursion-depth of the
parent field is set to -1 and the recursion-depth of the children field is set to 2. When
a query for a Directory is executed, all parents of the selected Directory instances will
be retrieved, and all of the parents” parents until a parent is found with a null parent. Ad-
ditionally, all children of the selected Directory will be retrieved and all children of the
children of the selected Directory.

The FetchPlan interface

Fetch groups are activated using methods on the interface FetchPlan. PersistenceM-
anager and Query have getFetchPlan () methods. When a Query is retrieved from a
PersistenceManager, its FetchPlan is initialized to the same settings as that of the
PersistenceManager. Subsequent modifications of the Query FetchPlan are not re-
flected in the FetchPlan of the PersistenceManager. When an Extent is created, the
FetchPlan of the PersistenceManager initializes the FetchPlan for the Extent.

Mutating FetchPlan methods return the Fet chPlan instance to allow method chaining.

package javax.jdo;

124 February 28, 2006

Java Data Objects 2.0

public interface FetchPlan {
String DEFAULT = “default”;
String ALL = “all”;

int FETCH_SIZE_GREEDY = -1
int FETCH_SIZE_OPTIMAL = 0;
int DETACH_LOAD_FIELDS = 1
int DETACH_UNLOAD_FIELDS = 2;

/** Add the fetchgroup to the set of active fetch groups. Duplicate
names will be removed.*/

FetchPlan addGroup (String fetchGroupName) ;

/** Remove the fetch group from the set active fetch groups. */
FetchPlan removeGroup (String fetchGroupName) ;

/** Remove all active groups, including the default fetch group. */
FetchPlan clearGroups() ;

/** Return an immutable Set of the names of all active fetch groups.
*/

Set getGroups|() ;

/** Set a Collection of group names to replace the current groups.
Duplicate names will be removed.*/

FetchPlan setGroups (Collection fetchGroupNames) ;

/** Set an array of group names to replace the current groups. Du-
plicate names will be removed.*/

FetchPlan setGroups (String[] fetchGroupNames) ;

/** Set a single group to replace the current groups. */
FetchPlan setGroup (String fetchGroupName) ;

/** Set the roots for DetachAllOnCommit */

FetchPlan setDetachmentRoots (Collection roots);

/** Get the roots for DetachAllOnCommit */

Collection getDetachmentRoots () ;

/** Set the roots for DetachAllOnCommit */

FetchPlan setDetachmentRootClasses(Class[] rootClasses) ;
/** Get the roots for DetachAllOnCommit */

Class[] getDetachmentRootClasses|() ;

/** Set the maximum fetch depth. */

FetchPlan setMaxFetchDepth(int fetchDepth) ;

/** Get the maximum fetch depth. */

int setMaxFetchDepth() ;

/** Set the fetch size for large result set support. */
FetchPlan setFetchSize(int fetchSize);

/** Return the fetch size; 0 if not set; -1 for greedy fetching. */

| JDO 2.0 125 February 28, 2006

Java Data Objects 2.0

JDO 2.0

int getFetchSize();

/** Set detachment options */

FetchPlan setDetachmentOptions (int options) ;
/** Return the detachment options */

int getDetachmentOptions() ;

The getGroups method returns a collection of names. After a call to clearGroups ()
this method returns an empty Set. It is legal to remove the default fetch group explicitly
via pm.getFetchPlan () .removeGroup ("default"), or to use setGroups () with
a collection that does not contain "default". This makes it possible to have only a given
fetch group active without the default fetch group. If no fetch groups are active then a Set
with no elements is returned. In this case, loading an instance might not result in loading
the default fetch group fields and the jdoPostLoad method will only be called if there is
an active fetch group that declares post-load="true".

The fetch size allows users to explicitly control the number of instances retrieved from
queries. A positive value is the number of result instances to be fetched. A value of
FETCH_SIZE_GREEDY indicates that all results should be obtained immediately. A value
of FETCH_SIZE_OPTIMAL indicates that the JDO implementation should try to optimize
the fetching of results.

Note that the graph and fields specified by a FetchPlan is strictly the union of all the ac-
tive fetch groups not based on any complicated set mathematics. So, if a field f1 is in fetch
groups A and B, and both A and B are added to the FetchPlan, and subsequently B is
removed from the active fetch groups and the instance is loaded, then the field f1 will be
loaded, because it is in fetch group A.

Examples:
pm = pmf.getPersistenceManager () ;

FetchPlan fp = pm.getFetchPlan() ;

fp.addGroup ("detail") .addGroup("list") ;

// prints [default, detail, list]
System.out.println (fp.getGroups()) ;

// refreshes fields in any of default+detail+list

pm.refresh (anInstance) ;

fp.clearGroups () ;
// prints []
System.out.println (fp.getGroups()) ;

pm.refresh(anInstance); // doesn’t do anything

fp.addGroup ("list") ;

// prints [list]

System.out.println (fp.getGroups()) ;
// refreshes fields in list only

pm.refresh(anInstance) ;

126 February 28, 2006

Java Data Objects 2.0

12.7.6

JDO 2.0

When an instance is loaded using getObjectById, a Query is executed, or an Extent
is iterated, the implementation may choose to use the active fetch groups to prefetch data.
If an instance being loaded does not have a fetch group with the same name as any of the
active groups, and the semantics of the method allow returning a hollow instance, then it
may be loaded as hollow. If it has more than one of the active groups then the union of
fields in all active groups is used.

Instances loaded through field navigation behave in the same way as for getObjectById
except that an additional fetch group may be specified for the field in the metadata using
the new "load-fetch-group" attribute. If present the load-fetch-group is considered ac-
tive just for the loading of the field. This can be used to load several fields together when
one of them is touched. The field touched is loaded even if it is not in the load-fetch-group.

For the refresh and retrieve methods, the implementation must ensure that only the
graph specified by the active fetch groups is refreshed or retrieved; i.e. these operations
will recursively refresh or retrieve the instances and fields in the graph covered by the ac-
tive fetch groups. The refreshed or retrieved graph must not contain extra instances but
extra fields may be refreshed for an instance in the graph.

Defining fetch groups
Fetch groups are only defined in the metadata for a class or interface.

<!ELEMENT fetch-group (extension*, (fetch-group|field|property)*,
extension*) >

<!ATTLIST fetch-group name CDATA #REQUIRED>

<!ATTLIST fetch-group post-load (true|false) #IMPLIED>
<!ATTLIST field recursion-depth CDATA #IMPLIED>
<!ATTLIST property recursion-depth CDATA #IMPLIED>

The post-1load attribute on the fetch-group element indicates whether the jdoPost-
Load callback will be made when the fetch group is loaded. It defaults to false, for all
fetch groups except the default fetch group, on which it defaults to t rue. The callback will
be called if any field of an instance is loaded when any fetch group is active that contains
the post-1oad attribute set to true.

The name attribute on a £ield element contained within a fetch-group element is the
name of field in the enclosing class, or a dot-separated expression identifying a field reach-
able from the class by navigating a reference, a collection, or a map. For maps of persis-
tence-capable classes "#key" or "#value" may be appended to the name of the map field to
navigate the key or value respectively (e.g. to include a field of the key class or value class
in the fetch group).

For collection and arrays of persistence-capable classes, "#element" may be appended to
the name of the field to navigate the element. This is optional; if omitted for collections and
arrays, #element is assumed.

Recursive fetch group references are controlled by the recursion-depth attribute on a
contained field or property element of a fetch-group. A recursion-depth of 0 will fetch
the whole graph of instances reachable from this field. The default is 1, meaning that only
the instance directly reachable from this field is fetched.

A contained fetch-group element indicates that the named group is to be included in
the group being defined. Nested fetch group elements are limited to only the name at-
tribute and no contained elements. That is, it is not permitted to nest entire fetch group

127 February 28, 2006

Java Data Objects 2.0

definitions. If there are two definitions for a reference, collection or map field (due to fetch
groups including other fetch groups) then the union of the fetch groups involved is used.
If one or more depths have been specified then the largest depth is used unless one of the
depths has not been specified (unlimited overrides other depth specifications).

public class Person {
private String name;
private Address address;

private Set children;

public class Address {
private String street;
private String city;

private Country country;

public class Country {
private String code;

private String name;

<class name="Person" ...>

<!-- name + address + country code -->
<fetch-group name="detail">
<fetch-group name="default"/>
<field name="address"/>
<field name="address.country.code"/>

</fetch-group>

<!-- name + address + country code + same for children -->
<fetch-group name="detail+children">

<fetch-group name="detail"/>

<field name="children"/>

</fetch-group>
<!-- name + address + country code + names of children -->

<fetch-group name="detail+children-names">

<fetch-group name="detail"/>

| JDO 2.0 128 February 28, 2006

Java Data Objects 2.0

<field name="children#element .name"/>

</fetch-group>

<!-- name + address + country code + list fg of children -->
<fetch-group name="detail+children-1list">

<fetch-group name="detail"/>

<field name="children" fetch-group="list"/>

</fetch-group>

</class>

Here is a map example:

public class Node {
private String name;

private Map edges; // Node -> EdgeWeight

public class EdgeWeight {

private int weight;

<class name="Node" ...>

<fetch-group name="neighbour-weights">
<field name="edges#key.name" />
<field name="edges#value"/>
</fetch-group>
<fetch-group name="neighbours">
<field name="edges"/>
</fetch-group>
<fetch-group name="whole-graph">
<field name="edges" fetch-depth="0"/>
</fetch-group>

</class>

12.8 Flushing instances
void flush();

| JDO 2.0 129 February 28, 2006

Java Data Objects 2.0

This method flushes all dirty, new, and deleted instances to the datastore. It has no effect
if a transaction is not active.

If a datastore transaction is active, this method synchronizes the cache with the datastore
and reports any exceptions.

If an optimistic transaction is active, this method obtains a datastore connection and syn-
chronizes the cache with the datastore using this connection. The connection obtained by
this method is held until the end of the transaction.

void checkConsistency () ;

This method validates the cache with the datastore. It has no effect if a transaction is not
active.

If a datastore transaction is active, this method verifies the consistency of instances in the
cache against the datastore. An implementation might flush instances as if) were called,
but it is not required to do so.

If an optimistic transaction is active, this method obtains a datastore connection and veri-
fies the consistency of the instances in the cache against the datastore. If any inconsisten-
cies are detected, a JDOOptimisticVerificationException is thrown. This
exception contains a nested JDOOptimisticVerificationException for each object
that failed the consistency check. No datastore resources acquired during the execution of
this method are held beyond the scope of this method.

129

Transaction completion

Transaction completion management is delegated to the associated Transaction in-
stance .

12.10

JDO 2.0

Multithreaded Synchronization

The application might require the PersistenceManager to synchronize internally to
avoid corruption of data structures due to multiple application threads. This synchroniza-
tion is not required when the flag Multithreadedis set to false.

void setMultithreaded (boolean flag);
boolean getMultithreaded() ;

NOTE: When the Multithreaded flag is set to true, there is a synchronization issue
with jdoFlags values READ_OK and READ_WRITE_OK. Due to out-of-order memory
writes, there is a chance that a value for a field in the default fetch group might be incorrect
(stale) when accessed by a thread that has not synchronized with the thread that set the
jdoFlags value. Therefore, it is recommended that a JDO implementation not use
READ_OK or READ_WRITE_OK for jdoFlags if Multithreaded is set to true.

The application may choose to perform its own synchronization, and indicate this to the
implementation by setting the Multithreaded flag to false. In this case, the JDO im-
plementation is not required to implement any additional synchronizations, although it is
permitted to do so.

130 February 28, 2006

Java Data Objects 2.0

12.11

User associated objects

The application might manage PersistenceManager instances by using an associated
object for bookkeeping purposes. These methods allow the user to manage the associated
object.

volid setUserObject (Object o);
Object getUserObject ();

The parameter is not inspected or used in any way by the JDO implementation.For appli-
cations where multiple users need to access their own user objects, the following methods
allow user objects to be stored and retrieved by key. The values are not examined by the
PersistenceManager.

There are no restrictions on values. Keys must not be null. For proper behavior, the keys
must be immutable (e.g. java.lang.String, java.lang.Integer, etc.) or the keys’
identity (to the extent that it modifies the behavior of equals and hashCode methods) must
not change while a user object is associated with the key. This behavior is not enforced by
the PersistenceManager.

Object putUserObject (Object key, Object value) ;

This method models the put method of Map. The current value associated with the key is
returned and replaced by the parameter value. If the parameter value is null, the imple-
mentation may remove the entry from the table of managed key/value pairs.

Object removeUserObject (Object key) ;

This method models the remove method of Map. The current value associated with the
key is returned and removed.

Object getUserObject (Object key);

This method models the get method of Map. The current value associated with the key is
returned. If the key is not found in the table, null is returned.

12.12

PersistenceManagerFactory

The application might need to get the PersistenceManagerFactory that created this
PersistenceManager. If the PersistenceManager was created using a construc-
tor, then this call returns null.

PersistenceManagerFactory getPersistenceManagerFactory () ; This
methos returns the PersistenceManagerFactory that created this PersistenceM-
anager.

12.13

JDO 2.0

Objectld class management

In order for the application to construct instances of the ObjectId class, there is a method
that returns the ObjectId class given the persistence capable class.

Class getObjectIdClass (Class pcClass);

This method returns the class of the object id for the given class. This method returns the
class specified by the application for persistence capable classes that use application (pri-
mary key) JDO identity. It returns the implementation-defined class for persistence-capa-
ble classes that use datastore identity. If the parameter class is not persistence-capable, or

131 February 28, 2006

Java Data Objects 2.0

the parameter isnull, null is returned. If the object-id class defined in the metadata for
the parameter class is abstract then null is returned.

If the implementation does not support application identity, and the class is defined in the
jdo metadata to use application identity, then null is returned.

Object newObjectIdInstance (Class pcClass, Object key);

This method returns an object id instance corresponding to the pcClass and key argu-
ments. A String argument might have been the result of executing toString on an ob-
ject id instance. The key argument is the value of the key field for single field identity.

This method is portable for datastore identity and application identity.

12.14

JDO 2.0

Sequence

The JDO metadata defines named sequence value object generators, or simply, sequences.
A sequence implements the javax.jdo.datastore. Sequence interface.

The behavior of the sequence with regard to transactions and rolling over maximum val-
ues is specified in the metadata.

Note that there is no portable way for a user-defined sequence to implement the Se-
quence interface. In particular, the getName method might not return the name of the se-
quence, and the transactional behavior of the sequence as specified by the user in metadata
might not be implemented. A future version of the specification might add a sequence fac-
tory spi to enable portable user-defined sequences.

The PersistenceManager provides a method to retrieve a Sequence by name.
Sequence getSequence (String name) ;
If the named sequence does not exist, JDOUserException is thrown.

The name is the scoped name of the sequence , which uses the standard Java package nam-
ing. For example, a sequence might be named “com.acme.hr.EmployeeSequence”.

package javax.jdo.datastore;

public interface Sequence {
String getName () ;

This method returns the fully qualified name of the Sequence.
Object next();

This method returns the next sequence value object. The sequence might be protected by
transactional semantics, in which case the sequence value object will be reused if the trans-
action in which the sequence value object was obtained rolls back.

void allocate(int additional) ;

This method is a hint to the implementation that the application needs the additional num-
ber of sequence value objects in short order. There is no externally visible behavior of this
method. It is used to potentially improve the efficiency of the algorithm of obtaining addi-
tional sequence value objects.

Object current();

This method returns the current sequence value object if it is available. It is intended to re-
turn a sequence value object previously used The implementation might choose to return
null for all cases or for any cases where a current sequence value object is not available.

long nextValue() ;

132 February 28, 2006

Java Data Objects 2.0

This method returns the next sequence value as a 1ong if it is available and able to be con-
verted to a number. It is equivalent to ((Long)next ()) .longValue() .

long currentValue() ;

This method returns the current sequence value as a long if it is available and able to be
converted to a number. It is equivalent to ((Long) current ()) .longValue() .

}

12.15

JDO 2.0

Life-cycle callbacks

In order to minimize the impact on domain classes, the instance callbacks can be defined
to use a life-cycle listener pattern instead of having the domain class implement the call-
back interface(s).

package javax.jdo.listener;

public interface InstanceLifecycleListener {

}

public interface CreateLifecycleListener
extends InstanceLifecycleListener ({

void postCreate(InstancelLifecycleEvent event) ;

}

This method is called whenever a persistent instance is created, during makePersis-
tent. Itis called after the instance transitions to persistent-new.

package javax.jdo.listener;

public interface LoadLifecyclelListener
extends InstanceLifecycleListener ({

void postLoad(InstancelLifecycleEvent event) ;

}

This method is called whenever a persistent instance is loaded. It is called after the
jdoPostLoad method is invoked on the instance.

package javax.jdo.listener;

public interface StoreLifecycleListener
extends InstanceLifecyclelListener {

void preStore(InstancelLifecycleEvent event) ;

}

This method is called whenever a persistent instance is stored, for example during flush or
commit. It is called before the jdoPreStore method is invoked on the instance. An object
identity for a persistent-new instance might not have been assigned to the instance when
this callback is invoked.

void postStore(InstanceLifecycleEvent event) ;
}

This method is called whenever a persistent instance is stored, for example during flush or
commit. It is called after the jdoPreStore method is invoked on the instance. An object
identity for a persistent-new instance must have been assigned to the instance when this
callback is invoked.

133 February 28, 2006

Java Data Objects 2.0

JDO 2.0

package javax.jdo.listener;

public interface ClearLifecycleListener
extends InstanceLifecyclelListener {

void preClear (InstancelLifecycleEvent event) ;

}

This method is called whenever a persistent instance is cleared, for example during af-
terCompletion.Itis called before the jdoPreClear method is invoked on the instance.

void postClear (InstanceLifecycleEvent event) ;

This method is called whenever a persistent instance is cleared, for example during af-
terCompletion. It is called after the jdoPreClear method is invoked on the instance
and the fields have been cleared by the JDO implementation.

package javax.jdo.listener;

public interface DeleteLifecycleListener
extends InstanceLifecycleListener ({

void preDelete(InstanceLifecycleEvent event) ;

This method is called whenever a persistent instance is deleted, during deletePersis-
tent. It is called before the state transition and before the jdoPreDelete method is in-
voked on the instance.

void postDelete(InstancelLifecycleEvent event) ;
}

This method is called whenever a persistent instance is deleted, during deletePersis-
tent. Itis called after the jdoPreDelete method is invoked on the instance and after the
state transition.

package javax.jdo.listener;

public interface DirtyLifecycleListener
extends InstanceLifecycleListener ({

void preDirty (InstancelLifecycleEvent event) ;

}

This method is called whenever a persistent clean instance is first made dirty, during an
operation that modifies the value of a persistent or transactional field. It is called before the
field value is changed. During this method, the instance responds false to isDirty.
During this method, fields in the source instance and others might be changed, but this
method will only be invoked once until the instance is no longer dirty.

void postDirty (InstanceLifecycleEvent event) ;

}

This method is called whenever a persistent clean instance is first made dirty, during an
operation that modifies the value of a persistent or transactional field. It is called after the
field value was changed. During this method, the instance responds true to isDirty.
During this method, fields in the source instance and others might be changed, but this
method will only be invoked once until the instance is no longer dirty.

package javax.jdo.listener;
public interface DetachLifecycleListener

extends InstanceLifecycleListener ({

134 February 28, 2006

Java Data Objects 2.0

JDO 2.0

void preDetach(InstanceLifecycleEvent event) ;

}

This method is called before a persistent instance is copied for detachment. It is called be-
fore the jdoPreDetach callback.

void postDetach (InstancelLifecycleEvent event) ;
}

This method is called whenever a persistent instance is copied for detachment. The source
instance is the detached copy; the target instance is the persistent instance. It is called after
the jdoPostDetach callback on the detached copy

package javax.jdo.listener;

public interface AttachLifecycleListener
extends InstanceLifecycleListener {

void preAttach(InstanceLifecycleEvent event) ;

}

This method is called before a detached instance is attached, via the makePersistent
method. The source instance is the detached instance. This method is called before the cor-
responding jdoPreAttach on the detached instance.

void postAttach (InstancelLifecycleEvent event) ;

}

This method is called after a detached instance is attached. The source instance is the cor-
responding persistent instance in the cache; the target instance is the detached instance.
This method is called after the corresponding jdoPostAttach on the persistent instance.
InstanceLifecycleEvent

This class is provided as part of the javax.jdo.listener package.

Note that although InstanceLifecycleEvent inherits Serializable interface from
EventObject, it is not intended to be Serializable. Appropriate serialization meth-
ods are implemented to throw NotSerializableException.

package javax.jdo.listener;

public class InstancelifecycleEvent
extends java.util.EventObject {

static final int CREATE = O0;

static final int LOAD = 1;

static final int STORE = 2;

static final int CLEAR = 3;

static final int DELETE = 4;

static final int DIRTY = 5;

static final int DETACH

6;
static final int ATTACH 7;

int getEventType() ;
This method returns the event type that triggered the event.

InstanceLifecycleEvent (int type, Object source);

135 February 28, 2006

Java Data Objects 2.0

This constructor creates an instance with the type, and source object.
InstanceLifecycleEvent (int type, Object source, Object target);
This constructor creates an instance with the type, source, and target objects.

Object getSource();

This method returns the object for which the event was triggered. This method is inherited
from the EventObject class.

Object getTarget () ;

This method returns the “other” object associated with the event. Specifically, the target
object is the detached instance in the case of postAttach, and the persistent instance in
the case of postDetach. The target must be null for all other cases.

Object getPersistentInstance() ;

This method returns the persistent instance for which the event was triggered. This meth-
od is a convenience method that returns the source or target depending on the event.

Object getDetachedInstance() ;

This method returns the detached instance for which the event was triggered. This method
is a convenience method that returns the source or target depending on the event.

}

void addInstancelLifecyclelListener (InstancelLifecyclelListener lis-
tener, Class[] classes);

This PersistenceManager method adds the listener to the list of lifecycle event listen-
ers. The classes parameter identifies all of the classes of interest. If the classes parameter is
specified as null, events for all persistent classes and interfaces are generated. If the class-
es specified have persistence-capable subclasses, all such subclasses are registered implic-
itly.

The listener will be called for each event for which it implements the corresponding listen-
er interface.

void removeInstancelLifecyclelListener (InstanceLifecycleListener
listener) ;

This PersistenceManager method removes the listener from the list of event listeners.

12.16

JDO 2.0

Access to internal datastore connection

In order for the application to perform some datastore-specific functions, such as to exe-
cute a query that is not directly supported by JDO, applications might need access to the
datastore connection used by the JDO implementation. This method returns a wrapped
connection that can be cast to the appropriate datastore connection and used by the appli-
cation.

The capability to get the datastore connection is indicated by the optional feature string
javax.jdo.option.GetDataStoreConnection.

package javax.jdo.datastore;
public interface JDOConnection {
Object getNativeConnection() ;

void close();

136 February 28, 2006

Java Data Objects 2.0

JDOConnection getDataStoreConnection() ;

If this method is called while a datastore transaction is active, the object returned will be
enlisted in the current transaction. If called in an optimistic transaction before flush has
been called, or outside an active transaction, the object returned will not be enlisted in any
transaction.

The object must be returned to the JDO implementation prior to calling any JDO method
or performing any action on any persistent instance that might require the JDO implemen-
tation to use a connection. If the object has not been returned and the JDO implementation
needs a connection, a JDOUserException is thrown. The object is returned to the JDO
implementation by calling the standard method on the object.

For JDOR implementations

* the JDOConnection obtained by getDataStoreConnection implements
java.sgl.Connection.

* The application returns a JDBC Connection to the JDO implementation by calling
its close () method.

SQL Portability

For portability, a JDBC-based JDO implementation will return an instance that imple-
ments java.sqgl.Connection. The instance will throw an exception for any of the fol-
lowing method calls: commit, getMetaData, releaseSavepoint, rollback, setAutoCommit,
setCatalog, setHoldability, setReadOnly, setSavepoint, setTransactionIsolation, and set-
TypeMap.

| JDO 2.0 137 February 28, 2006

Java Data Objects 2.0

13

Transactions and Connections

This chapter describes the interactions among JDO instances, JDO Persistence Managers,
datastore transactions, and datastore connections.

Operations on persistent JDO instances at the user’s choice might be performed in the con-
text of a transaction. That is, the view of data in the datastore is transactionally consistent,
according to the standard definition of ACID transactions:

* atomic --within a transaction, changes to values in JDO instances are all executed

* consistent -- changes to values in JDO instances are consistent with changes to
other values in the same JDO instance

* isolated -- changes to values in JDO instances are isolated from changes to the
same JDO instances in different transactions

* durable -- changes to values in JDO instances survive the end of the VM in which

The JDO transaction and connection contracts have the following goals.

¢ JDO implementations might span a range of small, embedded systems to large,

¢ Transaction management might be entirely hidden from class developers and
application components, or might be explicitly exposed to class and application

Architecture: PersistenceManager, Transactions, and Connections

An instance of an object supporting the PersistenceManager interface represents a
single user’s view of persistent data, including cached persistent instances across multiple

There is a one-to-one relationship between the PersistenceManager and the Trans-
action. The Transaction interface is isolated because of separation of concerns. The
methods could have been added to the PersistenceManager interface.

The javax.jdo.Transaction interface provides for management of transaction op-
tions and, in the non-managed environment, for transaction completion. It is similar in
functionality to javax.transaction.UserTransaction. That is, it contains begin,
commit, and rollback methods used to delimit transactions.

13.1 Overview

or none is executed

the changes were made
13.2 Goals

enterprise systems

component developers.
13.3

serial datastore transactions.
JDO 2.0

138 February 28, 2006

Java Data Objects 2.0

JDO 2.0

Connection Management Scenarios

* single connection: In the simplest case, the PersistenceManager directly connects
to the datastore and manages transactional data. In this case, there is no reason to
expose any Connection properties other than those needed to identify the user and
the data source. During transaction processing, the Connection will be used to
satisfy data read, write, and transaction completion requests from the
PersistenceManager.

* connection pooling: In a slightly more complex situation, the
PersistenceManagerFactory creates multiple PersistenceManager
instances which use connection pooling to reduce resource consumption. The
PersistenceManagers are used in single datastore transactions. In this case, a
pooling connection manager is a separate component used by the
PersistenceManager instances to effect the pooling of connections. The
PersistenceManagerFactory will include a reference to the connection
pooling component, either as a JNDI name or as an object reference. The
connection pooling component is separately configured, and the
PersistenceManagerFactory simply needs to be configured to use it.

o distributed transactions: An even more complex case is where the
PersistenceManager instances need to use connections that are involved in
distributed transactions. This case requires coordination with a Transaction
Manager, and exposure of the XAResource from the datastore Connection. JDO
does not specify how the application coordinates transactions among the
PersistenceManager and the Transaction Manager.

* managed connections: The last case to consider is the managed environment,
where the PersistenceManagerFactory uses a datastore Connection whose
transaction completion is managed by the application server. This case requires
the datastore Connection to implement the J2EE Connector Architecture and the
PersistenceManager to use the architected interfaces to obtain a reference to a
Connection.

The interface between the JDO implementation and the Connection component is not
specified by JDO. In the non-managed environment, transaction completion is handled by
the Connection managed internally by the Transaction. In the managed environment,
transaction completion is handled by the XAResource associated with the Connection.
In both cases, the PersistenceManager implementation is responsible for setting up
the appropriate interface to the Connection infrastructure.

Native Connection Management

If the JDO implementation supplies its own resource adapter implementation, this is
termed native connection management. For use in a managed environment, the associa-
tion between Transaction and Connection must be established using the J2EE Connec-
tor Architecture [see Appendix A reference 4]. This is done by the JDO implementation
implementing the javax.resource.ManagedConnectionFactory interface.

When used in a non-managed environment, with non-distributed transaction manage-
ment (local transactions) the application can use the PersistenceManagerFactory.
But if distributed transaction management is required, the application needs to supply an
implementation of javax.resource.ManagedConnectionFactory interface. This
interface provides the infrastructure to enlist the XAResource with the Transaction Man-
ager used in the application.

139 February 28, 2006

Java Data Objects 2.0

Non-native Connection Management

If the JDO implementation uses a third party Connection interface, then it can be used in
a managed environment only if the third party Connection supports the J2EE Connector
Architecture. In this case, the PersistenceManagerFactory property Connec-
tionFactory is used to allow the application server to manage connections.

In the non-managed case, non-distributed transaction management can use the Persis-
tenceManagerFactory, as above. But if distributed transaction management is re-
quired, the application needs to supply an implementation of
javax.resource.ConnectionManager interface to be used with the application’s
implementation of the Connection management.

Optimistic Transactions

There are two types of transaction management strategies supported by JDO: “datastore
transaction management”; and “optimistic transaction management”.

With datastore transaction management, all operations performed by the application on
persistent data are done using a datastore transaction. This means that between the first
data access until the commit, there is an active datastore transaction.

With optimistic transaction management, operations performed by the application on per-
sistent data outside a transaction or before commit are done using a short local datastore
transaction. During flush, a datastore transaction is used for the update operations, veri-
fying that the proposed changes do not conflict with a parallel update by a different trans-
action.

Optimistic transaction management is specified by the Optimistic setting on Trans-
action.

[Application \

Transaction
Completion
Methods

JDO 2.0

Transaction Option
Methods

Figure 16.0 Transactions and Connections

Transaction
Manager

JDO PersistenceManager

XAResource

Connection

XAResource

Connection

140 February 28, 2006

Java Data Objects 2.0

13.4

1341

13.4.2

JDO 2.0

Interface Transaction

package javax.jdo;

public interface Transaction {
PersistenceManager

PersistenceManager getPersistenceManager () ;

This method returns the PersistenceManager associated with this Transaction in-
stance.

boolean isActive ();

This method tells whether there is an active transaction. The transaction might be either a
local transaction or a distributed transaction. If the transaction is local, then a return value
of true means that the begin method was executed and neither commit nor rollback
has been executed. If the transaction is managed by XAResource witha Transaction-
Manager, then this method indicates whether there is a distributed transaction active.

This method returns true after the transaction has been started, until before the after-
Completion synchronization method is called. The method returns false during af-
terCompletion.
Transaction options

Transaction options are valid for both managed and non-managed environments. Flags
are durable until changed explicitly by set methods. They are not changed by transaction
demarcation methods.

If any of the set methods is called during commit or rollback processing (within the be-
foreCompletion synchronization method), a JDOUserException is thrown. These
methods can be called during afterCompletion processing.

If an implementation does not support the option, then an attempt to set the flag to an un-
supported value will throw JDOUnsupportedOptionException.

Nontransactional access to persistent values

boolean getNontransactionalRead () ;

void setNontransactionalRead (boolean flag);

These methods access the flag that allows persistent instances to be read outside a transac-
tion. If this flag is set to true, then queries and read access (including navigation) are al-
lowed without an active transaction. If this flag is set to false, then queries and non-
primary key field read access (including navigation) outside an active transaction throw a
JDOUserException.

boolean getNontransactionalWrite () ;
void setNontransactionalWrite (boolean flag);

These methods access the flag that allows non-transactional instances to be written in the
cache. If this flag is set to true, then updates to non-transactional instances are allowed
without an active transaction. If this flag is set to false, then updates to non-transactional
instances outside an active transaction throw a JDOUserException.

Optimistic concurrency control

If this flag is set to true, then optimistic concurrency is used for managing transactions.

141 February 28, 2006

Java Data Objects 2.0

13.4.3

JDO 2.0

boolean getOptimistic () ;
The optimistic setting currently active is returned.
void setOptimistic (boolean flag);

The optimistic setting passed replaces the optimistic setting currently active.

Retain values at transaction commit

If this flag is set to true, then eviction of transactional persistent instances does not take
place at transaction commit. If this flag is set to false, then eviction of transactional per-
sistent instances takes place at transaction commit.

This flag is only used if the PersistenceManager DetachAllOnCommit flagis false.
boolean getRetainValues () ;

The retainvalues setting currently active is returned.

void setRetainValues (boolean flag);

The retainValues setting passed replaces the retainValues setting currently active.

Restore values at transaction rollback

If this flag is set to true, then restoration of transactional persistent instances takes place
at transaction rollback. If this flag is set to false, then eviction of transactional persistent
instances takes place at transaction rollback.

boolean getRestoreValues () ;
The restorevalues setting currently active is returned.
void setRestoreValues (boolean flag);

The restoreValues setting passed replaces the restoreValues setting currently ac-
tive.

Synchronization

The Transaction instance participates in synchronization in two ways: as a supplier of
synchronization callbacks, and as a consumer of callbacks. As a supplier of callbacks, a
user can register with the Transaction instance to be notified at transaction completion.
As a consumer of callbacks, the Transaction implementation will use the proprietary
interfaces of the managed environment to be notified of externally-initiated transaction
completion events. In a managed environment, this notification is used to cause flushing
of changes to the datastore as part of transaction completion.

For this latter purpose, the JDO implementation class might implement javax. trans-
action.Synchronization or might use a delegate to be notified.

Synchronization is supported for both managed and non-managed environments. A Syn-
chronization instance registered with the Transaction remains registered until
changed explicitly by another set Synchronization.

Only one Synchronization instance can be registered with the Transaction. If the
application requires more than one instance to receive synchronization callbacks, then the
application instance is responsible for managing them, and forwarding callbacks to them.

void setSynchronization (javax.transaction.Synchronization
sync) ;

The Synchronization instance is registered with the Transaction for transaction
completion notifications. Any Synchronization instance already registered will be re-

142 February 28, 2006

Java Data Objects 2.0

13.4.4

JDO 2.0

placed. If the parameter is null, then no instance will be notified. If this method is called
during commit processing (within the user’s beforeCompletion or afterComple-
tion method), a JDOUserException is thrown.

The two Synchronization methods allow the application control over the environ-
ment in which the transaction completion executes (for example, validate the state of the
cache before completion) and to control the cache disposition once the transaction com-
pletes (for example, to change persistent instances to persistent-nontransactional state).

The beforeCompletion method will be called during the behavior specified for the
transaction completion method commit. The beforeCompletion method will not be
called before rollback.

During transaction completion, the environment calls the jdo implementation’s before-
Completion method, which in turn calls the user’s beforeCompletion method reg-
istered by the set Synchronization method.

During the user’s beforeCompletion method, fields in persistent and transactional in-
stances might be changed, persistent instances might be deleted, and instances might be
made persistent. These changes will be reflected in the current transaction.

After the user’s beforeCompletion method completes, the jdo implementation flushes
the cache to the datastore. During flush, life cycle methods declared in the persistence-ca-
pable classes are called back, as well as methods on instances registered with the Persis-
tenceManager via addInstancelLifecyclelListener.

After transaction completion, the environment calls the jdo implementation’s afterCom-
pletion method, which performs state transitions of the instances in the cache. During
these state transitions, life cycle methods declared in the persistence-capable classes are
called back, as well as methods on instances registered with the PersistenceManager
via addInstancelLifecycleListener. Subsequently, the jdo implementation calls the
user’s afterCompletion method registered by the set Synchronization method.
The parameter for the afterCompletion(int status) method will be either jav-
ax.transaction.Status.STATUS_COMMITTED or javax.transaction.Sta-
tus.STATUS_ROLLEDBACK.

javax.transaction.Synchronization getSynchronization () ;

This method returns the Synchronization currently registered.

Transaction demarcation

If multiple parallel transactions are required, then multiple PersistenceManager in-
stances must be used. If distributed transactions are required, then the Connector Archi-
tecture is used to coordinate transactions among the JDO PersistenceManagers.

Non-managed environment

In a non-managed environment, with a single JDO PersistenceManager per applica-
tion, there is a Transaction instance representing a local transaction associated with the
PersistenceManager instance.

void begin() ;
void commit () ;
void rollback() ;

The begin, commit, and rollback methods can be used only in a non-managed envi-
ronment, or in a managed environment with Bean Managed Transactions. If one of these

143 February 28, 2006

Java Data Objects 2.0

13.4.5

JDO 2.0

methods is executed in a managed environment with Container Managed Transactions, a
JDOUserException is thrown.

If commit or rollback is called when a transaction is not active, JDOUserException is
thrown. If begin is called when a transction is active, JDOUserException is thrown.

The commi t method performs the following operations:

e calls the beforeCompletion method of the Synchronization instance
registered with the Transaction;

¢ flushes dirty persistent instances;
* notifies the underlying datastore to commit the transaction;
* transitions persistent instances according to the life cycle specification;

e calls the afterCompletion method of the Synchronization instance
registered with the Transaction with the results of the datastore commit
operation.

The rollback method performs the following operations:
¢ rolls back changes made in this transaction from the datastore;
* transitions persistent instances according to the life cycle specification;

e calls the afterCompletion method of the Synchronization instance
registered with the Transaction.

Managed environment

In a managed environment, there is either a user transaction or a local transaction associ-
ated with the PersistenceManager instance when executing method calls on JDO in-
stances or on the PersistenceManager. Which of the two types of transactions is
active is a policy issue for the managed environment.

If datastore transaction management is being used with the PersistenceManager in-
stance, and a Connection to the datastore is required during execution of the Persis-
tenceManager or JDO instance method, then the PersistenceManager will
dynamically acquire a Connection. The call to acquire the Connection will be made with
the calling thread in the appropriate transactional context, and the Connection acquired
will be in the proper datastore transaction.

If optimistic transaction management is being used with the PersistenceManager in-
stance, and a Connection to the datastore is required during execution of an instance meth-
od or a non-completion PersistenceManager method, then the
PersistenceManager will use a local transaction Connection.

RollbackOnly

At times, a component needs to mark a transaction as failed even though that component
is not authorized to complete the transaction. In order to mark the transaction as unsuc-
cessful, and to determine if a transaction has been so marked, two methods are used:

void setRollbackOnly () ;
boolean getRollbackOnly () ;

Either the user application or the JDO implementation may call setRollbackOnly.
There is no way for the application to determine explicitly which component called the
method.

144 February 28, 2006

Java Data Objects 2.0

Once a transaction has been marked for rollback via setRollbackOnly, the commit
method will always fail with JDOFatalDataStoreException. The JDO implementa-
tion must not try to make any changes to the database during commit when the transaction
has been marked for rollback.

When a transaction is not active, and after a transaction is begun, getRollbackOnly
will return false. Once setRollbackOnly has been called, it will return true until
commit or rollback is called.

13.5

JDO 2.0

Optimistic transaction management

Optimistic transactions are an optional feature of a JDO implementation. They are useful
when there are long-running transactions that rarely affect the same instances, and there-
fore the datastore will exhibit better performance by deferring datastore exclusion on
modified instances until commit.

In the following discussion, “transactional datastore context” refers to the transaction con-
text of the underlying datastore, while “transaction”, “datastore transaction”, and “opti-
mistic transaction” refer to the JDO transaction concepts.

With datastore transactions, persistent instances accessed within the scope of an active
transaction are guaranteed to be associated with the transactional datastore context. With
optimistic transactions, persistent instances accessed within the scope of an active transac-
tion are not associated with the transactional datastore context; the only time any instances
are associated with the transactional datastore context is during commit.

With optimistic transactions, instances queried or read from the datastore will not be
transactional unless they are modified, deleted, or marked by the application as transac-
tional. At commit time, the JDO implementation:

e establishes a transactional datastore context in which verification, insert, delete,
and updates will take place.

e calls the beforeCompletion method of the Synchronization instance
registered with the Transaction;

¢ verifies unmodified instances that have been made transactional, to ensure that the
state in the datastore is the same as the instance used in the transaction [this is done
using a JDO implementation-specific algorithm];

¢ verifies modified and deleted instances during flushing to the datastore, to ensure
that the state in the datastore is the same as the before image of the instance that
was modified or deleted by the transaction [this is done using a JDO
implementation-specific algorithm]

o If any instance fails the verification, a
JDOOptimisticVerificationException is thrown which contains an
array of JDOOptimisticVerificationException, one for each instance
that failed the verification. The optimistic transaction is failed, and the transaction
is rolled back. The definition of “changed instance” is a JDO implementation
choice, but it is required that a field that has been changed to different values in
different transactions results in one of the transactions failing.

e if verification succeeds, notifies the underlying datastore to commit the
transaction;

145 February 28, 2006

Java Data Objects 2.0

* transitions persistent instances according to the life cycle specification, based on
whether the transaction succeeds and the setting of the RetainValues and
RestoreValues flags;

e calls the afterCompletion method of the Synchronization instance
registered with the Transaction with the results of the commit operation.

Details of the state transitions of persistent instances in optimistic transactions may be
found in section 5.8.

| JDO 2.0 146 February 28, 2006

Java Data Objects 2.0

14

Query

This chapter specifies the query contract between an application component and the JDO
PersistenceManager.

The query facility consists of two parts: the query API, and the query language. This chap-

ter specifies the query language “JDOQL”, and includes conventions for the use of “SQL”
as the language for JDO implementations using a relational store.

An application component requires access to JDO instances so it can invoke specific behav-
ior on those instances. From a JDO instance, it might navigate to other associated instances,
thereby operating on an application-specific closure of instances.

However, getting to the first JDO instance is a bootstrap issue. There are three ways to get
an instance from JDO. First, if the users have or can construct a valid ObjectId, then they
can get an instance via the persistence manager’s getObjectById method. Second, us-
ers can iterate a class extent by calling getExtent. Third, the JDO Query interface pro-
vides the ability to acquire access to JDO instances from a particular JDO persistence
manager based on search criteria specified by the application.

The persistent manager instance is a factory for query instances, and queries are executed
in the context of the persistent manager instance.

The actual query execution might be performed by the JDO PersistenceManager or
might be delegated by the JDO PersistenceManager toits datastore. The actual query
executed thus might be implemented in a very different language from Java, and might be
optimized to take advantage of particular query language implementations.

For this reason, methods in the query filter have semantics possibly different from those

The JDO Query interface has the following goals:

* Query language neutrality. The underlying query language might be a relational
query language such as SQL; an object database query language such as OQL; or
a specialized API to a hierarchical database or mainframe EIS system.

¢ Optimization to specific query language. The Query interface must be capable of
optimizations; therefore, the interface must have enough user-specified
information to allow for the JDO implementation to exploit data source specific

¢ Accommodation of multi-tier architectures. Queries might be executed entirely in
memory, or might be delegated to a back end query engine. The JDO Query
interface must provide for both types of query execution strategies.

14.1 Overview
in the Java VM.
14.2 Goals
query features.
JDO 2.0

147 February 28, 2006

Java Data Objects 2.0

* Large result set support. Queries might return massive numbers of JDO instances
that match the query. The JDO Query architecture must provide for processing
the results within the resource constraints of the execution environment.

¢ Compiled query support. Parsing queries may be resource-intensive, and in many
applications can be done during application development or deployment, prior to
execution time. The query interface allows for compiling queries and binding run-
time parameters to the bound queries for execution.

* Deletion by query. Deleting multiple instances in the datastore can be done
efficiently if specified as a query method instead of instantiating all persistent
instances and calling the deletePersistent method on them.

14.3

JDO 2.0

Architecture: Query

The JDO PersistenceManager instance is a factory for JDO Query instances, which
implement the JDO Query interface. Multiple JDO Query instances might be active si-
multaneously in the same JDO PersistenceManager instance. Multiple queries might
be executed simultaneously by different threads, but the implementation might choose to
execute them serially. In either case, the execution must be thread safe.

There are three required elements in any query:

¢ the class of the candidate instances. The class is used to scope the names in the
query filter. All of the candidate instances are of this class or a subclass of this class.
If the class is not explicitly passed to the query, it is obtained from the Extent.

¢ the collection of candidate JDO instances. The collection of candidate instances is
either a java.util.Collection, or an Extent of instances in the datastore.
Instances that are not of the required class or subclass will be silently ignored. The
Collection might be a previous query result, allowing for subqueries. If the
collection is not explicitly passed to the query, then it is obtained from the class.

¢ the query filter. The query filter is a Java boolean expression that tells whether
instances in the candidate collection are to be returned in the result. If not
specified, the filter defaults to true.

Other elements in queries include:

* parameter declarations. The parameter declaration is a String containing one or
more query parameter declarations separated with commas. It follows the syntax
for formal parameters in the Java language. Each parameter named in the
parameter declaration must be bound to a value when the query is executed.

¢ parameter values to bind to parameters. Values are specified as Java Objects,
and might include simple wrapper types or more complex object types. The values
are passed to the execute methods and are not preserved after a query executes.

¢ variable declarations: Variables might be used in the filter, and these variables
must be declared with their type. The variable declaration is a St ring containing
one or more variable declarations. Each declaration consists of a type and a
variable name, with declarations separated by a semicolon if there are two or more
declarations. It is similar to the syntax for local variables in the Java language.

148 February 28, 2006

Java Data Objects 2.0

* import statements: Parameters and variables might come from a different class
from the candidate class, and the names might need to be declared in an import
statement to eliminate ambiguity. Import statements are specified as a String
with semicolon-separated statements. The syntax is the same as in the Java
language import statement.

* ordering specification. The ordering specification includes a list of expressions
with the ascending/descending indicator. To be portable, the expression’s type
must be one of:

¢ primitive types except boolean;
* wrapper types except Boolean;
e BigDecimal;
e BigInteger;
e String;
* Date.
¢ result specification. The application might want to get results from a query that are
not instances of the candidate class. The results might be fields of persistent

instances, instances of classes other than the candidate class, or aggregates of
fields.

¢ grouping specification. Aggregates are most useful when the application can
specify the result field by which to group the results.

¢ uniqueness. The application can specify that the result of a query is unique, and
therefore a single value instead of a Collection should be returned from the

query.
¢ result class. The application may have a user-defined class that best represents the

results of a query. In this case, the application can specify that instances of this
class should be returned.

¢ limiting the size of the results. The application might want to limit the number of
instances returned by the query, and might want to skip over some number of
instances that might have been returned previously.

The class implementing the Query interface must be serializable. The serialized fields in-
clude the candidate class, the filter, parameter declarations, variable declarations, imports,
ordering specification, uniqueness, result specification, grouping specification, and result
class. The candidate collection, limits on size, and number of skipped instances are not se-
rialized. If a serialized instance is restored, it loses its association with its former Persis-
tenceManager.

144

JDO 2.0

Namespaces in queries

The query namespace is modeled after methods in Java:
* setClass corresponds to the class definition
¢ declareParameters corresponds to formal parameters of a method
¢ declareVariables corresponds to local variables of a method

* setFilter, setGrouping, setOrdering, and setResult correspond to
the method body and do not introduce names to the namespace

There are two namespaces in queries. Type names have their own namespace that is sep-
arate from the namespace for fields, variables and parameters.

149 February 28, 2006

Java Data Objects 2.0

Keywords

Keywords must not be used as package names, class names, parameter names, or variable
names in queries. Keywords are permitted as field names only if they are on the right side
of the “.” in field access expressions as defined in the Java Language Specification second
edition, section 15.11. Keywords include the Java language keywords and the JDOQL key-
words. Java keywords are as defined in the Java language specification section 3.9, plus the
boolean literals true and false, and the null literal. JDOQL keywords are the following;:

select, SELECT, unique, UNIQUE, distinct, DISTINCT, avg, AVG, min, MIN, max, MAX,
count, COUNT, sum, SUM, as, AS, into, INTO, from, FROM, exclude, EXCLUDE, sub-
classes, SUBCLASSES, where, WHERE, order, ORDER, by, BY, ascending, ASCENDING,
asc, ASC, descending, DESCENDING, desc, DESC, group, GROUP, having, HAVING, pa-
rameters, PARAMETERS, variables, VARIABLES, range, RANGE.

The method setClass introduces the name of the candidate class in the type namespace.
The method declareImports introduces the names of the imported class or interface
types in the type namespace. When used (e.g. in a parameter declaration, cast expression,
etc.) a type name must be the name of the candidate class, the name of a class or interface
imported by the parameter to declareImports, denote a class or interface from the
same package as the candidate class, or must be declared by exactly one type-import-on-
demand declaration (“import <package>.*;”).Itis valid to specify the same import
multiple times.

The names of the public types declared in the packages java.langand javax. jdo are
automatically imported as if the declaration “import java.lang.*; import jav-
ax.jdo.*;” appeared in declareImports. Itis a JDOQL-compile time error (report-
ed during compile or execute methods) if a used type name is declared by more than
one type-import-on-demand declaration.

The method setClass also introduces the names of the candidate class fields.

The method declareParameters introduces the names of the parameters. A name in
the filter preceded by “:” has the same effect. A parameter name hides the name of a can-
didate class field if equal. Parameter names must be unique.

The method declareVariables introduces the names of variables. A name introduced
by declarevVariables hides the name of a candidate class field if equal. Variable
names must be unique and must not conflict with parameter names. A name in the filter
that is not a parameter name or a field name is implicitly a variable name.

A hidden field may be accessed using the this qualifier: this.fieldName.

14.5

JDO 2.0

Query Factory in PersistenceManager interface

The PersistenceManager interface contains Query factory methods.
Query newQuery () ;

Construct a new empty query instance.

Query newQuery (Object query) ;

Construct a new query instance from another query instance. JDO implementations must
support a serialized /restored Query instance from the same JDO vendor but a different
execution environment, a query instance currently bound to the same PersistenceM-
anager, and a query instance currently bound to a PersistenceManager from the
same JDO vendor. Any of the elements Class, QueryString, IgnoreCache flag, Result, Re-
sultClass, Import declarations, Variable declarations, Parameter declarations, Grouping,

150 February 28, 2006

Java Data Objects 2.0

JDO 2.0

and Ordering from the parameter Query are copied to the new Query instance, but a can-
didate Collection or Extent element is discarded.

Query newQuery (String queryString) ;

Construct a new query instance using the specified String as the single-string repre-
sentation of the query [see section 14.6.13].

Query newQuery (String language, Object query) ;

Construct a new query instance using the specified language and the specified query. The
query instance will be of a class defined by the query language. The language parameter
for the JDO Query language as herein documented is “javax.jdo.query.JDOQL”. In
this case, the parameter is a String representing the single-string version of the query
[see section 14.6.13].

For use with SQL, the language parameter is “javax.jdo.query.SQL” and the query
parameter is a String containing the SQL query [see section 14.7]. Other languages’ pa-
rameter is not specified.

Query newQuery (Class cls);
Construct a new query instance with the candidate class specified.
Query newQuery (Extent cln);

Construct a new query instance with the candidate Extent specified; the candidate class
is taken from the Extent.

Query newQuery (Class cls, Collection cln);

Construct a new query instance with the candidate class and candidate Collection
specified.

Query newQuery (Class cls, String queryString) ;

Construct a new query instance with the candidate class and query string specified. The

query string parameter might be the filter or the single string representing the query [see
section 14.6.13].

Query newQuery (Class cls, Collection cln, String queryString) ;

Construct a query instance with the candidate class, the candidate Collection, and que-
ry string specified.The query string parameter might be the filter or the single string rep-
resenting the query [see section 14.6.13].

Query newQuery (Extent cln, String queryString) ;

Construct a new query instance with the candidate Extent and query string specified; the
candidate class is taken from the Extent.The query string parameter might be the filter
or the single string representing the query [see section 14.6.13].

Query newNamedQuery (Class cls, String queryName) ;

Construct a new query instance with the given candidate class from a named query. The
query name given must be the name of a query defined in metadata. The metadata is
searched for the specified name. The extent, including subclasses, is the default for the can-
didate collection.

If the named query is not found in already-loaded metadata, the query is searched for us-
ing an algorithm. Files containing metadata are examined in turn until the query is found.
The order is based on the metadata search order for class metadata, but includes files
named based on the class name.

151 February 28, 2006

Java Data Objects 2.0

The file search order for a query scoped to class com.sun.nb.Bar is: META-INF/pack-
age.jdo, WEB-INF/package.jdo, package.jdo, com/package.jdo, com/sun/package.jdo,
com/sun/nb/package.jdo, com/sun/nb/Bar.jdo. Once metadata for the class is found,
no more .jdo files will be examined for the class.

If the metadata is not found in the above, and there is a property in the PersistenceMan-
agerFactory javax.jdo.option.Mapping=mySQL, then the folowing files are searched:
META-INF/package-mySQL.orm, WEB-INF/package-mySQL.orm, package-
mySQL.orm, com/package-mySQL.orm, com/sun/package-mySQL.orm, com/sun/nb/
package-mySQL.orm, com/sun/nb/Bar-mySQL.orm. Once mapping metadata for the
class is found, no more .orm files will be examined for the class.

If metadata is not found in the above, then the following files are searched: META-INF/
package.jdoquery, = WEB-INF/package.jdoquery, packagejdoquery, com/pack-
age.jdoquery, com/sun/package.jdoquery, com/sun/nb/package.jdoquery, com/sun/
nb/Bar.jdoquery. Once the query metadata is found, no more .jdoquery files will be exam-
ined for the query.

If the metadata for the named query is not found in the above, a JDOUserException is
thrown.

NOTE: If no class is provided as a parameter, the metadata must be in one of the top level
locations or must have already been processed during loading of metadata for a class or
interface whose metadata has been loaded.

This resource name is loaded by one of the three class loaders used to resolve resource
names (see Section 12.5). The loaded resource must contain the metadata definition of the
query name. The schema for the loaded resource is the same as for the .jdo file.

If the unmodifiable attribute is specified as or defaults to *false”, then the Query in-
stance returned from this method can be modified by the application, just like any other
Query instance.

Named queries must be compilable. Attempts to get a named query that cannot be com-
piled result in JDOUserException.

14.6

JDO 2.0

Query Interface

package javax.jdo;

public interface Query extends Serializable {
String JDOQL = “javax.jdo.query.JDOQL”;
String SQL = “javax.jdo.query.SQL”;

Persistence Manager

PersistenceManager getPersistenceManager () ;

Return the associated PersistenceManager instance. If this Query instance was re-
stored from a serialized form, then null is returned.

Fetch Plan
FetchPlan getFetchPlan() ;

This method retrieves the fetch plan associated with the Query. It always returns the iden-
tical instance for the same Query instance. Any change made to the fetch plan affects sub-
sequent query execution. Fetch plan is described in Section 12.7.

152 February 28, 2006

Java Data Objects 2.0

JDO 2.0

Query element binding

The Query interface provides methods to bind required and other elements prior to exe-
cution.

All of these methods replace the previously set query element, by the parameter. [The
methods are not additive.] For example, if multiple variables are needed in the query, all
of them must be specified in the same call to declareVariables.

void setClass (Class candidateClass) ;
Bind the candidate class to the query instance.
void setCandidates (Collection candidateCollection) ;

Bind the candidate Collection to the query instance. If the user adds or removes ele-
ments from the Collection after this call, it is not determined whether the added/re-
moved elements take part in the Query, or whether a NoSuchElementException is
thrown during execution of the Query.

For portability, the elements in the collection must be persistent instances associated with
the same PersistenceManager as the Query instance. An implementation might sup-
port transient instances in the collection. If persistent instances associated with another
PersistenceManager are in the collection, JDOUserException is thrown during
execute ().

If the candidates are not specified explicitly by newQuery, setCandidates (Collec-
tion),or setCandidates (Extent), then the candidate extent is the extent of instances
of the candidate class in the datastore including subclasses. That is, the candidates are the
result of getPersistenceManager () .getExtent (candidateClass, true).

void setCandidates (Extent candidateExtent) ;
Bind the candidate Extent to the query instance.

void setFilter (String filter);

Bind the query filter to the query instance.

void declareImports (String imports);

Bind the import statements to the query instance. All imports must be declared in the same
method call, and the imports must be separated by semicolons.

void declareVariables (String variables);

Bind the variable types and names to the query instance. This method defines the types
and names of variables that will be used in the filter but not provided as values by the ex-
ecute method.

void declareParameters (String parameters) ;

Bind the parameter statements to the query instance. This method defines the parameter
types and names that will be used by a subsequent execute method.

void setOrdering (String ordering) ;

Bind the ordering statements to the query instance.

void setResult (String result);

Specify the results of the query if not instances of the candidate class.
void setGrouping (String grouping) ;

Specify the grouping of results for aggregates.

void setUnique (boolean unique) ;

153 February 28, 2006

Java Data Objects 2.0

JDO 2.0

Specify that there is a single result of the query.

vold setResultClass (Class resultClass);

Specify the class to be used to return result instances.

setRange (long fromIncl, long toExcl) ;

setRange (String fromIncltoExcl) ;

Specify the number of instances to skip over and the maximum number of result instances
to return.

Query options

void setIgnoreCache (boolean flag);

boolean getIgnoreCache ();

The IgnoreCache option, when set to true, is a hint to the query engine that the user
expects queries be optimized to return approximate results by ignoring changed values in
the cache. This option is useful only for optimistic transactions and allows the datastore to
return results that do not take modified cached instances into account. An implementation
may choose to ignore the setting of this flag, and always return exact results reflecting cur-
rent cached values, as if the value of the flag were false.

Query modification

void setUnmodifiable() ;

boolean isUnmodifiable();

The Unmodifiable option, when set, disallows further modification of the query, except
for specifying the range, result class, and ignoreCache option.

Query evaluation

This discussion covers queries constructed by one of these methods: newQuery (String

singleStringQuery); newNamedQuery (Class candidateClass, String
namedQueryName) ; or newQuery (“javax.jdo.query.JDOQL”, Object sin-
gleStringQuery).

* the candidate class cannot be overridden via setClass except where there is
either an exact match of the name in the JDOQL query and the setClass
parameter, or where the FROM clause is missing from the query string in the
newQuery method.

¢ the single string query is first parsed to yield the result, result class, filter, variable
list, parameter list, import list, grouping, ordering, and range.

* then, the values specified in APIs setResult, setResultClass,
setFilter, declarevVariables, declareParamters,
declareImports, setGrouping, setOrdering, and setRange override
the corresponding settings from the single string query.

Evaluation of implicit parameters and variable declarations is done after applying over-
rides from APIs.

Query compilation
The Query interface provides a method to compile queries for subsequent execution.

void compile();

154 February 28, 2006

Java Data Objects 2.0

14.6.1

JDO 2.0

This method requires the Query instance to validate any elements bound to the query in-
stance and report any inconsistencies by throwing a JDOUserException. It is a hint to
the Query instance to prepare and optimize an execution plan for the query.

Query execution

The Query interface provides methods that execute the query based on the parameters
given. By default, they return an unmodifiable List which the user can iterate to get re-
sults. The user can specify the class of the result of executing a query. Executing any oper-
ation on the List that might change it throws UnsupportedOperationException.
The signature of the execute methods specifies that they return an Object that must be
cast to the proper type by the user.

Any parameters passed to the execute methods are used only for this execution, and are
not remembered for future execution.

For portability, parameters of persistence-capable types must be persistent or transaction-
al instances. Parameters that are persistent or transactional instances must be associated
with the same PersistenceManager as the Query instance. An implementation might
support transient instances of persistence-capable types as parameters, but this behavior
is not portable. If a persistent instance associated with another PersistenceManager
is passed as a parameter, JDOUserException is thrown during execute ().

Queries may be constructed at any time before the PersistenceManager is closed, but
may be executed only at certain times. If the PersistenceManager that constructed the
Query is closed, then the execute methods throw JDOFatalUserException. If the
NontransactionalRead property is false, and a transaction is not active, then the
execute methods throw JDOUserException.

()
Object execute (Object pl);
Object execute (Object pl, Object p2);

Object execute (Object pl, Object p2, Object p3);

Object execute

The execute methods execute the query using the parameters and return the result,
which by default is an unmodifiable List of instances that satisfy the boolean filter. The
result may be a large List, which should be iterated or possibly passed to another Query.
The size () method returns Integer .MAX_ VALUE if the actual size of the result is not
known (for example, the List represents a cursored result); if the size of the result equals
or exceeds Integer.MAX VALUE; or if the range equals or exceeds Inte-
ger .MAX_VALUE.

When using an Extent to define candidate instances, the contents of the extent are subject
to the setting of the ignoreCache flag. With ignoreCache set to false:

¢ if instances were made persistent in the current transaction, the instances will be
considered part of the candidate instances.

¢ if instances were deleted in the current transaction, the instances will not be
considered part of the candidate instances.

* modified instances will be evaluated using their current transactional values.
With ignoreCache set to true:

¢ if instances were made persistent in the current transaction, the new instances
might not be considered part of the candidate instances.

155 February 28, 2006

Java Data Objects 2.0

14.6.2

JDO 2.0

¢ if instances were deleted in the current transaction, the instances might or might
not be considered part of the candidate instances.

* modified instances might be evaluated using their current transactional values or
the values as they exist in the datastore, which might not reflect the current
transactional values.

Each parameter of the execute method(s) is an Object that s either the value of the cor-
responding parameter or the wrapped value of a primitive parameter. The parameters as-
sociate in order with the parameter declarations in the Query instance.

Object executeWithMap (Map parameters) ;

The executeWithMap method is similar to the execute method, but takes its parame-
ters from a Map instance. The Map contains key/value pairs, in which the key is the de-
clared parameter name, and the value is the value to use in the query for that parameter.
Unlike execute, there is no limit on the number of parameters.If implicit parameters are

",

used, the keys in the map do not include the leading “:
Object executeWithArray (Object[] parameters) ;

The executeWithArray method is similar to the execute method, but takes its pa-
rameters from an array instance. The array contains Objects, in which the positional Ob-
ject is the value to use in the query for that parameter. Unlike execute, there is no limit
on the number of parameters.

Filter specification

The filter specification is a St ring containing a boolean expression that is to be evaluated
for each of the instances in the candidate collection. If the filter is not specified, then it de-
faults to "true", and the input Collection is filtered only for class type.

An element of the candidate collection is returned in the result if:
* it is assignment compatible to the candidate Class of the Query; and

e for all variables there exists a value for which the filter expression evaluates to
true. The user may denote uniqueness in the filter expression by explicitly
declaring an expression (for example, el != e2). For example, a filter for a
Department where there exists an Employee with more than one dependent
and an Employee making more than 30,000 might be:
" (emps.contains (el) & el .dependents > 1) &
(emps.contains (e2) & e2.salary > 30000)". The same Employee
might satisfy both conditions. But if the query required that there be two different
Employees satisfying the two conditions, an additional expression could be
added: " (emps.contains(el) & el .dependents > 1) &
(emps.contains(e2) & (e2.salary > 30000 & el !'= e2))".

Rules for constructing valid expressions follow the Java language, except for these differ-
ences:

* Equality and ordering comparisons between primitives and instances of wrapper
classes are valid.
¢ Equality and ordering comparisons of Date fields and Date parameters are valid.

¢ Equality and ordering comparisons of String fields and String parameters are
valid. The comparison is done according to an ordering not specified by JDO. This
allows an implementation to order according to a datastore-specified ordering,
which might be locale-specific.

156 February 28, 2006

Java Data Objects 2.0

JDO 2.0

* White space (non-printing characters space, tab, carriage return, and line feed) is a
separator and is otherwise ignored.

* The assignment operators =, +=, etc. and pre- and post-increment and -decrement
are not supported.

* Methods, including object construction, are not supported, except for
Collection, String, and Map methods documented below. Implementations
might choose to support non-mutating method calls as non-standard extensions.

* Navigation through a null-valued field, which would throw
NullPointerException, is treated as if the subexpression returned false.
Similarly, a failed cast operation, which would throw ClassCastException,is
treated as if the subexpression returned false. Other subexpressions or other
values for variables might still qualify the candidate instance for inclusion in the
result set.

* Navigation through multi-valued fields (Collection types) is specified using a
variable declaration and the Collection.contains (Object o) method.

* The following literals are supported, as described in the Java Language

Specification: IntegerLiteral, FloatingPointLiteral,
BooleanLiteral, CharacterLiteral, StringLiteral, and
NullLiteral.

* There is no distinction made between char literals and String literals. Single-
character String literals can be used wherever char literals are permitted. Char
literals will be widened if used in numerical expressions; or treated as single-
character String literals if used in String expressions.

e String literals are allowed to be delimited by single quote marks or double quote
marks. This allows String literal filters to use single quote marks instead of escaped
double quote marks.

Note that comparisons between floating point values are by nature inexact. Therefore,
equality comparisons (== and !=) with floating point values should be used with caution.

Identifiers in the expression are considered to be in the name space of the specified class,
with the addition of declared imports, parameters and variables. As in the Java language,
this is a reserved word, and it refers to the element of the collection being evaluated.

Identifiers that are persistent field names or public final static field names are required to
be supported by JDO implementations. Other identifiers might be supported but are not
required. Thus, portable queries must not use fields other than persistent or public final
static field names in filter expressions.

Navigation through single-valued fields is specified by the Java language syntax of
field_name.field_name....field_name.

A JDO implementation is allowed to reorder the filter expression for optimization purpos-
es.

The following are minimum capabilities of the expressions that every implementation
must support:

157 February 28, 2006

Java Data Objects 2.0

JDO 2.0

* operators applied to all types where they are defined in the Java language:

Table 4: Query Operators

Operator Description

== equal

= not equal

> greater than

< less than

>= greater than or equal

<= less than or equal

& boolean logical AND (not bitwise)

&& conditional AND

I boolean logical OR (not bitwise)

Il conditional OR

~ integral unary bitwise complement

+ binary addition, unary plus, or String concatena-
tion

- binary subtraction or unary numeric sign inver-
sion

* times

/ divide by

! logical complement

% modulo operator

instanceof | instanceof operator

* exceptions to the above:

¢ String concatenation is supported only for String + String, not String +
<primitive>;

¢ parentheses to explicitly mark operator precedence

e cast operator (class)

* promotion of numeric operands for comparisons and arithmetic operations. The
rules for promotion follow the Java rules (see chapter 5.6 Numeric Promotions of
the Java language spec) extended by BigDecimal, BigInteger and numeric
wrapper classes:

e if either operand is of type BigDecimal, the other is converted to
BigDecimal.

158

February 28, 2006

Java Data Objects 2.0

JDO 2.0

otherwise, if either operand is of type BigInteger, and the other type is a
floating point type (£loat, double) or one of its wrapper classes (Float,
Double) both operands are converted to BigDecimal.

* otherwise, if either operand is of type BigInteger, the other is converted to
BigInteger.

¢ otherwise, if either operand is of type double, the other is converted to double.

* otherwise, if either operand is of type £1oat, the other is converted to f1oat.

* otherwise, if either operand is of type 1ong, the other is converted to 1ong.

* otherwise, both operands are converted to type int.

¢ operands of numeric wrapper classes are treated as their corresponding primitive
types. If one of the operands is of a numeric wrapper class and the other operand
is of a primitive numeric type, the rules above apply and the result is of the
corresponding numeric wrapper class.

* equality comparison among persistent instances of persistence-capable types use
the JDO Identity comparison of the references; this includes containment methods
applied to Collection and Map types. Thus, two objects will compare equal if
they have the same JDO Identity.

* comparisons between persistent and non-persistent instances return not equal.

* equality comparison of instances of non-persistence-capable reference types uses
the equals method of the type; this includes containment methods applied to
Collection and Map types.

* String methods startsWith and endsWith support wild card queries but
not in a portable way. JDO does not define any special semantic to the argument
passed to the method; in particular, it does not define any wild card characters. To
achieve portable behavior, applications should use matches (String).

Null-valued fields of Collection types are treated as if they were empty if a method
is called on them. In particular, they return true to isEmpty and return false to all
contains methods. For datastores that support null values for Collection types, it
is valid to compare the field to null. Datastores that do not support null values for
Collection types, will return false if the query compares the field to null. Datas-
tores that support null values for Collection types should include the option "jav-
ax.jdo.option.NullCollection" in their list of supported options
(PersistenceManagerFactory.supportedOptions ()).Methods

The following methods are supported for their specific types, with semantics as defined
by the Java language:

Table 5: Query Methods

Method Description
contains(Object) applies to Collection types
get(Object) applies to Map types

containsKey(Object) applies to Map types

containsValue(Object) | applies to Map types

isEmpty() applies to Map and Collection types

size() applies to Map and Collection types

159 February 28, 2006

Java Data Objects 2.0

14.6.3

JDO 2.0

Table 5: Query Methods

Method Description
toLowerCase() applies to String type
toUpperCase() applies to String type
indexOf(String) applies to String type; 0-indexing is used

indexOf(String, int) applies to String type; O-indexing is used

matches(String) applies to String type; only the following regular expression
patterns are required to be supported and are portable: glo-

bal “(?1)” for case-insensitive matches; and “.” and “.*” for

wild card matches. The pattern passed to matches must be a
literal or parameter.

substring(int) applies to String type
substring(int, int) applies to String type
startsWith(String) applies to String type
endsWith(String) applies to String type
Math.abs(numeric) static method in java.lang.Math, applies to types of float,

double, int, and long

Math.sqrt(numeric) static method in java.lang.Math, applies to double type

JDOHelper.getObjec- | static method in JDOHelper, allows using the object identity
tId(Object) of an instance directly in a query.

Parameter declaration

The parameter declaration is a String containing one or more parameter type declara-
tions separated by commas. This follows the Java syntax for method signatures.

Parameter types for primitive values can be specified as either the primitive types or the
corresponding wrapper types. If a parameter type is specified as a primitive, the parame-
ter value passed to execute () must not be null or a JDOUserException is thrown.

Parameters must all be declared explicitly via declareParameters or all be declared
implicitly in the filter. Parameters implicitly declared (in the result, filter, ordering, group-

ing, or range) are identified by prepending a ":" to the parameter everywhere it appears.
All parameter types can be determined by one of the following techniques:

¢ the parameter is used as the right hand side or left hand side of a boolean operator
(<, <=, ==, >=, or >) and the other side is strongly typed, or

¢ the parameter is used in a method from Table 5 on page 159 directly as either a
parameter or the object on which the method is called, and the type can be
determined from the context of the method, or

¢ the parameter is explicitly cast using the cast operator and the cast is identical
everywhere the parameter appears.

160 February 28, 2006

Java Data Objects 2.0

14.6.4

14.6.5

JDO 2.0

Implicit parameter declaration

When parameters are declared implicitly, if the query is string-based, parameters are rec-
ognized in the order that they appear in the query string. If the query is API-based, param-
eters are recognized as if declared explicitly, with the order of their first appearance in the
result, filter, grouping, ordering, and range. This is significant if a positional form of exe-
cute is used.

Import statements

The import statements follow the Java syntax for import statements. Import statements are
separated by semicolons. Import on demand is supported. Classes in java.lang and
javax.jdo are automatically imported.

Variable declaration

The type declarations follow the Java syntax for local variable declarations. Variable dec-
larations are separated by semicolons.

A variable that is not constrained with an explicit contains clause is constrained by the ex-
tent of the persistence capable class (including subclasses). If the class does not manage an
Extent, then no results will satisfy the query.

If the query result uses a variable, the variable must not be constrained by an extent. Fur-
ther, each side of an "OR" expression must constrain the variable using a contains clause.

A portable query will constrain all variables with a contains clause in each side of an
“OR” expression of the filter where the variable is used. Further, each variable must either
be used in the query result or its contains clause must be the left expression of an
“AND” expression where the variable is used in the right expression. That is, for each oc-
currence of an expression in the filter using the variable, there is a contains clause
“ANDed” with the expression that constrains the possible values by the elements of a col-
lection.

The semantics of contains is “exists”, where the contains clause is used to filter instances.
The meaning of the expression “emps.contains(e) && e.salary < param” is “there exists an
e in the emps collection such that e.salary is less than param”. This is the natural meaning
of contains in the Java language, except where the expression is negated. If the variable is
used in the result, then it need not be constrained.

If the expression is negated, then “!(emps.contains(e) && e.salary < param)” means “there
does not exist an employee e in the collection emps such that e.salary is less than param”.
Another way of expressing this is “for each employee e in the collection emps, e.salary is
greater than or equal to param”. If a variable is used in the result, then it must not be used
in a negated contains clause.

Implicit variable declaration

The variable declaration is unnecessary if all variables are implicitly declared. All variables
must be explicitly declared, or all variables must be implicitly declared.

Names in the filter are treated as parameters if they are explicitly declared via de-
clareParameters or if they begin with “:”.

Names are treated as variable names if they are explicitly declared via declarevari-
ables.

Names are treated as field or property names if they are fields or properties of the candi-
date class.

161 February 28, 2006

Java Data Objects 2.0

14.6.6

14.6.7

JDO 2.0

Names are treated as class names if they exist in the package of the candidate class, have
been imported, or if they are in the java.lang package. e.g. Integer.

Otherwise, names are treated as implicitly defined variable names.
Variables must be typed. Implicitly defined variables are typed according to the following;:

¢ if the variable is the parameter of a contains method, the type is the element type
of the collection; or

¢ if the variable is the parameter of a containsKey method, the type is the key type
of the map; or

¢ if the variable is the parameter of a containsvalue method, the type is the value
type of the map; or

e if the variable is not constrained by a contains, containsKey, or
containsValue method, the variable must be typed by an explicit cast the first
time the variable appears in the filter.

Ordering statement

The ordering statement is a String containing one or more ordering declarations sepa-
rated by commas. Each ordering declaration is a Java expression of an orderable type:

¢ primitives (boolean is non-portable);
* wrappers (Boolean is non-portable);
e BigDecimal;

e BigInteger;

e String;

e Date

s 7

followed by one of the following words: “ascending”, “descending”,“asc”, or
“desc”.

Ordering might be specified including navigation. The name of the field to be used in or-
dering via navigation through single-valued fields is specified by the Java language syntax
of field name.field name...field name.

The result of the first (leftmost) expression is used to order the results. If the leftmost ex-
pression evaluates the same for two or more elements, then the second expression is used
for ordering those elements. If the second expression evaluates the same, then the third ex-
pression is used, and so on until the last expression is evaluated. If all of the ordering ex-
pressions evaluate the same, then the ordering of those elements is unspecified.

The ordering of instances containing null-valued fields specified by the ordering is not
specified. Different JDO implementations might order the instances containing null-val-
ued fields either before or after instances whose fields contain non-null values.

Ordering of boolean fields, if supported by the implementation, is false before true, un-
less descending is specified. Ordering of null-valued Boolean fields is as above.
Closing Query results

When the application has finished with the query results, it might optionally close the re-
sults, allowing the JDO implementation to release resources that might be engaged, such
as database cursors or iterators. The following methods allow early release of these re-
sources.

void close (Object queryResult);

162 February 28, 2006

Java Data Objects 2.0

14.6.8

14.6.9

JDO 2.0

This method closes the result of one execute (.. .) method, and releases resources as-
sociated with it. After this method completes, the query result can no longer be used, for
example to iterate the returned elements. Any elements returned previously by iteration
of the results remain in their current state. Any iterators acquired from the queryResult
will return false to hasNext () and will throw NoSuchElementException to
next ().

void closeAll ();

This method closes all results of execute(...) methods on this Query instance, as
above. The Query instance is still valid and can still be used.

Limiting the Cardinality of the Query Result

The application may want to skip some number of results that may have been previously
returned, and additionally may want to limit the number of instances returned from a que-
ry. The parameters are modeled after String.getChars and are 0-origin. The parame-
ters are not saved if the query is serialized. The default range for query execution if this
method is not called are (0, Long.MAX_VALUE).

setRange (long fromIncl, long toExcl);

The fromIncl parameter is the number of instances of the query result to skip over before
returning the List to the user. If specified as 0 (the default), no instances are skipped.

The toExc1 parameter is the last instance of the query result (before skipping) to return
to the user.

The expression (toExcl - fromIncl) isthe maximum number of instances in the que-
ry result to be returned to the user. If fewer instances are available, then fewer instances
will be returned. If ((toExcl - fromIncl)<= 0) evaluatesto true,

¢ if the result of the query execution is a List, the returned List contains no
instances, and an Iterator obtained from the List returns false to
hasNext ().

¢ if the result of the query execution is a single instance (setUnique (true)), it will
have a value of null.

setRange (String range) ;

When using the string form of setRange both parameter values are specified either as
numbers or as parameters. The fromIncl and toExcl values are comma separated and

evaluated as either long values or as parameter names (beginning with “:”). For example,
setRange (“: fromRange, :toRange”) or setRange(“100, 130").

Specifying the Result of a Query (Projections, Aggregates)

The application might want to get results from a query that are not instances of the candi-
date class. The results might be single-valued fields of persistent instances, instances of
classes other than the candidate class, or aggregates of single-valued fields. Note that this
means that fields of Collection and Map types are not allowed in the projection.

void setResult (String result);

The result parameter consists of the optional keyword distinct followed by a comma-
separated list of named result expressions or a constructor expression.

A constructor expression consists of the keyword new followed by the name of a result
class and a comma-separated parenthesis-enclosed list of named result expressions. See
14.6.12 for a detailed description of the constructor expression.

163 February 28, 2006

Java Data Objects 2.0

JDO 2.0

Distinct results

If distinct is specified, the query result does not include any duplicates. If the result pa-
rameter specifies more than one result expression, duplicates are those with matching val-
ues for each result expression.

Queries against an extent always consider only distinct candidate instances, regardless of
whether distinct is specified. Queries against a collection might contain duplicate can-
didate instances; the distinct keyword removes duplicates from the candidate collec-
tion in this case.

Result expressions begin with either an instance of the candidate class (with an explicit or
implicit "this") or an instance of a variable (using the variable name). The candidate tuples
are the cartesian product of the candidate class and all variables used in the result. The re-
sult tuples are the tuples of the candidate class and all variables used in the result that sat-
isfy the filter. The result is the collection of result expressions projected from the result
tuples. If variables are not used in the result expression, then the filter is evaluated for all
possible values for each such variable, and if the filter evaluates to true for any combina-
tion of such variables, then the candidate tuple becomes a result tuple.

The distinct specification requires removing duplicates from projected expressions.

If any result is a navigational expression, and a non-terminal field or variable has a null
value for a particular set of conditions (the result calculation would throw NullPoint-
erException), then the result is null for that result expression. This is known in relation-
al algebra as “outer join semantics”. For example, to exclude results of
“this.department.category.name” where either department or category is null, the user
must explicitly add a clause to the filter: “this.department != null && this.department.cat-
egory !=null”.

The result expressions include:

* “this”:indicates that the candidate instance is returned

* <field>: this indicates that a field is returned as a value; the field might be in the
candidate class or in a class referenced by a variable

* <variable>: this indicates that a variable’s value is returned as a persistent instance

¢ <aggregate>: this indicates that an aggregate of multiple values is returned; if
null values are aggregated, they do not participate in the aggregate result; if all
of the expressions to be aggregated evaluate to null, the result is the same as if
there were no instances that match the filter.

* count(<expression>): the count of the number of instances of the expression is
returned; the expression is preceded by an optional “distinct” and can be “this”,
a navigational expression that terminates in a single-valued field, or a variable
name

¢ sum(<numeric field expression>): the sum of field expressions is returned; the
expression is preceded by an optional "distinct"

* min(<orderable field expression>): the minimum value of the field expression is
returned

* max(<orderable field expression>): the maximum value of the field expression is
returned

* avg(<numeric field expression>): the average value of all field expressions is
returned; the expression is preceded by an optional "distinct"

* <field expression>: the value of an expression using any of the operators allowed
in queries applied to fields is returned

164 February 28, 2006

Java Data Objects 2.0

14.6.10

JDO 2.0

* <navigational expression>: this indicates a navigational path through single-
valued fields or variables as specified by the Java language syntax; the
navigational path starts with the keyword “this”, a variable, a parameter, or a field
name followed by field names separated by dots.

* <parameter>: one of the parameters provided to the query.

The result expression can be explicitly cast using the (cast) operator.

Named Result Expressions

<result expression> as <name>: identify the <result expression> (any of the result expres-
sions specified above) as a named element for the purpose of matching a method or field
name in the result class.

If the name is not specified explicitly, the default for name is the expression itself.

Aggregate Types
Count returns Long.

Sum returns Long for integral types and the field’s type for other Number types (BigDec-
imal, BigInteger, Float, and Double). Sum and avg are invalid if applied to non-
Number types.

Avg, min, and max return the type of the expression.
If there are no instances that match the filter,

e count returns 0;

® avg, sum, min, and max return null.

If null values are aggregated, they do not participate in the aggregate result. If all of the
expressions to be aggregated evaluate to null, the result is the same as if there were no
instances that match the filter.

Primitive Types

If a result expression has a primitive type, its value is returned as an instance of the corre-
sponding java wrapper class.

Null Results

If the returned value from a query specifying a result is null, this indicates that the ex-
pression specified as the result was null. Note that the semantics of this result are differ-
ent from the returned value where no instances satisfied the filter.

Default Result

If not specified, the result defaults to “distinct this as C” where Cis the unqualified
name of the candidate class. For example, the default result specification for a query where
the candidate class is com.acme.hr.Employee is “distinct this as Employee”.
Grouping Aggregate Results

Aggregates are most useful if they can be grouped based on an element of the result.
Grouping is required if there are aggregate expressions in the result.

void setGrouping (String grouping) ;

The grouping parameter consists of one or more expressions separated by commas fol-
lowed by an optional “having” followed by one Boolean expression.

When grouping is specified, each result expression must be one of:

165 February 28, 2006

Java Data Objects 2.0

14.6.11

14.6.12

JDO 2.0

* an expression contained in the grouping expression; or,
* an aggregate expression evaluated once per group.
When grouping is specified with ordering, each ordering expression must be one of:
* an expression contained in the grouping expression; or,
* an aggregate expression evaluated once per group.

The query groups all elements where all expressions specified in setGrouping have the
same values. The query result consists of one element per group.

When “having” is specified, the “having” expression consists of arithmetic and boolean
expressions containing expressions that are either aggregate expressions or contained in a
grouping expression.

Specifying Uniqueness of the Query Result

If the application knows that there can be exactly zero or one instance returned from a que-
ry, the result of the query is most conveniently returned as an instance (possibly null) in-
stead of a List.

void setUnique (boolean unique) ;

When the value of the Unique flagis t rue, then the result of a query is a single value, with
null used to indicate that none of the instances in the candidates satisfied the filter. If
more than one instance satisfies the filter, and the range is not limited to one result, then
execute throws a JDOUserException.

Default Unique setting

The default Unique setting is true for aggregate results without a grouping expression,
and false otherwise.

Specifying the Class of the Result

The application may have a user-defined class that best represents the results of a query.
In this case, the application can specify that instances of this class should be returned.

void setResultClass(Class resultClass) ;

The default result class is the candidate class if the parameter to setResult is null or
not specified. When the result is specified and not nul1l, the default result class is the type
of the expression if the result consists of one expression, or Object [] if the result consists
of more than one expression.

Result Class Requirements

® The result class may be one of the java.lang classes Character, Boolean,
Byte, Short, Integer, Long, Float, Double, String, or Object []; or one of
the java.math classes BigInteger or BigDecimal; or the java.util class
Date; or the java.util interface Map; or one of the java.sqgl classes Date,
Time, or Timestamp; or a user-defined class.

o If there are multiple result expressions, the result class must be able to hold all
elements of the result specification or a JDOUserException is thrown.

¢ If there is only one result expression, the result class must be assignable from the
type of the result expression or must be able to hold all elements of the result
specification. A single value must be able to be coerced into the specified result

166 February 28, 2006

Java Data Objects 2.0

class (treating wrapper classes as equivalent to their unwrapped primitive types)
or by matching. If the result class does not satisfy these conditions, a
JDOUserException is thrown.

* A constructor of a result class specified in the constructor expression of the
setResult method orin the setResultClass method will be used if the results
specification matches the parameters of the constructor by position and type. If
more than one constructor satisfies the requirements, the JDO implementation
chooses one of them. If no constructor satisfies the results requirements, the
following requirements apply:

* A user-defined result class must have a no-args constructor and one or more
public “set” or “put” methods or fields.
¢ Each result expression must match one of:
* a public field that matches the name of the result expression and is of the type
(treating wrapper types the same as primitive types) of the result expression;

e or if no public field matches the name and type, a public “set” method that returns
void and matches the name of the result expression and takes a single parameter
which is the exact type of the result expression;

* or if neither of the above applies,a public method must be found with the signature
void put(Object, Object) in which the first argument is the name of the result
expression and the second argument is the value from the query result.

¢ Portable result classes do not invoke any persistence behavior during their no-args
constructor or “set” methods.

Table 6: Shape of Result (C is the candidate class)

setResult setResultClass setUnique shape of result
null, or “distinct this as C” null false List<C>
null, or “distinct this as C” null true C
not null, one result expression of type T | null false List<T>
not null, one result expression of type T | null true T
not null, more than one result expression | null false List<Object[]>
not null, more than one result expression | null true Object[]
null or not null UserResult.class | false List<UserResult>
null or not null UserResult.class | true UserResult

14.6.13 Single-string Query element binding

The String version of Query represents all query elements using a single string. The string
contains the following structure:

select [unique] [<result>] [into <result-class-name>]
[from <candidate-class-name> [exclude subclasses] |
[where <filter>]

[variables <variables-clause> |

JDO 2.0 167 February 28, 2006

Java Data Objects 2.0

[parameters <parameters-clause>]
[<imports-clause>]

[group by <grouping-clause> |
[order by <ordering-clause>]
[range <from-range> ,<to-range>]

Keywords, identified above in bold, are either all upper-case or all lower-case. Keywords
cannot be mixed case.

The select clause must be the first clause in the query.
The order of the other clauses must be as described above.

If implicit parameters are used, their order of appearance in the query determines their or-
der for binding to positional parameters for execution.

<result> is the result as in 14.6.9.
<result-class-name> is the name of the result class as in 14.6.12.
<filter> is the filter as in 14.6.2.

<variables-clause> is the variable declaration as in 14.6.5. As in Java, variables in the clause
are separated by semicolons.

<parameters-clause> is the parameter declaration as in 14.6.3. As in Java, parameters in the
clause are separated by commas.

<imports-clause> is the imports declaration as in 14.6.4. As in Java, imports in the clause
are separated by semicolons.

<grouping-clause> is the grouping specification as in 14.6.10.
<ordering-clause> is the ordering specification as in 14.6.6.

<frorn—range> and <to-range> are as in 14.6.8.

14.7

JDO 2.0

SQL Queries

If the developer knows that the underlying datasource supports SQL, and knows the map-
ping from the JDO domain model to the SQL schema, it might be convenient in some cases
to execute SQL instead of expressing the query as JDOQL. In this case, the factory method
that takes the language string and Object is used: newQuery (String language, Ob-
ject query).The language parameter is “javax.jdo.query.SQL” and the query parame-
ter is the SQL query string.

The SQL query string must be well-formed. The JDO implementation must not make any
changes to the query string. The tokens “?” must be used to identify parameters in the SQL
query string.

When this factory method is used, the behavior of the Query instance changes significant-
ly. The only methods that can be used are setClass to establish the candidate class, se-
tUnique to declare that there is only one result row, and setResultClass to establish
the result class.

¢ there is no filter, and the setFilter method throws JDOUserException.

* there is no ordering specification, and the setOrdering method throws
JDOUserException.

168 February 28, 2006

Java Data Objects 2.0

e there are no variables, and the declareVariables method throws
JDOUserException.

* the parameters are untyped, and the declareParameters method throws
JDOUserException.

¢ there is no grouping specification, and the setGrouping method throws
JDOUserException.

¢ the candidate collection can only be the Extent of instances of the candidate class,
including subclasses, and the setCandidates method throws
JDOUserException.

* parameters are bound by position. If the parameter list is an Object [] then the
first element in the array is bound to the first “?” in the SQL statement, and so
forth. If the parameter list is a Map, then the keys of the Map must be instances of
Integer whose intValue is 1..n. The value in the Map corresponding to the key
whose intValue is 1is bound to the first “?” in the SQL statement, and so forth.

* there are no imports, and the declareImports method throws
JDOUserException.

e for queries in which the candidate class is specified, the columns selected in the
SQL statement must at least contain the primary key columns of the mapped
candidate class, and additionally the discriminator column if defined and the
version column(s) if defined.

¢ results are taken from the SELECT clause of the query, and the setResult
method throws JDOUserException.

¢ the cardinality of the result is determined by the SQL query itself, and the
setRange method throws JDOUserException.

SQL queries can be defined without a candidate class. These queries can be found by name
using the factory method newNamedQuery, specifying the class as null, or can be con-
structed without a candidate class.

Table 7: Shape of Result of SQL Query

Casli 1sdsate Selected columns setResultClass setUnique shape of result
C must include primary null false List<C>
key columns
C must include primary null true C
key columns
null single column of type T | null false List<T>
null single column of type T | null true T
null more than one result null false List<Object[]>
column
null more than one result null true Object]]
column

| JDO 2.0 169 February 28, 2006

Java Data Objects 2.0

Table 7: Shape of Result of SQL Query

Ca?]i lsdsate Selected columns setResultClass setUnique shape of result
null or not null UserResult.class false List<UserResult>
null or not null UserResult.class true UserResult

14.7.1 Mapping Columns of SQL Queries to User-specified Result Classes

There are two specified means by which columns of SQL queries can be mapped to user-
specified result classes: by name and by position.

Each labeled column in the result set is mapped according to the mapping defined in Sec-
tion 14.6.12, using the result set column name as the public field or property name of the
result class. Since SQL is generally case-insensitive, matching of labels to field and proper-
ty names is not case-sensitive. Labels that differ only in case cause a JDOUserException
to be thrown when the query is executed.

A result set column is considered labeled if:

e the return value from java.sgl.ResultSetMetaData.getColumnLabel
(int oneBasedColumnIndex) is non-null and of non-zero length; or,

o if getColumnLabel is null or of Zero length,
java.sql.ResultSetMetaData.getColumnName (int
oneBasedColumnIndex) is non-null and of non-zero length.

Other determinations of whether a column is considered labeled are unspecified and not
portable. Each character in a column label that is not a valid character in a Java field or
method identifier is converted to an underscore character for the purposes of mapping;
other name conversion strategies are not specified and not portable.

Each unlabeled column in the result set is mapped positionally. As required by Section
14.6.12, the result class must expose a public method with the signature void put (Ob-
ject, Object) for data that do not have a public field or set method; it is this method
that is used by the implementation to map columns positionally, using the integral posi-
tion of the column, as an Integer, as the first argument, and the column's value as the sec-
ond. Positional indexes passed to the result class's void put (Object, Object)
method are zero-based; that is, the value of the Integer given is one less than the SQL col-
umn index, as SQL column indexes are one-based.

14.8

JDO 2.0

Deletion by Query

An application may want to delete a number of instances in the datastore without instan-
tiating them in memory. The instances to be deleted can be described by a query.

long deletePersistentAll (Object[] parameters) ;
long deletePersistentAll (Map parameters) ;
long deletePersistentAll () ;

These methods delete the instances of affected classes that pass the filter, and all depen-
dent instances. Affected classes are the candidate class and its persistence-capable sub-
classes. The number of instances of affected classes that were deleted is returned.
Embedded instances and dependent instances are not counted in the return value.

170 February 28, 2006

Java Data Objects 2.0

Query elements filter, parameters, imports, variables, and unique are valid in
queries used for delete. Elements result, result class, range, grouping, and or-
dering are invalid. If any of these elements is set to its non-default value when one of the
deletePersistentAll methods is called, a JDOUserException is thrown and no in-
stances are deleted.

When the value of the Unique flag is true, then at most one instance will be deleted. If
more than one instance satisfies the filter, then deletePersistentAll throws a
JDOUserException.

Dirty instances of affected classes are first flushed to the datastore. Instances already in the
cache when deleted via these methods or brought into the cache as a result of these meth-
ods undergo the life cycle transitions as if deletePersistent had been called on them.

That is, if an affected class implements the DeleteCallback interface, the instances of
that class to be deleted are instantiated in memory and the jdoPreDelete method is
called prior to deleting the instance in the datastore. If any LifecycleListener instanc-
es are registered with affected classes, these listeners are called for each deleted instance.

Before returning control to the application, instances of affected classes in the cache are re-
freshed by the implementation so their status in the cache reflects whether they were de-
leted from the datastore.

149

Extensions

Some JDO vendors provide extensions to the query, and these extensions must be set in
the query instance prior to execution.

void setExtensions (Map extensions);

This method replaces all current extensions with the extensions contained as entries in the
parameter Map. A parameter value of null means to remove all extensions. The keys are
immediately evaluated; entries where the key refers to a different vendor are ignored; en-
tries where the key prefix matches this vendor but where the full key is unrecognized
cause a JDOUserException to be thrown. The extensions become part of the state of the
Query instance that is serialized. The parameter Map is not used after the method returns.

void addExtension(String key, Object wvalue);

This method adds one extension to the Query instance. This extension will remain until
the next setExtensions method is called, or addExtension with an equal key. Key
recognition behavior is identical to setExtensions.

14.10

JDO 2.0

Examples:

The following class definitions for persistence capable classes are used in the examples:
package com.xyz.hr;

class Employee {

String name;

float salary;

Department dept;

Employee boss;

}

package com.xyz.hr;

171 February 28, 2006

Java Data Objects 2.0

14.10.1

14.10.2

14.10.3

JDO 2.0

class Department {
String name;
Collection emps;

}

Basic query.

This query selects all Employee instances from the candidate collection where the salary
is greater than the constant 30000.

Note that the £1oat value for salary is unwrapped for the comparison with the literal
int value, which is promoted to float using numeric promotion. If the value for the
salary field in a candidate instance is null, then it cannot be unwrapped for the com-
parison, and the candidate instance is rejected.

Query g = pm.newQuery (Employee.class, “salary > 30000");
Collection emps = (Collection) g.execute () ;

<query name="basic”>

[!CDATA[

select where salary > 30000

11

</query>

Basic query with ordering.

This query selects all Employee instances from the candidate collection where the salary
is greater than the constant 30000, and returns a Collection ordered based on employee
salary.

Query g = pm.newQuery (Employee.class, “salary > 30000");
g.setOrdering (“salary ascending”) ;

Collection emps = (Collection) g.execute ();

<query name="ordering”>

[!CDATA[

select where salary > 30000

order by salary ascending

11

</query>

Parameter passing.

This query selects all Employee instances from the candidate collection where the salary
is greater than the value passed as a parameter and the name starts with the value passed
as a second parameter.

If the value for the salary field in a candidate instance is null, then it cannot be un-
wrapped for the comparison, and the candidate instance is rejected.

Query g = pm.newQuery (Employee.class,
“salary > sal && name.startsWith (begin”) ;

g.declareParameters (“Float sal, String begin”);

172 February 28, 2006

Java Data Objects 2.0

14.10.4

14.10.5

14.10.6

JDO 2.0

Collection emps = (Collection) g.execute (new Float (30000.));
<query name="parameter”>

['CDATA[

select where salary > :sal && name.startsWith(:begin)

11

</query>
Navigation through single-valued field.

This query selects all Employee instances from the candidate collection where the value of
the name field in the Department instance associated with the Employee instance is equal
to the value passed as a parameter.

If the value for the dept field in a candidate instance is nul1, then it cannot be navigated
for the comparison, and the candidate instance is rejected.

Query g = pm.newQuery (Employee.class, “dept.name == dep”);
g.declareParameters (“String dep”) ;

String rnd = “R&D”;

Collection emps = (Collection) g.execute (rnd);

<query name="navigate”>

[!CDATA[

select where dept.name == :dep
11

</query>

Navigation through multi-valued field.

This query selects all Department instances from the candidate collection where the col-
lection of Employee instances contains at least one Employee instance having a salary
greater than the value passed as a parameter.

String filter = “emps.contains (emp) & emp.salary > sal”;

Query g = pm.newQuery (Department.class, filter);

g.declareParameters (“float sal”);
g.declareVariables (“Employee emp”) ;
Collection deps = (Collection) g.execute (new Float (30000.));

<query name="multivalue”>

[!CDATA [

select where emps.contains(e)
&& e.salary > :sal

11

</query>

Membership in a collection

This query selects all Department instances where the name field is contained in a pa-
rameter collection, which in this example consists of three department names.

173 February 28, 2006

Java Data Objects 2.0

String filter = “depts.contains (name)”;
Query g = pm.newQuery (Department.class, filter);

List depts =

Arrays.asList (new String [] {“R&D”, “Sales”, “Marketing”});
g.declareParameters (“Collection depts”);
Collection deps = (Collection) g.execute (depts);

<query name="collection”>
['CDATA[
select where :depts.contains (name)
11
</query>
14.10.7 Projection of a Single Field
This query selects names of all Employees who work in the parameter department.
Query g = pm.newQuery (Employee.class, “dept.name == deptName”) ;
g.declareParameters (“String deptName”) ;

g.setResult (“name”) ;

Collection names = (Collection) g.execute(“R&D”) ;
Iterator it = names.lterator () ;
while (it.hasNext()) {
String name = (String) it.next();
}
<query name="project”’>
['CDATA[
select name where dept.name == :deptName
11
</query>

14.10.8 Projection of Multiple Fields and Expressions

This query selects names, salaries, and bosses of Employees who work in the parameter
department.

class Info {
public String name;
public Float salary;
public Employee reportsTo;

}
Query g = pm.newQuery (Employee.class, “dept.name == deptName”) ;
g.declareParameters (“String deptName”) ;

g.setResult (“name, salary, boss as reportsTo”) ;

| JDO 2.0 174 February 28, 2006

Java Data Objects 2.0

14.10.9

JDO 2.0

g.setResultClass (Info.class);
Collection names = (Collection) g.execute(“R&D”) ;

Iterator it = names.lterator () ;

while (it.hasNext()) {
Info info = (Info) it.next();
String name = info.name;
Employee boss = info.reportsTo;

}

<query name="resultclass”>

[!CDATA [

select name, salary, boss as reportsTo into Info

where dept.name == :deptName

11

</query>

Projection of Multiple Fields and Expressions into a Constructed instance

This query selects names, salaries, and bosses of Employees who work in the parameter
department, and uses the constructor for the result class.

class Info {
public String name;
public Float salary;
public Employee reportsTo;
public Info (String name, Float salary, Employee reportsTo) {
this.name = name;

this.salary = salary;

this.reportsTo = reportsTo;
}
}
Query g = pm.newQuery (Employee.class, “dept.name == deptName”) ;
g.declareParameters (“String deptName”) ;

g.setResult (“new Info(name, salary, boss)”);
g.setResultClass (Info.class);
Collection names = (Collection) g.execute(“R&D”) ;
Iterator 1t = names.iterator () ;
while (it.hasNext()) {

Info info = (Info) it.next();

String name = info.name;

Employee boss = info.reportsTo;

175 February 28, 2006

Java Data Objects 2.0

}
<query name=”"construct”>
[!CDATA[
select new Info (name, salary, boss)
where dept.name == :deptName
11
</query>
14.10.10 Aggregation of a single Field

This query averages the salaries of Employees who work in the parameter department
and returns a single value.

Query g = pm.newQuery (Employee.class, “dept.name == deptName”) ;
g.declareParameters (“String deptName”) ;
g.setResult (“avg(salary)”);
Float avgSalary = (Float) g.execute(“R&D”") ;
<query name="aggregate”>
[!CDATA [
select avg(salary)
where dept.name == :deptName
11
</query>
14.10.11 Aggregation of Multiple Fields and Expressions

This query averages and sums the salaries of Employees who work in the parameter de-

partment.

Query g = pm.newQuery (Employee.class, “dept.name == deptName”) ;
g.declareParameters (“String deptName”) ;

g.setResult (“avg(salary), sum(salary)”);

Object[] avgSum = Object[] g.execute(“R&D”);
Float average = (Float)avgSum[O0];
Float sum = (Float)avgSum[1l];

<query name="multiple”>

[!CDATA[

select avg(salary), sum(salary)
where dept.name == :deptName

11

</query>

| JDO 2.0 176 February 28, 2006

Java Data Objects 2.0

14.10.12 Aggregation of Multiple fields with Grouping

This query averages and sums the salaries of Employees who work in all departments
having more than one employee and aggregates by department name.

Query g = pm.newQuery (Employee.class);

g.setResult (“avg(salary), sum(salary), dept.name”);
g.setGrouping (“dept.name having count (dept.name) > 17);
Collection results = (Collection)qg.execute() ;

Iterator it = results.iterator();

while (it.hasNext()) {
Object[] info = (Object[]) it.next();
Float average = (Float)info[0];
Float sum = (Float)info[l];
String deptName = (String)infol[2];
}
<guery name="group”>
['CDATA[

select avg(salary), sum(salary), dept.name from com.xyz.hr.Em-
ployee where dept.name == :deptName group by dept.name having
count (dept.name) > 1

11
</query>
14.10.13 Selection of a Single Instance
This query returns a single instance of Employee.
Query g = pm.newQuery (Employee.class, “name == empName”) ;
g.declareParameters (“String empName”) ;
g.setUnique (true) ;
Employee emp = (Employee) g.execute(“Michael”);
<query name="unique”>
['CDATA[
select unique this
where dept.name == :deptName
11

</query>
14.10.14 Selection of a Single Field

This query returns a single field of a single Employee.

Query g = pm.newQuery (Employee.class, “name == empName”) ;

| JDO 2.0 177 February 28, 2006

Java Data Objects 2.0

14.10.15

14.10.16

JDO 2.0

declareParameters (“String empName”) ;

a.
g.setResult (“salary”) ;
g.setResultClass (Float.class) ;
g.setUnique (true) ;

Float salary = (Float) g.execute (“Michael”);
<query name="single”>

[!CDATA [

select unique new Float (salary)

where dept.name == :deptName

11

</query>

Projection of “‘this” to User-defined Result Class with Matching Field

This query selects instances of Employee who make more than the parameter salary and
stores the result in a user-defined class. Since the default is “distinct this as Employee”, the
field must be named Employee and be of type Employee.

class EmpWrapper {
public Employee Employee;

}
Query g = pm.newQuery (Employee.class, “salary > sal”);
g.declareParameters (“Float sal”);

g.setResultClass (EmpWrapper.class) ;

Collection infos = (Collection) g.execute (new Float (30000.));
Iterator it = infos.iterator();
while (it.hasNext()) {

EmpWrapper info = (EmpWrapper)it.next();

Employee e = info.Employee;

}

<query name="thisfield”>

[!CDATA [

select into EmpWrapper

where salary > sal

11

</query>

Projection of “this’ to User-defined Result Class with Matching Method

This query selects instances of Employee who make more than the parameter salary and
stores the result in a user-defined class.

class EmpInfo {

178 February 28, 2006

Java Data Objects 2.0

14.10.17

JDO 2.0

private Employee worker;

public Employee getWorker () {return worker;}
public void setEmployee (Employee e) {worker = e;}
}
Query g = pm.newQuery (Employee.class, “salary > sal”);
g.declareParameters (“Float sal”);
g.setResultClass (EmpInfo.class) ;
Collection infos = (Collection) g.execute (new Float (30000.));
Iterator it = infos.iterator();
while (it.hasNext()) {
EmpInfo info = (EmpInfo)it.next();
Employee e = info.getWorker () ;
}

<query name="thismethod”>

[!CDATA [

select into EmpInfo

where salary > sal

11

</query>

Projection of variables

This query returns the names of all Employees of all "Research" departments:
Query g = pm.newQuery (Department.class) ;
g.declareVariables ("Employee e") ;

g.setFilter ("name.startsWith('Research') && emps.contains(e)");
g.setResult (e.name) ;

Collection names = g.execute();

Iterator it = names.iterator () ;

while (it.hasNext()) {

String name = (String)it.next();

}

<query name="variables”>

[!CDATA[

select e.name

where name.startsWith('Research')

&& emps.contains((com.xyz.hr.Employee) e)

179 February 28, 2006

Java Data Objects 2.0

1]

</query>

14.10.18 Deleting Multiple Instances
This query deletes all Employees who make more than the parameter salary.
Query g = pm.newQuery (Employee.class, “salary > sal”);
g.declareParameters (“Float sal”);

g.deletePersistentAll (new Float (30000.));

| JDO 2.0 180 February 28, 2006

Java Data Objects 2.0

15

Object-Relational Mapping

JDO 2.0

JDO is datastore-independent. However, many JDO implementations support storage of
persistent instances in relational databases, and this storage requires that the domain ob-
ject model be mapped to the relational schema. The mapping strategies for simple cases
are for the most part the same from one JDO implementation to another. For example, typ-
ically a class is mapped to one or more tables, and fields are mapped to one or more col-
umns.

The most common mapping paradigms are standardized, which allows users to define
their mapping once and use the mapping for multiple implementations.

Mapping Overview

Mapping between the domain object model and the relational database schema is specified
from the perspective of the object model. Each class is mapped to a primary table and pos-
sibly multiple secondary tables and multiple join tables. Fields in the class are mapped to
columns in either the primary table, secondary tables, or join tables. Simple field types typ-
ically map to single columns. Complex field types (Collections, Maps, and arrays) typ-
ically map to multiple columns.

Secondary tables represent non-normalized tables that contain zero or one row corre-
sponding to each row in the primary table, and contain field values for the persistent class.
These tables might be modeled as one-to-one relationships, but they can be modeled as
containing nullable field values instead.

Secondary tables might be used by a single field mapping or by multiple field mappings.
If used by a single field mapping, the join conditions linking the primary and secondary
table might be specified in the field mapping itself. If used by multiple field mappings, the
join conditions might be specified in each field mapping or specified in the class mapping.

Complex field types are mapped by mapping each of the components individually. Col-
lections map the element and optional order components. Maps map the key and value
components. Arrays map the element and order components.

Mapping Strategies

The specification does not standardize how the mapping files are generated. Most imple-
mentations will support one or more of the following strategies for creating mapping files:

e starting with a relational schema, generate persistence-capable classes and the
mapping to relate them (sometimes referred to as reverse mapping or class
generation);

e starting with persistence-capable classes, generate the relational schema and the
mapping to relate them (sometimes called forward mapping or schema
generation);

e starting with a relational schema and persistence-capable classes, create the
mapping to relate them (sometimes called meet-in-the-middle mapping).

This specification does not standardize how the mapping files are created. Implementa-
tions might support command-line or interactive GUI-based tools to assist in the process.

181 February 28, 2006

Java Data Objects 2.0

There is no portable behavior for incompletely specified mappings. When a portable ap-
plication runs, the mapping is completely specified by the mapping metadata, regardless
of whether the user created the mapping or the mapping was created by a tool. If the map-
ping is incompletely specifed, the JDO implementation might silently use mapping de-
faults or throw an exception.

151

15.1.1

JDO 2.0

Column Elements

Column elements used for simple, non-relationship field value mapping specify at least
the column name. The field value is loaded from the value of the named column.

The column element might contain additional information about the column, for use in
generating schema. This might include the scale and precision for numeric types, the max-
imum length for variable-length field types, the jdbc type of the column, or the sql type of
the column. This information is ignored for runtime use, with the following exception: if
the jdbc type of the column does not match the default jdbc type for the field's class (for
example, a String field is mapped to a CLOB rather than a VARCHAR column), the jdbc
type information is required at runtime.

Column elements that contain only the column name can be omitted, if the column name
is instead contained in the enclosing element. Thus, a field element is defined to allow a
column attribute if only the name is needed, or a column element if more than the name is
needed. If both column attribute and column element are specified for any element, it is a
user error.

Mapping single-valued fields to columns

This example demonstrates mappings between fields and value columns.

com.xyz I

Address
-street:Siring
-city:String
-state:String
-Zip:string
-deliverylnstructions:String
-Address()

package com.xyz;
public class Address {
String street;
String city;
String state;
String zip;

String deliveryInstructions;

182 February 28, 2006

Java Data Objects 2.0

CREATE TABLE ADDR (
STREET VARCHAR (255) PRIMARY KEY,
CITY VARCHAR(255),
STATE CHAR(2),
ZIPCODE VARCHAR(10),
DELIV_INS CLOB

<orm>
<package name="com.xyz">
<class name="Address" table="ADDR">
<field name="street" column="STREET"/>
<field name="city" column="CITY"/>
<field name="state" column="STATE"/>
<field name="zip" column="ZIPCODE" />
<field name="deliveryInstructions">
<column name="DELIV_INS" jdbc-type="CLOB"/>
</field>
</class>
</package>

</orm>

15.2

15.2.1

JDO 2.0

Join Condition

Secondary tables and join tables are mapped using a join condition that associates a col-
umn or columns in the secondary or join table with a column or columns in the primary
table, typically the primary table’s primary key columns.

Column elements used for relationship mapping or join conditions specify the column
name and optionally the target column name. The target column name is the name of the
column in the associated table corresponding to the named column. The target column
name is optional when the target column is the single primary key column of the associat-
ed table, or when the target column name is identical to the join column name.

NOTE: This usage of column elements is fundamentally different from the usage of column
elements for value mapping. For value mapping, the name attribute names the column
that contains the value to be used. For join conditions, the name attribute names the col-
umn that contains the reference data to be joined to the primary key column of the target.

Secondary Table mapping

This example demonstrates the use of join elements to represent join conditions linking
a class' primary table and secondary tables used by fields.

183 February 28, 2006

Java Data Objects 2.0

com.xyz

Address
-street:String
-City:String
-state:String
-Zip:String
-deliverylnstructions: String
-signatureRequired:boolean
-mapJPG:image
-Address()

package com.xyz;
public class Address {
String street;
String city;
String state;
String zip;
String deliveryInstructions;
boolean signatureRequired;

bytel[] mapJdPG;

CREATE TABLE ADDR (
STREET VARCHAR (255) PRIMARY KEY,
CITY VARCHAR(255),
STATE CHAR(2),
ZIPCODE VARCHAR(10)

CREATE TABLE DELIV (
ADDR_STREET VARCHAR (255),
SIG_REQUIRED BIT,
DELIV_INS CLOB

CREATE TABLE MAPQUEST_INFO (
ADDR_STREET VARCHAR (255),
MAPQUEST_IMAGE BLOB

| JDO 2.0 184 February 28, 2006

Java Data Objects 2.0

<orm>
<package name="com.xyz">
<class name="Address" table="ADDR">

<!-- shared join condition used by fields in DELIV -->

<join table="DELIV" column="ADDR_STREET"/>

<field name="street" column="STREET"/>

<field name="city" column="CITY"/>

<field name="state" column="STATE"/>

<field name="zip" column="ZIPCODE"/>

<field name="signatureRequired" table="DELIV"
column="SIG_REQUIRED" />

<field name="deliveryInstructions" table="DELIV">
<column name="DELIV_INS" jdbc-type="CLOB"/>

</field>

<field name="mapJPG" table="MAPQUEST_INFO"
column="MAPQUEST_ IMAGE">

<!-- join condition defined for this field only -->
<join column="ADDR_STREET"/>

</field>

</class>
</package>

</orm>

15.2.2 Map using join table

This example uses the <join> element to map a Map<Date, String> field to a join table.
Note that in this example, the primary table has a compound primary key, requiring the
use of the target attribute in join conditions.

com.xyz I

Address

-street:Siring

-city:String

-state:String

-Zip:string
-deliverylnstructions:String
-deliveryRecords:Map<Date, String>
-Address()

package com.xyz;

public class Address {

JDO 2.0 185 February 28, 2006

Java Data Objects 2.0

JDO 2.0

String street;

String city;

String state;

String zip;

String deliveryInstructions;
boolean signatureRequired;

Map<Date, String> deliveryRecords;

CREATE TABLE ADDR (
STREET VARCHAR (255),
CITY VARCHAR(255),
STATE CHAR(2),
ZIPCODE VARCHAR(10),
PRIMARY KEY (STREET, ZIPCODE)

CREATE TABLE DELIV_RECORDS (
ADDR_STREET VARCHAR (255),
ADDR_ZIPCODE VARCHAR(10),
DELIV_DATE TIMESTAMP,
SIGNED_BY VARCHAR (255)

<orm>
<package name="com.xyz">
<class name="Address" table="ADDR">
<field name="street" column="STREET"/>
<field name="city" column="CITY"/>
<field name="state" column="STATE"/>
<field name="zip" column="ZIPCODE"/>
<!-- field type is Map<Date, String> -->
<field name="deliveryRecords" table="DELIV_RECORDS">
<join>
<column name="ADDR_STREET" target="STREET"/>
<column name="ADDR_ZIPCODE" target="ZIPCODE"/>
</join>
<key column="DELIV_DATE"/>
<value column="SIGNED_BY"/>

186 February 28, 2006

Java Data Objects 2.0

</field>
</class>
</package>

</orm>

15.3

JDO 2.0

Relationship Mapping

Column elements used for relationship mapping are contained in either the field element
directly in the case of a simple reference, or in one of the collection, map, or array elements
contained in the field element.

In case only the column name is needed for mapping, the column name might be specified
in the field, collection, or array element directly instead of requiring a column element
with only a name.

The field on the other side of the relationship can be mapped simply by identifying the
field on the other side that defines the mapping, using the mapped-by attribute. Changes
to the field mapped via “mapped-by” are not reflected in the datastore. There is no further
relationship implied by having both sides of the relationship map to the same database col-
umn(s). In particular, making a change to one side of the relationship does not imply any
runtime behavior by the JDO implementation to change the other side of the relationship
in memory, although the column(s) will be changed during commit and will therefore be
visible by both sides in the next transaction.

If two relationships (one on each side of an association) are mapped to the same column,
the field on only one side of the association needs to be explicitly mapped.

The field on the other side of the relationship can be mapped by using the mapped-by at-
tribute identifying the field on the side that defines the mapping. Regardless of which side
changes the relationship, flush (whether done as part of commit or explicitly by the user)
will modify the datastore to reflect the change and will update the memory model for con-
sistency. There is no further behavior implied by having both sides of the relationship map
to the same database column(s). In particular, making a change to one side of the relation-
ship does not imply any runtime behavior by the JDO implementation to change the other
side of the relationship in memory prior to flush, and there is no requirement to load fields
affected by the change if they are not already loaded. This implies that if the Retainval-
ues flag or DetachAllOnCommit is set to true, and the relationship field is loaded, then
the implementation will change the field on the other side so it is visible after transaction
completion.

Conflicting changes to relationships cause a JDOUserException to be thrown at flush
time. Conflicting changes include:

¢ adding a related instance with a single-valued mapped-by relationship field to
more than one one-to-many collection relationship

¢ setting both sides of a one-to-one relationship such that they do not refer to each
other
Mapping Strategies

For single-valued relationships, there are three basic ways to map references from one per-
sistence-capable class (the referring class) to a related class:

¢ serialized: The entire related instance is serialized into a single column in the
primary or secondary table of the referring class.

187 February 28, 2006

Java Data Objects 2.0

* embedded: The related instance is mapped, field by field, to columns in the
primary or secondary table of the referring class.

* by reference: The related instance is in a different table, and the column in the
primary or secondary table of the referring class contains a reference (often, a
foreign key) to the primary table of the related class.

For multi-valued relationships, there are five basic ways to map references from one per-
sistence-capable class (the referring class) to a related class:

¢ serialized: The entire collection, array, or map is serialized into a single column in
the primary or secondary table of the referring class.

* serialized in a join table: A join table is used to associate multiple rows in the join
table with a single row in the primary or secondary table of the referring class, and
the related instances are serialized, one per row, into a single column in the join
table.

* embedded in a join table: A join table is used to associate multiple rows in the join
table with a single row in the primary or secondary table of the referring class, and
each related instance is mapped, one per row, field by field, into multiple columns
in the join table.

* by reference to the primary table of the related class: The related class has a
reference (often, a foreign key) to the primary table of the referring class.

* by reference in a join table: A join table is used to associate multiple rows in the
join table with a single row in the primary or secondary table of the referring class,
and a column in the join table contains a reference (often, a foreign key) to the
primary table of the related class.

15.3.1 Many-to-One using foreign key

A many-one mapping (Employee has a reference to Department).

com.xyz |

Department Employee
-name:String 0.1 -5sn:String
-depariment:Department
-Department() -Employee()

package com.xyz;
public class Department {

String name;

public class Employee {

| JDO 2.0 188 February 28, 2006

Java Data Objects 2.0

String ssn;

Department department;

CREATE TABLE EMP (
SSN CHAR(10) PRIMARY KEY,
DEP_NAME VARCHAR (255)

)

CREATE TABLE DEP (
NAME VARCHAR (255) PRIMARY KEY

<orm>
<package name="com.xyz">
<class name="Employee" table="EMP">
<field name="ssn" column="SSN"/>
<!-- field type is Department -->
<field name="department" column="DEP_NAME"/>
</class>
<class name="Department" table="DEP">
<field name="name" column="NAME"/>
</class>
</package>

</orm>

15.3.2 One-to-Many using foreign key

A one-many mapping (Department has a collection of Employees). This example uses the
same schema as Example 4.

COM.XYZ
Department Employee
-name:String 0. | -ssn:String
-employees:Collection<Employee=
-Department{) -Employeel)

| JDO 2.0 189 February 28, 2006

Java Data Objects 2.0

package com.xyz;
public class Department {
String name;

Collection<Employee> employees;

public class Employee ({

String ssn;

}
<orm>
<package name="com.xyz">
<class name="Department" table="DEP">
<field name="name" column="NAME"/>
<!-- field type is Collection<Employee> -->
<field name="employees">
<element column="DEP_NAME" />
</field>
</class>
<class name="Employee" table="EMP">
<field name="ssn" column="SSN"/>
</class>
</package>
</orm>

15.3.3 Many-to-One and One-to-Many using mapped-by

If both the Employee.department and Department.employees fields exist, only one needs
to be mapped explicitly; one side is specified to be “mapped-by” the other side. The De-
partment side is marked as using the same mapping as a field on the Employee side. This
example uses the same schema as Examples 4 and 5.

COM.XYZ
Department 0" Employee
-name:String -5sn:String
-employees:Collection<Employees -department:Department
0.1
-Departmeni() -Employee()

| JDO 2.0 190 February 28, 2006

Java Data Objects 2.0

package com.xyz;
public class Department {
String name;

Collection<Employee> employees;

public class Employee ({
String ssn;

Department department;

}
<orm>
<package name="com.xyz">
<class name="Employee" table="EMP">
<field name="ssn" column="SSN"/>
<field name="department" column="DEP_NAME"/>
</class>
<class name="Department" table="DEP">
<field name="name" column="NAME"/>
<field name="employees" mapped-by="department"/>
</class>
</package>
</orm>

15.3.4 Many-to-One and One-to-Many using compound foreign key

This example mirrors Example 6, but now Department has a compound primary key.

COM.XVZ

Department 0" Employee
-name:String -58n:5tring
-employees:Collection<Employees -department:Department
-id:lang 0.1
-Department() -Employee()

package com.xyz;

public class Department {

| JDO 2.0 191 February 28, 2006

Java Data Objects 2.0

String name;
Collection<Employee> employees;

long id;

public class Employee ({
String ssn;

Department department;

CREATE TABLE EMP (
SSN CHAR(10) PRIMARY KEY,
DEP_NAME VARCHAR (255),
DEP_ID BIGINT

CREATE TABLE DEP (
NAME VARCHAR (255),
ID BIGINT,
PRIMARY KEY (NAME, DEP_ID)

<orm>
<package name="com.xyz">
<class name="Employee" table="EMP">
<field name="ssn" column="SSN"/>
<field name="department">
<column name="DEP_NAME" target="NAME"/>
<column name="DEP_ID" target="ID"/>
</field>
</class>
<class name="Department" table="DEP">
<field name="name" column="NAME"/>
<field name="id" column="ID"/>
<field name="employees" mapped-by="department"/>
</class>
</package>

</orm>

| JDO 2.0 192 February 28, 2006

Java Data Objects 2.0

15.3.5

JDO 2.0

Many-to-One and One-to-Many using Map<Department, String>

Employee has a Map<Department, String> mapping each department the employee
is a member of to her position within that department. Department still has a compound
primary key.

The Map uses a join table that contains one row for each entry in the Map. The columns in
the join table refer to the Employee, the Department, and the position.

COM.XYZ

Department Employee
-name:String : -5sn:String
-id:long 0. -positions:Map<Department, String
-Department() -Employee()

package com.xyz;
public class Department {
String name;

long id;

public class Employee ({
String ssn;

Map<Department, String> positions;

CREATE TABLE EMP (
SSN CHAR(10) PRIMARY KEY

CREATE TABLE DEP (
NAME VARCHAR (255),
ID BIGINT,
PRIMARY KEY (NAME, ID)

CREATE TABLE EMP_POS (
EMP_SSN CHAR(10),

193 February 28, 2006

Java Data Objects 2.0

DEP_NAME VARCHAR (255)
DEP_ID BIGINT,
POS VARCHAR (255)

<orm>
<package name="com.xyz">
<class name="Employee" table="EMP">
<field name="ssn" column="SSN"/>
<!-- field type is Map<Department, String> -->
<field name="positions" table="EMP_POS">
<join column="EMP_SSN"/>
<key>
<column name="DEP_NAME" target="NAME"/>
<column name="DEP_ID" target="ID"/>
</key>
<value column="POS"/>
</field>
</class>
<class name="Department" table="DEP">
<field name="name" column="NAME"/>
<field name="id" column="ID"/>
</class>
< /package>

</orm>

15.3.6 Many-to-One and One-to-Many using Map<String, Employee>

Department hasaMap<String, Employee>mapping therolein the department to the
employee. Department still has a compound primary key.

The Map uses the employee’s table that contains the role as well as other employee infor-
mation. The mapping on the Department side uses the mapped-by attribute naming the
field in the Employee that refers to Department. The key uses the mapped-by attribute
naming the field in Employee that contains the key for the map.

package com.xyz;

public class Department {
String name;
long id;

Map<String, Employee> roles;

public class Employee {

JDO 2.0 194 February 28, 2006

Java Data Objects 2.0

String ssn;
Department dept;

String role;

CREATE TABLE EMP (
SSN CHAR(10) PRIMARY KEY,
DEPT BIGINT,
ROLE VARCHAR

CREATE TABLE DEP (
NAME VARCHAR (255),
ID BIGINT,
PRIMARY KEY (NAME, ID)

<orm>
<package name="com.xyz">
<class name="Employee" table="EMP">
<field name="ssn" column="SSN"/>
<field name="dept" column="DEP"/>
<field name="role" column="ROLE"/>
</class>
<class name="Department" table="DEP">
<field name="name" column="NAME"/>
<field name="id" column="ID"/>
<!-- field type 1is Map<String, Employee> -->
<field name="roles" mapped-by="dept">
<key mapped-by="role"/>
</field>
</class>
</package>

</orm>

15.4 Embedding

Some of the columns in a table might be mapped as a separate Java class to better match
the object model. Embedding works to arbitrary depth.

JDO 2.0 195 February 28, 2006

Java Data Objects 2.0

15.4.1 Mapping relationships using embedded, referenced, and join table

Employee has a reference to a business address, which is a standard many-one. Employee
also has a primary Address, whose data is embedded within the Employee record. Finally,
Employee has a List<Address> of secondary Address references, whose data is embedded
in the join table.

COM.XYZ

Address Employee
-street:String 0.1 -55n:String
-city:String 0.1 -businessAddress:Address
-state:String . -primaryAddress:Address
-Zip:String 0. -secondaryAddresses:List<Address>
-Address() -Employee()

package com.xyz;
public class Address {
String street;
String city;
String state;

String zip;

public class Employee {
String ssn;
Address businessAddress;
Address primaryAddress;

List<Address> secondaryAddresses;

CREATE TABLE ADDR (
STREET VARCHAR (255) PRIMARY KEY,
CITY VARCHAR(255),
STATE CHAR(2),
ZIPCODE VARCHAR(10)

CREATE TABLE EMP (
SSN CHAR(10) PRIMARY KEY,

| JDO 2.0 196 February 28, 2006

Java Data Objects 2.0

BUSADDR_STREET VARCHAR (255),
PADDR_STREET VARCHAR (255),
PADDR_CITY VARCHAR (255),
PADDR_STATE CHAR(2),
PADDR_ZIPCODE VARCHAR(10)

CREATE TABLE EMP_ADDRS (
EMP_SSN CHAR(10),
IDX INTEGER,
SADDR_STREET VARCHAR (255),
SADDR_CITY VARCHAR (255),
SADDR_STATE CHAR(2),
SADDR_ZIPCODE VARCHAR(10)

<orm>

<package name="com.xyz">
<class name="Employee" table="EMP">
<field name="ssn" column="SSN"/>

<!-- field type is Address -->

<field name="businessAddress" column="BUSADDR_STREET"/>

<!-- field type is Address -->
<field name="primaryAddress">
<embedded null-indicator-column="PADDR_STREET">
<field name="street" column="PADDR_STREET"/>
<field name="city" column="PADDR_CITY"/>
<field name="state" column="PADDR_STATE"/>
<field name="zip" column="PADDR_ZIPCODE" />

</embedded>
</field>
<!-- field type is List<Address> -->

<field name="secondaryAddresses" table="EMP_ADDRS">
<join column="EMP_SSN"/>
<element>
<embedded>
<field name="street" column="SADDR_STREET"/>
<field name="city" column="SADDR_CITY"/>
<field name="state" column="SADDR_STATE"/>

JDO 2.0 197 February 28, 2006

Java Data Objects 2.0

<field name="zip" column="SADDR_ZIPCODE"/>
</embedded>
</element>
<order column="IDX"/>
</field>
</class>
</package>

</orm>

15.5 Foreign Key Constraints

Foreign keys in metadata serve two quite different purposes. First, when generating sche-
ma, the foreign key element identifies foreign keys to be generated. Second, when using
the database, foreign key elements identify foreign keys that are assumed to exist in the
database. This is important for the runtime to properly order insert, update, and delete
statements to avoid constraint violations. Foreign keys are part of ORM metadata and are
probably meaningless in non-relational implementations.

Foreign key constraints can be generated in three ways:

e Most elements that can include nested column elements can define delete-
action or update-action attributes.

e Most elements that can contain nested column elements can define a nested
foreign-key element. This element has the following attributes:

* name: the name of the generated constraint
* deferred: boolean attribute describing whether the constraint evaluation is
deferred until datastore commit
* delete-action: the foreign key delete action; see below. In this case, the "none"
value is not allowed.
* update-action: the foreign key update action; see below.
¢ The class element can define foreign-key elements. A class-level foreign-
key element has the name, deferred, delete-action, and update-action
attributes as above.

Note that regardless of which side of a relationship in the object model is mapped, the
meaning of delete action and update action refer to the columns in the datastore, not to the
fields in the object model.

Delete Action, Update Action
The delete-action and update-action attributes have the following permitted values:

* “none”: no foreign key is generated and none is assumed to exist; no special action
is required of the implementation

* “restrict” (the default): a foreign key with the “restrict” delete action is generated
or is assumed to exist; the implementation will require update and delete
statements to be executed in proper sequence

* “cascade”: a foreign key with the “cascade” delete action is generated or is
assumed to exist; the database will automatically delete all rows that refer to the
row being deleted

JDO 2.0 198 February 28, 2006

Java Data Objects 2.0

* “null”: a foreign key with the “null” delete action is generated or is assumed to
exist; a referring key will be nullified if the target key is updated or deleted

* “default”: a foreign key with the “default” delete action is generated or is assumed
to exist

15.5.1 Many-to-One with foreign key constraint

A many-one relation from Employee to Department, represented by a standard restrict-ac-
tion database foreign key.

COM.XYZ

Department _ Employee
-name:String 0.1 -58N:String
-d:long -department:Department
-Department() -Employee()

package com.xyz;
public class Department {
String name;

long id;

public class Employee {
String ssn;

Department department;

CREATE TABLE EMP (
SSN CHAR(10) PRIMARY KEY,
DEP_NAME VARCHAR (255),
DEP_ID BIGINT,

FOREIGN KEY EMP_DEP_FK (DEP_NAME, DEP_ID) REFERENCES DEP (NAME,
ID)

)
CREATE TABLE DEP (

NAME VARCHAR (255),
ID BIGINT,

JDO 2.0 199 February 28, 2006

Java Data Objects 2.0

PRIMARY KEY (NAME, DEP_1ID)

<orm>
<package name="com.xyz">
<class name="Employee" table="EMP">
<field name="ssn" column="SSN"/>
<field name="department">
<column name="DEP_NAME" target="NAME"/>
<column name="DEP_ID" target="ID"/>
<foreign-key name="EMP_DEP_FK"/>
</field>
</class>
<class name="Department" table="DEP">
<field name="name" column="NAME"/>
<field name="id" column="ID"/>
</class>
</package>

</orm>

15.6 Indexes

Index definitions are used for schema generation and are not used at runtime. In relational
implementations, they are part of the ORM metadata because their names and extensions
might differ for each database. In non-relational implementations, indexes are part of the
JDO metadata.

Indexes can be defined in three ways:

¢ Most elements that can include nested column elements can define an indexed
attribute. This attribute has three possible values:

* true: generate a standard index on the datastore representation of the element
¢ false: do not generate an index on the element
* unique: generate a unique index on the element
* Most elements that can contain nested column elements can define a nested
index element. The element does not contain any elements (aside from possible
extensions). The index is generated on the datastore representation of the parent
element. This element has the following attributes:

* name: the name of the generated index
* unique: boolean attribute describing whether to generate a unique index

e The class element can define nested index elements. A class-level index
element has the attributes outlined above. It can contain column and/or field
elements, each of which is limited to a name attribute referencing a column or field

JDO 2.0 200 February 28, 2006

Java Data Objects 2.0

defined elsewhere. Field names can use <superclass-name>.<field-name>
syntax to reference superclass fields, <field-name>.<embedded-field-
name> to reference embedded relation fields, and the #key, #value, and
#element suffixes defined for fetch groups to reference parts of a field.

Unique Constraints

Unique constraints are used during schema generation, and may be used at runtime to or-
der datastore operations. Like indexes, they are part of ORM metadata in relational imple-
mentations, and part of JDO metadata in non-relational implementations.

Unique constraints can be defined in the same three general ways as indexes:

¢ Most elements that can include nested column elements can define an unique
attribute. Possible values are true and false.

e Most elements that can contain nested column elements can define a nested
unique element. This element has the following attributes:

* name: the name of the generated constraint

* deferred: boolean attribute describing whether the constraint evaluation is
deferred until datastore commit
e The class element can contain unique elements. A class-level unique element
has the attributes outlined above. It contains the same possible elements as a class-
level index.

15.6.1 Single-field and Compound Indexes

This example demonstrates single-field and compound indexes.

Com.xyz '

Address
-street:Siring
~city:String
-state:String
-Zip:String
-Address()

package com.xyz;
public class Address {
String street;
String city;
String state;
String zip;

CREATE TABLE ADDR (
STREET VARCHAR (255) PRIMARY KEY,

| JDO 2.0 201 February 28, 2006

Java Data Objects 2.0

CITY VARCHAR(255),
STATE CHAR(2),
ZIPCODE VARCHAR (10)

<orm>
<package name="com.xyz">
<class name="Address" table="ADDR">
<index name="ADDR_CITYSTATE_IDX">
<column name="CITY"/>
<column name="STATE"/>
</index>
<field name="street" column="STREET"/>
<field name="city" column="CITY"/>
<field name="state" column="STATE"/>
<field name="zip" column="ZIPCODE">
<index name="ADDR_ZIP_IDX"/>
</field>
</class>
</package>

</orm>

15.7

JDO 2.0

Inheritance

Each class can declare an inheritance strategy. Three strategies are supported by standard
metadata: new-table, superclass-table, and subclass-table.

* new-table creates a new table for the fields of the class.
¢ superclass-table maps the fields of the class into the superclass table.
¢ subclass-table forces subclasses to map the fields of the class to their own table.

Using these strategies, standard metadata directly supports several common inheritance
patterns, as well as combinations of these patterns within a single inheritance hierarchy.

One common pattern uses one table for an entire inheritance hierarchy. A column called
the discriminator column is used to determine to which class each row belongs. This pat-
tern is achieved by a strategy of new-table for the base class, and superclass-table for all
subclasses. These are the default strategies for base classes and subclasses when no explic-
it strategy is given.

Another pattern uses multiple tables joined by their primary keys. In this pattern, the ex-
istence of a row in a table determines the class of the row. A discriminator column is not
required, but may be used to increase the efficiency of certain operations. This pattern is
achieved by a strategy of new-table for the base class, and new-table for all subclasses. In
this case, the join element specifies the columns to be used for associating the columns in
the table mapped by the subclass(es) and the table mapped by the superclass.

202 February 28, 2006

Java Data Objects 2.0

A third pattern maps fields of superclasses and subclasses into subclass tables. This pat-
tern is achieved by a strategy of subclass-table for the base class, and new-table for direct
subclasses.

15.8

15.8.1

JDO 2.0

Versioning

Three common strategies for versioning instances are supported by standard metadata.
These include state-comparison, timestamp, and version-number.

State-comparison involves comparing the values in specific columns to determine if the
database row was changed.

Timestamp involves comparing the value in a date-time column in the table. The first time
in a transaction the row is updated, the timestamp value is updated to the current time.

Version-number involves comparing the value in a numeric column in the table. The first
time in a transaction the row is updated, the version-number column value is incremented.

Inheritance with superclass-table and version

Mapping a subclass to the base class table, and using version-number optimistic version-
ing. Note that in this example, the inheritance strategy attribute is not needed, because this
is the default inheritance pattern. The version strategy attribute is also using the default
value, and could have been omitted. These attributes are included for clarity.

COM.XYZ
Employee
-gsn:String
-Employee()
PartTimeEmployee FullTimeEmployee
-hourlyWage:double -salary:double
-PartTimeEmployee() -FullTimeEmployee()

package com.xyz;

public class Employee {
String ssn;

}

public class PartTimeEmployee extends Employee {
double hourlyWage;

}

public class FullTimeEmployee extends Employee {

double salary;

CREATE TABLE EMP (

203 February 28, 2006

Java Data Objects 2.0

SSN CHAR(10) PRIMARY KEY,
TYPE CHAR(1),

WAGE FLOAT,

SALARY FLOAT,

VERS INTEGER

<orm>
<package name="com.xyz">
<class name="Employee" table="EMP">
<inheritance strategy="new-table">
<discriminator value="E" column="TYPE"/>
</inheritance>
<version strategy="version-number" column="VERS"/>
<field name="ssn" column="SSN"/>
</class>
<class name="PartTimeEmployee">
<inheritance strategy="superclass-table">
<discriminator value="P"/>
</inheritance>
<field name="hourlyWage" column="WAGE"/>
</class>
<class name="FullTimeEmployee">
<inheritance strategy="superclass-table">
<discriminator value="F"/>
</inheritance>
<field name="salary" column="SALARY"/>
</class>
</package>

</orm>

15.8.2 Inheritance with new-table and version

Mapping each class to its own table, and using state-image versioning. Though a discrim-
inator is not required for this inheritance pattern, this mapping chooses to use one to make
some actions more efficient. It stores the full Java class name in each row of the base table.

| JDO 2.0 204 February 28, 2006

Java Data Objects 2.0

COM.XYZ
Employee
-gsn:String
-Employee()
PartTimeEmployee FullTimeEmployee
-hourlyWage:double -salary:double
-PartTimeEmployee() -FullTimeEmployee()

CREATE TABLE EMP (
SSN CHAR(10) PRIMARY KEY,
JAVA_CLS VARCHAR (255)

CREATE TABLE PART_EMP (
EMP_SSN CHAR(10) PRIMARY KEY,
WAGE FLOAT

CREATE TABLE FULL_EMP (
EMP_SSN CHAR(10) PRIMARY KEY,
SALARY FLOAT

<orm>
<package name="com.xyz">
<class name="Employee" table="EMP">

<inheritance strategy="new-table">

<discriminator strategy="class-name" column="JAVA_CLS"/>

</inheritance>
<version strategy="state-comparison"/>
<field name="ssn" column="SSN"/>
</class>
<class name="PartTimeEmployee" table="PART_ EMP">
<inheritance strategy="new-table">
<join column="EMP_SSN"/>
</inheritance>

<field name="hourlyWage" column="WAGE"/>

JDO 2.0 205

February 28, 2006

Java Data Objects 2.0

</class>

<class name="FullTimeEmployee"

<inheritance strategy="new-table">

<join column="EMP_SSN"/>

</inheritance>

<field name="salary" column="SALARY"/>

</class>
</package>

</orm>

15.8.3 Inheritance with subclass-table

This example maps superclass fields to each subclass table.

COM.XYZ
Employee
-gsn:String
-Employee()
PartTimeEmployee FullTimeEmployee
-hourlyWage:double -salary:double
-PartTimeEmployee() -FullTimeEmployee()

CREATE TABLE PART_EMP (

EMP_SSN CHAR(10) PRIMARY KEY,
WAGE FLOAT

CREATE TABLE FULL_EMP (
EMP_SSN CHAR(10) PRIMARY KEY,
SALARY FLOAT

<orm>
<package name="com.xyz">

<class name="Employee">

<inheritance strategy="subclass-table"/>

</class>

<class name="PartTimeEmployee"

<inheritance strategy="new-table"/>

<field name="Employee.ssn"

JDO 2.0 206

table="PART_EMP">

column="EMP_SSN" />

table="FULL_EMP">

February 28, 2006

Java Data Objects 2.0

JDO 2.0

<field name="hourlyWage" column="WAGE"/>
</class>
<class name="FullTimeEmployee" table="FULL_EMP">
<inheritance strategy="new-table"/>
<field name="Employee.ssn" column="EMP_SSN"/>
<field name="salary" column="SALARY"/>
</class>
</package>

</orm>

207

February 28, 2006

Java Data Objects 2.0

16

Enterprise Java Beans

Enterprise Java Beans (EJB) is a component architecture for development and deployment
of distributed business applications. Java Data Objects is a suitable component for integra-
tion with EJB in these scenarios:

¢ Session Beans with JDO persistence-capable classes used to implement dependent
objects;

* Entity Beans with JDO persistence-capable classes used as delegates for both Bean
Managed Persistence and Container Managed Persistence.

16.1

JDO 2.0

Session Beans

A session bean should be associated with an instance of PersistenceManagerFacto-
ry that is established during a session life cycle event, and each business method should
use an instance of PersistenceManager obtained from the PersistenceManager-
Factory. The timing of when the PersistenceManager is obtained will vary based
on the type of bean.

The bean class should contain instance variables that hold the associated Persistence-
Manager and PersistenceManagerFactory.

During activation of the bean, the PersistenceManagerFactory should be found via
JNDTI lookup. The PersistenceManagerFactory should be the same instance for all
beans sharing the same datastore resource. This allows for the PersistenceManager-
Factory to manage an association between the distributed transaction and the Persis-
tenceManager.

When appropriate during the bean life cycle, the PersistenceManager should be ac-
quired by a call to the PersistenceManagerFactory. The PersistenceManager-
Factory should look up the transaction association of the caller, and return a
PersistenceManager with the same transaction association. If there is no Persis-
tenceManager currently enlisted in the caller’s transaction, a new PersistenceMan-
ager should be «created and associated with the transaction. The
PersistenceManager should be registered for synchronization callbacks with the
TransactionManager. This provides for transaction completion callbacks asynchro-
nous to the bean life cycle.

The instance variables for a session bean of any type include:

¢ areference to the PersistenceManagerFactory, which should be initialized
by the method setSessionContext. This method looks up the
PersistenceManagerFactory by JNDI access to the named object
"java:comp/env/jdo/<persistence manager factory name>".

* a reference to the PersistenceManager, which should be acquired by each
business method, and closed at the end of the business method; and

208 February 28, 2006

Java Data Objects 2.0

16.1.1

16.1.2

16.1.3

JDO 2.0

* areference to the SessionContext, which should be initialized by the method
setSessionContext.

Stateless Session Bean with Container Managed Transactions

Stateless session beans are service objects that have no state between business methods.
They are created as needed by the container and are not associated with any one user. A
business method invocation on a remote reference to a stateless session bean might be dis-
patched by the container to any of the available beans in the ready pool.

Each business method must acquire its own PersistenceManager instance from the
PersistenceManagerFactory. This is done via the method getPersistenceM-
anager onthe PersistenceManagerFactory instance. This method must be imple-
mented by the JDO vendor to find a PersistenceManager associated with the instance
of javax.transaction.Transaction of the executing thread.

At the end of the business method, the PersistenceManager instance must be closed.
This allows the transaction completion code in the PersistenceManager to free the in-
stance and return it to the available pool in the PersistenceManagerFactory.

Stateful Session Bean with Container Managed Transactions

Stateful session beans are service objects that are created for a particular user, and may
have state between business methods. A business method invocation on a remote refer-
ence to a stateful session bean will be dispatched to the specific instance created by the us-
er.

The behavior of stateful session beans with container managed transactions is otherwise
the same as for stateless session beans. All business methods in the remote interface must
acquire a PersistenceManager at the beginning of the method, and close it at the end,
since the transaction context is managed by the container.

Stateless Session Bean with Bean Managed Transactions

Bean managed transactions offer additional flexibility to the session bean developer, with
additional complexity. Transaction boundaries are established by the bean developer, but
the state (including the PersistenceManager) cannot be retained across business
method boundaries. Therefore, the PersistenceManager must be acquired and closed
by each business method.

The alternative techniques for transaction boundary demarcation are:

e javax.transaction.UserTransaction

If the bean developer directly uses UserTransaction, then the PersistenceManager must be
acquired from the PersistenceManagerFactory only after establishing the correct
transaction context of UserTransaction. During the getPersistenceManager
method, the PersistenceManager will be enlisted in the UserTransaction. How to
test?(JDO must know JTA..) For example, if non-transactional access is required, a Persis-
tenceManager must be acquired when there is no UserTransaction active. After be-
ginning a UserTransaction, a different PersistenceManager mustbe acquired for
transactional access. The user must keep track of which PersistenceManager is being
used for which transaction.

e javax.jdo.Transaction

If the bean developer chooses to use the same PersistenceManager for multiple trans-
actions, then transaction completion must be done entirely by using the jav-

209 February 28, 2006

Java Data Objects 2.0

16.1.4

ax.jdo.Transaction instance associated with the PersistenceManager. In this
case, acquiring a PersistenceManager without beginning a UserTransaction re-
sults in the PersistenceManager being able to manage transaction boundaries via
begin, commit, and rollback methods on javax.jdo.Transaction. The Per-
sistenceManager will automatically begin the UserTransaction during jav-
ax.jdo.Transaction.begin How to test? and automatically commit the
UserTransaction during javax.jdo.Transaction.commit. How to test?

Stateful Session Bean with Bean Managed Transactions

Stateful session beans allow the bean developer to manage the transaction context as part
of the conversational state of the bean. Thus, it is no longer required to acquire a Persis-
tenceManager in each business method. Instead, the PersistenceManager can be
managed over a longer period of time, and it might be stored as an instance variable of the
bean.

The behavior of stateful session beans is otherwise the same as for stateless session beans.
The user has the choice of using javax.transaction.UserTransaction or jav-
ax.jdo.Transaction for transaction completion.

16.2

JDO 2.0

Entity Beans

While it is possible for container-managed persistence entity beans to be implemented by
the container using JDO, the implementation details are beyond the scope of this docu-
ment.

It is possible for users to implement bean-managed persistence entity beans using JDO, but
implementation details are container-specific and no recommendations for the general
case are given.

210 February 28, 2006

Java Data Objects 2.0

17

JDO Exceptions

The exception philosophy of JDO is to treat all exceptions as runtime exceptions. This pre-
serves the transparency of the interface to the degree possible, allowing the user to choose
to catch specific exceptions only when required by the application.

JDO implementations will often be built as layers on an underlying datastore interface,
which itself might use a layered protocol to another tier. Therefore, there are many oppor-
tunities for components to fail that are not under the control of the application.

Exceptions thus fall into several broad categories, each of which is treated separately:
e user errors that can be corrected and retried;

* user errors that cannot be corrected because the state of underlying components
has been changed and cannot be undone;

¢ internal logic errors that should be reported to the JDO vendor’s technical support;
¢ errors in the underlying datastore that can be corrected and retried;

¢ errors in the underlying datastore that cannot be corrected due to a failure of the
datastore or communication path to the datastore;

Exceptions that are documented in interfaces that are used by JDO, such as the Collec-
tion interfaces, are used without modification by JDO. JDO exceptions that reflect under-
lying datastore exceptions will wrap the underlying datastore exceptions. JDO exceptions
that are caused by user errors will contain the reason for the exception.

JDO Exceptions must be serializable.

171

JDO 2.0

JDOException

This is the base class for all JDO exceptions. It is a subclass of Runt imeException, and
need not be declared or caught. It includes a descriptive String, an optional nested Excep-
tion array, and an optional failed Object.

Methods are provided to retrieve the nested exception array and failed object. If there are
multiple nested exceptions, then each might contain one failed object. This will be the case
where an operation requires multiple instances, such as commit, makePersistentAll, etc.

If the JDO PersistenceManager is internationalized, then the descriptive string
should be internationalized.

public Throwable[] getNestedExceptions();

This method returns an array of Throwable or null if there are no nested exceptions.
public Object getFailedObject () ;

This method returns the failed object or nul1l if there is no failed object for this exception.
public Throwable getCause() ;

This method returns the first nested Throwable or null if there are no nested exceptions.

211 February 28, 2006

Java Data Objects 2.0

17.1.1 JDOFatalException

This is the base class for errors that cannot be retried. It is a derived class of JDOExcep-
tion. This exception generally means that the transaction associated with the Persis-
tenceManager has been rolled back, and the transaction should be abandoned.

17.1.2 JDOCanRetryException

This is the base class for errors that can be retried. It is a derived class of TJDOException.

17.1.3 JDOUnsupportedOptionException

This class is a derived class of JDOUserException. This exception is thrown by an im-
plementation to indicate that it does not implement a JDO optional feature.

17.1.4 JDOUserException

This is the base class for user errors that can be retried. It is a derived class of TJDOCanRe-
tryException. Some of the reasons for this exception include:

* Object not persistence-capable. This exception is thrown when a method requires
an instance of PersistenceCapable and the instance passed to the method
does not implement PersistenceCapable. The failed Object has the failed
instance.

¢ Extent not managed. This exception is thrown when getExtent is called with a
class that does not have a managed extent.

* Object exists. This exception is thrown during flush of a new instance or an
instance whose primary key changed where the primary key of the instance
already exists in the datastore. It might also be thrown during makePersistent
if an instance with the same primary key is already in the
PersistenceManager cache. The failed Object is the failed instance.

* Object owned by another PersistenceManager. This exception is thrown
when calling makePersistent, makeTransactional, makeTransient,
evict, refresh, or getObjectId where the instance is already persistent or
transactional in a different PersistenceManager. The failed Object has the
failed instance.

* Non-unique Objectld not valid after transaction completion. This exception is
thrown when calling getObjectId on an object after transaction completion
where the ObjectId is not managed by the application or datastore.

¢ Unbound query parameter. This exception is thrown during query compilation or
execution if there is an unbound query parameter.

* Query filter cannot be parsed. This exception is thrown during query compilation
or execution if the filter cannot be parsed.

* Transaction is not active. This exception is thrown if the transaction is not active
and makePersistent,deletePersistent, commit, or rollbackis called.

¢ Object deleted. This exception is thrown if an attempt is made to access any fields
of an instance that was deleted in this transaction (except to read key fields). This
is not the exception thrown if the instance does not exist in the datastore (see
JDOObjectNotFoundException).

* Primary key contains null values. This exception is thrown if the application
identity parameter to getObjectById contains any key field whose value is null.

| JDO 2.0 212 February 28, 2006

Java Data Objects 2.0

17.1.5

17.1.6

17.1.7

17.1.8

17.1.9

17.1.10

JDO 2.0

JDOFatalUserException

This is the base class for user errors that cannot be retried. It is a derived class of JDOFa -
talException.

* PersistenceManager was closed. This exception is thrown after close ()
was called, when any method except isClosed() is executed on the
PersistenceManager instance, or any method is called on the Transaction
instance, or any Query instance, Extent instance, or Iterator instance created
by the PersistenceManager.

* Metadata unavailable. This exception is thrown if a request is made to the
JDOImplHelper for metadata for a class, when the class has not been registered
with the helper.

JDOFatallnternalException

This is the base class for JDO implementation failures. It is a derived class of JDOFatal-
Exception. This exception should be reported to the vendor for corrective action. There
is no user action to recover.

JDODataStoreException

This is the base class for datastore errors that can be retried. It is a derived class of
JDOCanRetryException.

JDOFatalDataStoreException

This is the base class for fatal datastore errors. It is a derived class of JDOFatalExcep-
tion. When this exception is thrown, the transaction has been rolled back.

¢ Transaction rolled back. This exception is thrown when the datastore rolls back a
transaction without the user asking for it. The cause may be a connection timeout,
an unrecoverable media error, an unrecoverable concurrency conflict, or other
cause outside the user’s control.

JDOObjectNotFoundException

This exception is to notify the application that an object does not exist in the datastore. It
is a derived class of JDODataStoreException. When this exception is thrown during
a transaction, there has been no change in the status of the transaction in progress. If this
exception is a nested exception thrown during commit, then the transaction is rolled back.
This exception is never the result of executing a query. The failedObject contains a ref-
erence to the failed instance. The failed instance is in the hollow state, and has an identity
which can be obtained by calling getObjectId with the instance as a parameter. This
might be used to determine the identity of the instance that cannot be found.

This exception is thrown when a hollow instance is being fetched and the object does not
exist in the datastore. This exception might result from the user executing getObjectBy-
Id with the validate parameter set to true, or from navigating to an object that no long-
er exists in the datastore.

JDOOptimisticVerificationException

This exception is the result of a user commit operation in an optimistic transaction where
the verification of new, modified, or deleted instances fails the verification. It is a derived
class of JDOFatalDataStoreException. This exception contains an array of nested ex-
ceptions, each of which contains an instance that failed verification. The user will never see
this exception except as a result of commit.

213 February 28, 2006

Java Data Objects 2.0

17.1.11 JDODetachedFieldAccessException

This exception is the result of a user accessing a field of a detached instance, where the field
was not copied to the detached instance. It is a derived class of JDOUserException.

| JDO 2.0 214 February 28, 2006

Java Data Objects 2.0

18

XML Metadata

JDO 2.0

This chapter specifies the metadata that describes a persistence-capable class, optionally
including its mapping to a relational database. The metadata is stored in XML format. For
implementations that support binary compatibility, the information must be available
when the class is enhanced, and might be cached by an implementation for use at runtime.
If the metadata is changed between enhancement and runtime, the behavior is unspeci-
fied.

NOTE: J2SE 5 introduced standard elements for defining the types of collections and
maps. Because of these features, programs compiled with suitable type information
might not need a separate file to describe type information.

Metadata annotations for persistence are being developed in JSR 220. When that speci-
fication is final, an update to the JDO specification to specify support for the annota-
tions will be made.

Metadata files must be available via resources loaded by the same class loader as the class.
These rules apply both to enhancement and to runtime. Hereinafter, the term "metadata”
refers to the aggregate of all XML data for all packages, classes, and mappings, regardless
of their physical packaging.

The metadata associated with each persistence capable class must be contained within one
or more files, and its format is defined by the DTD or xsd. If the metadata in a file is for
only one class, then its file name is <class-name>.jdo. If the metadata is for a package, or a
number of packages, then its file name is package.jdo. In this case, the file is located in one
of several directories: “META-INF”; “WEB-INF”; <none>, in which case the metadata file
name is "package.jdo" with no directory; “<package>/.../<package>", in which case the
metadata directory name is the partial or full package name with “package.jdo” as the file
name.

Metadata for all classes and interfaces found while processing metadata for any class or
interface must be remembered by the implementation.

Metadata for relational mapping might be contained in the same file as the persistence in-
formation, in which case the naming convention above is used. The mapping metadata
might be contained in a separate file, in which case the metadata file name suffix must be
specified in the PersistenceManagerFactory property javax.jdo.option.Map-
ping. This property is used to construct the file names for the mapping.

NOTE: If the javax.jdo.option.Mapping property is set, then mapping metadata
contained in the .jdo file is not used.

The extension .orm refers to “object repository metadata”. If the mapping is to a repository
type other than relational, the document type will be different, but the file naming conven-
tions are the same.

For example, if the value of javax.jdo.option.Mapping is “mySQL”, then the file
name for the metadata is <class-name>-mySQL.orm or package-mySQL.orm. Similar to
package.jdo, the package-mySQL.orm file is located in one of the following directories:
“META-INF”; “WEB-INF”; <none>, in which case the metadata file name is "package-

215 February 28, 2006

Java Data Objects 2.0

JDO 2.0

mySQL.orm" with no directory; “<package>/.../<package>", in which case the metadata
directory name is the partial or full package name with “package-mySQL.orm” as the file
name. If mapping metadata is for only one class, the name of the file is <package>/.../
<package>/<class-name>-mySQL.orm.

When metadata information is needed for a class, and the metadata for that class has not
already been loaded, the metadata is searched for as follows: META-INF/package.jdo,
WEB-INF/package.jdo, package.jdo, <package>/.../<package>/package.jdo, and <pack-
age>/<class>.jdo. Once metadata for a class has been loaded, the metadata will not be re-
placed in memory as long as the class is not garbage collected. Therefore, metadata
contained higher in the search order will always be used instead of metadata contained
lower in the search order.

Similarly, when mapping metadata information is needed for a class, and the mapping
metadata for that class has not already been loaded, the mapping metadata is searched for
as follows: META-INF/package-mySQL.orm, WEB-INF/package-mySQL.orm, package-
mySQL.orm, <package>/.../<package>/package-mySQL.orm, and <package>/.../
<package>/<class-name>-mySQL.orm. Once mapping metadata for a class has been load-
ed, it will not be replaced as long as the class is not garbage collected. Therefore, mapping
metadata contained higher in the search order will always be used instead of metadata
contained lower in the search order.

For example, if the persistence-capable class is com.xyz.Wombat, and there is a file "ME-
TA-INF/package.jdo" containing xml for this class, then its definition is used. If there is no
such file, but there is a file "WEB-INF/packagejdo" containing metadata for
com.xyz.Wombat, then it is used. If there is no such file, but there is a file "package.jdo"
containing metadata for com.xyz.Wombat, then it is used. If there is no such file, but there
is a file "com/package.jdo" containing metadata for com.xyz.Wombat, then it is used. If
there is no such file, but there is a file "com/xyz/package.jdo" containing metadata for
com.xyz.Wombat, then it is used. If there is no such file, but there is a file "com/xyz/
Wombat.jdo", then it is used. If there is no such file, then com.xyz.Wombat is not persis-
tence-capable.

Note that this search order is optimized for implementations that cache metadata informa-
tion as soon as it is encountered so as to optimize the number of file accesses needed to
load the metadata. Further, if metadata is not in the natural location, it might override
metadata that is in the natural location. For example, while looking for metadata for class
com.xyz.Wombat, the file com/package.jdo might contain metadata for class org.ac-
me.Grumpy. In this case, subsequent search of metadata for org.acme.Grumpy will find
the cached metadata and none of the usual locations for metadata will be searched.

The metadata must declare all persistence-capable classes. If any field or property decla-
rations are missing from the metadata, then field or property metadata is defaulted for the
missing declarations. The JDO implementation is able to determine based on the metadata
whether a class is persistence-capable or not. Any class not known to be persistence-capa-
ble by the JDO specification (for example, java.lang.Integer) and not explicitly named in
the metadata is not persistence-capable.

Classes and interfaces used in metadata follow the Java rules for naming. If the class or in-
terface name is unqualified, the package name is the name of the enclosing package. Inner
classes are identified by the “$” marker.

For compatibility with installed applications, a JDO implementation might first use the
search order as specified in the JDO 1.0 or 1.0.1 releases. In this case, if metadata is not
found, then the search order as specified in JDO 2.0 must be used. Refer to Chapter 25 for
details.

216 February 28, 2006

Java Data Objects 2.0

For convenience, the metadata allows for the same information to be declared in multiple
places. It is an error if conflicting information is declared in more than one place. For ex-
ample, the name of the column for a field might be declared either in the column attribute
on the field element, or in the name attribute in the column element contained in the field.
If declared in both places, the information must be identical or an error must be reported
by the JDO implementation.

Mapping to Relational Databases

Mapping is done by specifying associations from classes and interfaces to tables, and fields
to columns.

Tables are generally specified by name. Table names can be declared as "<database>.<cat-
alog>.<schema>.<table-name>", where database, catalog, and schema are optional. If not
specified in any metadata, catalog and schema are taken from the PersistenceMan-
agerFactory properties catalog and schema. If not specified in PersistenceMan-
agerFactory, they are defaulted by the JDBC connection.

Catalog and schema attributes apply to jdo, orm, package, class, and interface elements,
and specify the catalog and schema to be used when defining and using schema. If de-
clared at the jdo, orm, package, class or interface level, it specifies the catalog and /or sche-
ma to be used as the default for tables contained therein.

18.1

ELEMENT jdo

This element is the highest level element in the xml document. It is used to allow multiple
packages to be described in the same document. It contains multiple package and query
elements and optional extension elements.

18.2

ELEMENT package

This element includes all classes in a particular package. The complete qualified package
name defaults to the empty package, but it is highly recommended to specify it. It contains
multiple class and interface elements and optional extension elements.

18.3

JDO 2.0

ELEMENT interface

The interface element declares a persistence-capable interface. Instances of a vendor-
specific type that implement this interface can be created using the newInstance (Class
persistenceCapable) method in PersistenceManager, and these instances may be
made persistent.

The JDO implementation must maintain an extent for persistent instances of persistence-
capable classes that implement this interface.

The requires-extent attribute is optional. If set to “false”, the JDO implementation
does not need to support extents of factory-made persistent instances. It defaults to
“true”.

The attribute name is required, and is the name of the interface.

The attribute table is optional, and is the name of the table to be used to store persistent
instances of this interface.

The detachable attribute specifies whether persistent instances of this interface can be
detached from the persistence context and later attached to the same or a different persis-
tence context. The defaultis false.

217 February 28, 2006

Java Data Objects 2.0

Persistent fields declared in the interface are defined as those that have both a get and a
set method or both an is and a set method, named according to the JavaBeans naming
conventions, and of a type supported asa persistent type.

The implementing class will provide a suitable implementation for all property access
methods and will throw JDOUserException for all other methods of the interface.

This element might contain property elements to specify the mapping to relational col-
umns.

Interface inheritance is supported.

18.4

JDO 2.0

ELEMENT column

The column element identifies a column in a mapped table. This element is used for map-
ping fields, collection elements, array elements, keys, values, datastore identity, applica-
tion identity, and properties.

NOTE: Any time an element can contain a column element that is only used to name the
column, a column attribute can be used instead.

The name attribute declares the name of the column in the database. The name might be
fully qualified as <table-name>.<column-name> and <table-name> might be defaulted in
context.

The target attribute declares the name of the primary key column for the referenced ta-
ble. For columns contained in join elements, this is the name of the primary key column in
the primary table. For columns contained in field, element, key, value, or array elements,
the target attribute is the name of the primary key column of the primary table of the
other side of the relationship.

The target-field attribute might be used instead of the target attribute to declare the
name of the field to which the column refers. This is useful in cases where there are differ-
ent mappings of the referenced field in different subclasses.

The jdbc-type attribute is used to determine the type of the column in the database. This
type is defaulted based on the type of the field being mapped. Valid types are all upper-
case or all lower-case CHAR, VARCHAR, LONGVARCHAR, NUMERIC, DECIMAL, BIT,
TINYINT, SMALLINT, INTEGER, BIGINT, REAL, FLOAT, DOUBLE, BINARY, VARBI-
NARY, LONGVARBINARY, DATE, TIME, and TIMESTAMP, and others as may be de-
fined by future versions of the JDBC specification. This attribute is only needed if the
default type is not suitable.

The jdbc-type is also used when mapping element, key, value, and order elements
of collections, arrays, and maps. The java type for the column mapped to an order ele-
ment is assumed to be int.

For example, when mapping a Map<Integer, Employee> to ajoin table, the jdbc-type
for the column mapped to the key (Integer) will default to INTEGER, whereas there is no
default jdbc-type for the column mapped to the value (Employee).

218 February 28, 2006

Java Data Objects 2.0

JDO 2.0

Table 8: Default jdbc-type

Java type Default jdbc-type Comments
boolean BIT
java.lang.Boolean BIT
char CHAR
java.lang.Character CHAR
byte TINYINT
java.lang.Byte TINYINT
short SMALLINT
java.lang.Short SMALLINT
int INTEGER
java.lang.Integer INTEGER
long BIGINT
java.lang.Long BIGINT
float FLOAT
java.lang.Float FLOAT
double DOUBLE
java.lang.Double DOUBLE
java.util.Date TIMESTAMP
java.sql.Date DATE
java.sql.Time TIME
java.sql.Timestamp TIMESTAMP
java.lang.Object none
java.lang.String VARCHAR
java.util.Locale VARCHAR
java.util.Currency VARCHAR
java.math.BigInteger NUMERIC
java.math.BigDecimal DECIMAL
interfaces none

219

February 28, 2006

Java Data Objects 2.0

Table 8: Default jdbc-type

Java type Default jdbc-type Comments

mapped as serialized LONG VARBINARY

persistence-capable types | none

In many cases, the default for the jdbc-type attribute based on the field type is sufficient.
For cases where this information is used to create datastore schema, the jdo implementa-
tion is free to map the column type suitable for the datastore being used based on the spec-
ified jdbc-type, length, and scale.

The sgl-type attribute declares the type of the column in the database. This type is da-
tabase-specific and should only be used where the user needs more explicit control over
the mapping. Normally, the combination of jdbc-type. length, and scale are suffi-
cient for the JDO implementation to calculate the sql-type.

The length attribute declares the number of characters in the datastore representation of
numeric, char[], and Character[] types; and the maximum number of characters in
the datastore representation of String types. The default is 256.

The scale attribute declares the scale of the numeric representation in the database. The
default is 0.

The allows-null attribute specifies whether null values are allowed in the column,
and is defaulted based on the type of the field being mapped. The default is “true” for
reference field types and “false” for primitive field types.

The insert-value attribute specifies the value to be inserted into the datastore in case a
column is not mapped to any field in the object model. In this case, the column element
must be directly contained in a class element, and the column must not be mapped to a
field.

The default-value attribute specifies the database-assigned default value for the col-
umn if no value is explicitly assigned to the column on insert. Implementations might use
the value of this attribute to set the appropriate column default when generating schema.

18.5

JDO 2.0

ELEMENT class

The class element includes field elements declared in a persistence-capable class, and
optional vendor extensions.

The name attribute of the class is required. It specifies the unqualified class name of the
class. The class name is scoped by the name of the package in which the class element is
contained.

The persistence-modifier attribute specifies whether this class is persistence-capa-
ble, persistence-aware, or non-persistent. Persistence-aware and non-persistent classes
must not include any attributes or elements except for the name and persistence-mod-
ifier attributes. Declaring persistence-aware and non-persistent classes might provide a
performance improvement for enhancement and runtime, as the search algorithm for met-
data need not be exhaustive.

The detachable attribute specifies whether instances of this class can be detached from
the persistence context and later attached to the same or a different persistence context. If
a class is declared as detachable, then all its persistence-capable subclasses are also detach-
able. The defaultis false.

220 February 28, 2006

Java Data Objects 2.0

JDO 2.0

The embedded-only attribute declares whether instances of this class are permitted to
exist as first-class instances in the datastore. A value of “true” means that instances can
only be embedded in other first-class instances., and precludes mapping this class to its
own table.

The identity type of the least-derived persistence-capable class defines the identity type for
all persistence-capable classes that extend it.

The identity type of the least-derived persistence-capable class is defaulted to applica-
tionif any field declares the primary-key attribute to be t rue; and datastore, if not.
If the identity type is application, the object-id class is not specified, and there is one pri-
mary key field that matches the type of a single field identity class, then the object-id class
defaults to that single field identity class.

The requires-extent attribute specifies whether an extent must be managed for this
class. The PersistenceManager.getExtent method can be executed only for class-
es whose metadata attribute requires-extent is specified or defaults to true. If the
PersistenceManager.getExtent method is executed for a class whose metadata
specifies requires-extent as false, a JDOUserException is thrown. If re-
quires-extent is specified or defaults to true for a class, then requires-extent
must not be specified as false for any subclass.

Thepersistence-capable-superclass attribute is deprecated for this release. The
attribute will be ignored so metadata files from previous releases can be used.A number
of join elements might be contained in the class element. Each join element defines a
table and associated join conditions that can be used by multiple fields in the mapping.

The objectid-class attribute identifies the name of the objectid class. If not specified,
there must be only one primary key field, and the objectid-class defaults to the ap-
propriate simple identity class.

The objectid-class attribute is required only for abstract classes and classes with
multiple key fields. If the objectid-class attribute is defined in any concrete persis-
tence-capable class, then the objectid class itself must be concrete, and no subclass of the
persistence-capable class may include the objectid-class attribute. If the objec-
tid-class attribute is defined for any abstract class, then:

¢ the objectid class of this class must directly inherit Object or must be a subclass
of the objectid class of the most immediate abstract persistence-capable superclass
that defines an objectid class; and

¢ if the objectid class is abstract, the objectid class of this class must be a superclass
of the objectid class of the most immediate subclasses that define an objectid class;
and

¢ if the objectid class is concrete, no subclass of this persistence-capable class may
define an objectid class.

The effect of this is that objectid classes form an inheritance hierarchy corresponding to the
inheritance hierarchy of the persistence-capable classes. Associated with every concrete
persistence-capable class is exactly one objectid class.

The objectid class must declare fields identical in name and type to fields declared in this
class.

The table attribute names the primary table to which fields declared in this class metadata
are mapped.

Foreign keys, indexes, and join tables can be specified at the class level. If they are specified
at this level, column information might only be the names of the columns.

221 February 28, 2006

Java Data Objects 2.0

18.5.1

18.5.2

JDO 2.0

Column elements can be added to the class element to describe columns that are not
mapped to fields. In this case, the insert-value attribute can be used to specify the value to
insert into the column when a new instance is inserted into the datastore.

ELEMENT datastore-identity

The datastore-identity element declares the strategy for implementing datastore
identity for the class, including the mapping of the identity columns of the relational table.

The strategy attribute identifies the strategy for mapping.

® The value “native” allows the JDO implementation to pick the most suitable
strategy based on the underlying database.

* The value “sequence” specifies that a named database sequence is used to
generate key values for the table. If sequence is used, then the sequence
attribute is required.

* The value “autoassign” specifies that the column identified as the key column
is managed by the database to automatically increment key values.

* The value “identity” specifies that the column identified as the key column is
managed by the database as an identity type.

* The value “increment” specifies a strategy that simply finds the largest key
already in the database and increments the key value for new instances. It can be
used with integral column types when the JDO application is the only database
user inserting new instances.

* The value “uuid-string” specifies a strategy that generates a 128-bit UUID
unique within a network (the IP address of the machine running the application is
part of the id) and represents the result as a 16-character String.

* The value “uuid-hex” specifies a strategy that generates a 128-bit UUID unique
within a network (the IP address of the machine running the application is part of
the id) and represents the result as a 32-character String.

The sequence attribute names the sequence used to generate key values. This must cor-
respond to a named sequence in the JDO metadata. If this attribute is used, the strategy
defaults to “sequence”.

The column elements identify the primary key columns for the table in the database.

ELEMENT version

The version element is contained in the class element, and declares the version strate-
gy and optionally the column(s) used for the version strategy.

The strategy attribute defines the strategy for managing the version of an instance. Four
strategy attribute values are standard:

* none: no version checking is done; changed values overwrite values in the
datastore

* version-number: a rolling number is used as the version number
* state-image: the values of fields are used in aggregate as the version
* date-time: a clock timestamp (date-plus-time) value is used as the version

The column attribute declares the name of the column to hold the version. It is used in-
stead of the contained column element in case only the column name is needed.

222 February 28, 2006

Java Data Objects 2.0

The version element might contain one or more column elements that declare the col-
umns to use to hold the version.

18.6 ELEMENT primary-key
The primary-key element provides the mapping for the primary key constraint for the
table associated with the enclosing element (class, join, or interface). Its primary
use is to specify the name of the primary key constraint in case of Java-to-database map-
ping. In this case, the element is typically specified as:
<primary-key name="EMP_PK"/>
It is also optionally used to specify the column to be used for surrogate primary key with
application identity. In this case, the primary key fields do not provide the primary key of
the database. This mapping is not required to be supported by the JDO implementation.
For example:
<class name="Employee" identity-type="application">
<primary-key name="EMP_PK" column="SURR_PK"/>
</class>
It is also optionally used to specify the constraint name and column names of a primary
key constraint for tables associated with the class, such as join tables or secondary tables.
To specify the primary key constraint for a join table, the primary-key element is con-
tained within the join element. For example:
<field name="projects" table="EMP_PROJ">
<collection element-type="Project"/>
<join>
<primary-key name="EMP_PROJ_PK">
<column name="EMPID"/>
<column name="PROJID"/>
</primary-key>
<column name="EMPID" target="ID"/>
</join>
<element>
<column name="PROJID" target="ID"/>
</element>
</field>
If used to specify the primary key for a subclass using new-table inheritance strategy with
a join to the superclass table, the primary-key element is put at the class level and not in
the join element of the inheritance element.
18.7 ELEMENT join

The join element declares the table to be used in the mapping and the join conditions to
associate rows in the joined table to the primary table.

JDO 2.0 223 February 28, 2006

Java Data Objects 2.0

The table attribute specifies the name of the table in the case of secondary table mappings
(at least one table in addition to the primary table contain columns mapped to fields). In
this case, the join element is nested in the class element.

For join elements nested inside £ield elements, the table attribute is not allowed. The
table attribute from the field element specifies the table to which the join applies.

One or more column elements are contained within the join