
JavaTM Data Objects 2.0

JSR 243
Final

23 February 2006
Java Data Objects Expert Group

Specification Lead: Craig Russell,
Sun Microsystems Inc.

Technical comments:
jdo-comments@sun.com

Process comments:
community-process@sun.com
4140 Network Circle
Santa Clara, California 95054
408 276-5638 fax: 408 276-7191

Sun Microsystems, Inc.

Specification: JSR-000243 Java(tm) Data Objects ("Specification")

Version: 2.0

Status: Final Release

Release: 20 March 2006

Copyright 2006 SUN MICROSYSTEMS, INC.

4150 Network Circle, Santa Clara, California 95054, U.S.A

All rights reserved.

LIMITED LICENSE GRANTS

1. License for Evaluation Purposes. Sun hereby grants you a fully-paid,
non-exclusive, non-transferable, worldwide, limited license (without the right
to sublicense), under Sun's applicable intellectual property rights to view,
download, use and reproduce the Specification only for the purpose of internal
evaluation. This includes (i) developing applications intended to run on an
implementation of the Specification, provided that such applications do not
themselves implement any portion(s) of the Specification, and (ii) discussing
the Specification with any third party; and (iii) excerpting brief portions of
the Specification in oral or written communications which discuss the
Specification provided that such excerpts do not in the aggregate constitute a
significant portion of the Specification.

2. License for the Distribution of Compliant Implementations. Sun also grants
you a perpetual, non-exclusive, non-transferable, worldwide, fully paid-up,
royalty free, limited license (without the right to sublicense) under any
applicable copyrights or, subject to the provisions of subsection 4 below,
patent rights it may have covering the Specification to create and/or distribute
an Independent Implementation of the Specification that: (a) fully implements
the Specification including all its required interfaces and functionality; (b)
does not modify, subset, superset or otherwise extend the Licensor Name Space,
or include any public or protected packages, classes, Java interfaces, fields or
methods within the Licensor Name Space other than those required/authorized by
the Specification or Specifications being implemented; and (c) passes the
Technology Compatibility Kit (including satisfying the requirements of the
applicable TCK Users Guide) for such Specification ("Compliant Implementation").
In addition, the foregoing license is expressly conditioned on your not acting
outside its scope. No license is granted hereunder for any other purpose
(including, for example, modifying the Specification, other than to the extent
of your fair use rights, or distributing the Specification to third parties).
Also, no right, title, or interest in or to any trademarks, service marks, or
trade names of Sun or Sun's licensors, Sun or the Sun's licensors is granted

hereunder. Java, and Java-related logos, marks and names are trademarks or
registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

3. Pass-through Conditions. You need not include limitations (a)-(c) from the
previous paragraph or any other particular "pass through" requirements in any
license You grant concerning the use of your Independent Implementation or
products derived from it. However, except with respect to Independent
Implementations (and products derived from them) that satisfy limitations
(a)-(c) from the previous paragraph, You may neither: (a) grant or otherwise
pass through to your licensees any licenses under Sun's applicable intellectual
property rights; nor (b) authorize your licensees to make any claims concerning
their implementation's compliance with the Spec in question.

4. Reciprocity Concerning Patent Licenses.

a. With respect to any patent claims covered by the license granted under
subparagraph 2 above that would be infringed by all technically feasible
implementations of the Specification, such license is conditioned upon your
offering on fair, reasonable and non-discriminatory terms, to any party seeking
it from You, a perpetual, non-exclusive, non-transferable, worldwide license
under Your patent rights which are or would be infringed by all technically
feasible implementations of the Specification to develop, distribute and use a
Compliant Implementation.

b With respect to any patent claims owned by Sun and covered by the license
granted under subparagraph 2, whether or not their infringement can be avoided
in a technically feasible manner when implementing the Specification, such
license shall terminate with respect to such claims if You initiate a claim
against Sun that it has, in the course of performing its responsibilities as the
Sun, induced any other entity to infringe Your patent rights.

c Also with respect to any patent claims owned by Sun and covered by the license
granted under subparagraph, where the infringement of such claims can be avoided
in a technically feasible manner when implementing the Specification such
license, with respect to such claims, shall terminate if You initiate a claim
against Sun that its making, having made, using, offering to sell, selling or
importing a Compliant Implementation infringes Your patent rights.

5. Definitions. For the purposes of this Agreement: "Independent Implementation"
shall mean an implementation of the Specification that neither derives from any
of Sun's source code or binary code materials nor, except with an appropriate
and separate license from Sun, includes any of Sun's source code or binary code
materials; "Licensor Name Space" shall mean the public class or interface
declarations whose names begin with "java", "javax", "com.sun" or their
equivalents in any subsequent naming convention adopted by Sun through the Java
Community Process, or any recognized successors or replacements thereof; and
"Technology Compatibility Kit" or "TCK" shall mean the test suite and
accompanying TCK User's Guide provided by Sun which corresponds to the

Specification and that was available either (i) from Sun's 120 days before the
first release of Your Independent Implementation that allows its use for
commercial purposes, or (ii) more recently than 120 days from such release but
against which You elect to test Your implementation of the Specification.

This Agreement will terminate immediately without notice from Sun if you breach
the Agreement or act outside the scope of the licenses granted above.

DISCLAIMER OF WARRANTIES

THE SPECIFICATION IS PROVIDED "AS IS". SUN MAKES NO REPRESENTATIONS OR
WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT
(INCLUDING AS A CONSEQUENCE OF ANY PRACTICE OR IMPLEMENTATION OF THE
SPECIFICATION), OR THAT THE CONTENTS OF THE SPECIFICATION ARE SUITABLE FOR ANY
PURPOSE. This document does not represent any commitment to release or implement
any portion of the Specification in any product. In addition, the Specification
could include technical inaccuracies or typographical errors.

LIMITATION OF LIABILITY

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SUN OR ITS LICENSORS BE
LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUE, PROFITS OR
DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES,
HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF OR
RELATED IN ANY WAY TO YOUR HAVING, IMPELEMENTING OR OTHERWISE USING USING THE
SPECIFICATION, EVEN IF SUN AND/OR ITS LICENSORS HAVE BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

You will indemnify, hold harmless, and defend Sun and its licensors from any
claims arising or resulting from: (i) your use of the Specification; (ii) the
use or distribution of your Java application, applet and/or implementation;
and/or (iii) any claims that later versions or releases of any Specification
furnished to you are incompatible with the Specification provided to you under
this license.

RESTRICTED RIGHTS LEGEND

U.S. Government: If this Specification is being acquired by or on behalf of the
U.S. Government or by a U.S. Government prime contractor or subcontractor (at
any tier), then the Government's rights in the Software and accompanying
documentation shall be only as set forth in this license; this is in accordance
with 48 C.F.R. 227.7201 through 227.7202-4 (for Department of Defense (DoD)
acquisitions) and with 48 C.F.R. 2.101 and 12.212 (for non-DoD acquisitions).

REPORT

If you provide Sun with any comments or suggestions concerning the Specification
("Feedback"), you hereby: (i) agree that such Feedback is provided on a
non-proprietary and non-confidential basis, and (ii) grant Sun a perpetual,
non-exclusive, worldwide, fully paid-up, irrevocable license, with the right to
sublicense through multiple levels of sublicensees, to incorporate, disclose,
and use without limitation the Feedback for any purpose.

GENERAL TERMS

Any action related to this Agreement will be governed by California law and
controlling U.S. federal law. The U.N. Convention for the International Sale of
Goods and the choice of law rules of any jurisdiction will not apply.

The Specification is subject to U.S. export control laws and may be subject to
export or import regulations in other countries. Licensee agrees to comply
strictly with all such laws and regulations and acknowledges that it has the
responsibility to obtain such licenses to export, re-export or import as may be
required after delivery to Licensee.

This Agreement is the parties' entire agreement relating to its subject matter.
It supersedes all prior or contemporaneous oral or written communications,
proposals, conditions, representations and warranties and prevails over any
conflicting or additional terms of any quote, order, acknowledgment, or other
communication between the parties relating to its subject matter during the term
of this Agreement. No modification to this Agreement will be binding, unless in
writing and signed by an authorized representative of each party.

Rev. January, 2006

Acknowledgments

I have come to know Rick Cattell during many shared experiences in the Java database
standards arena. Rick is a Distinguished Engineer at Sun Microsystems and has been the
database guru and Enterprise Cardinal in the Java “Church” for many years. I am deeply
in his debt for his many contributions to JDO, both technical and organizational.

I want to thank the experts on the JDO expert group who contributed ideas, APIs, feed-
back, and other valuable input to the standard, especially Heiko Bobzin, Constantine
Plotnikov, Luca Garulli, Philip Conroy, Steve Johnson, Michael Birk, Michael Rowley,
Gordan Vosicki, and Martin McClure.

I want to recognize Michael Bouschen, David Jordan, David Ezzio, Dave Bristor, and Jeff
Norton for their careful review of JDO for consistency, readability, and usability. With-
out their contributions, JDO would not have been possible.

Since the publication of JDO 1.0, many people have contributed time, energy, and ideas
to the JDO effort. I want to recognize these significant contributors: Robin Roos, Abe
White, David Jordan, Michael Bouschen, Michael Watzek, Wes Biggs, Geoff Hendry,
Christian Romberg, David Tinker, Patrick Linskey, Bernhard Sporkmann, David Ezzio,
Dion Almaer, Dirk Bartels, Dirk Theune, Eric Samson, Gordan Vosicki, Keiron McCam-
mon, Matthew Adams, Oliver Kamps, Rod Johnson, Erik Bengtson, Andy Jefferson,
Michelle Caisse, and Joerg von Frantzius.

Java Data Objects 2.0
Table of Contents

1 Introduction . 22
1.1 Overview . 22
1.2 Scope . 23
1.3 Target Audience . 23
1.4 Organization . 23
1.5 Document Convention . 24
1.6 Terminology Convention . 24

2 Overview . 25
2.1 Definitions . 25

2.1.1 JDO common interfaces. 25
2.1.2 JDO in a managed environment. 26

Enterprise Information System (EIS) . 26
EIS Resource. 27
Resource Manager (RM) . 27
Connection . 27
Application Component . 27
Session Beans . 27
Message-driven Beans . 27
Entity Beans . 27
Helper objects . 27
Container. 27

2.2 Rationale . 28
2.3 Goals . 29

3 JDO Architecture . 31
3.1 Overview . 31
3.2 JDO Architecture . 32

3.2.1 Two tier usage . 32
3.2.2 Application server usage . 32

Resource Adapter . 32
Pooling . 33
Contracts . 33

4 Roles and Scenarios . 36
4.1 Roles . 36

4.1.1 Application Developer . 36
4.1.2 Application Component Provider . 36
4.1.3 Application Assembler . 36
4.1.4 Deployer. 37
4.1.5 System Administrator . 37
4.1.6 JDO Vendor . 37
4.1.7 Connector Provider . 37
4.1.8 Application Server Vendor . 37
4.1.9 Container Provider . 38
JDO 2.0 7 February 28, 2006

Java Data Objects 2.0
4.2 Scenario: Embedded calendar management system . 38
4.3 Scenario: Enterprise Calendar Manager . 39

5 Life Cycle of JDO Instances . 41
5.1 Overview . 41
5.2 Goals . 42
5.3 Architecture: . 42

JDO Instances . 42
JDO State Manager . 43
JDO Managed Fields . 43

5.4 JDO Identity . 43
Three Types of JDO identity . 44
Uniquing . 45
Change of identity. 45
JDO Identity Support . 45

5.4.1 Application (primary key) identity . 46
Compound Identity . 47

5.4.2 Single Field Identity. 47
5.4.3 Datastore identity . 49
5.4.4 Nondurable JDO identity . 49

5.5 Life Cycle States . 50
Datastore Transactions . 50

5.5.1 Transient (Required) . 51
5.5.2 Persistent-new (Required) . 51
5.5.3 Persistent-dirty (Required). 52
5.5.4 Hollow (Required) . 52
5.5.5 Persistent-clean (Required) . 53
5.5.6 Persistent-deleted (Required). 53
5.5.7 Persistent-new-deleted (Required). 53
5.5.8 Detached-clean (Required) . 54
5.5.9 Detached-dirty (Required) . 54

5.6 Nontransactional (Optional) . 54
5.6.1 Persistent-nontransactional (Optional) . 56
5.6.2 Persistent-nontransactional-dirty (Optional) . 57

5.7 Transient Transactional (Optional) . 58
5.7.1 Transient-clean (Optional) . 58
5.7.2 Transient-dirty (Optional) . 58

5.8 Optimistic Transactions (Optional) . 58
6 The Persistent Object Model . 68

6.1 Overview . 68
6.2 Goals . 69
6.3 Architecture . 69

Persistence-capable . 69
First Class Objects and Second Class Objects . 70
First Class Objects . 70
Second Class Objects . 70
Arrays . 71
JDO 2.0 8 February 28, 2006

Java Data Objects 2.0
Primitives . 72
Interfaces. 72

6.4 Field types of persistence-capable classes . 72
6.4.1 Nontransactional non-persistent fields. 72
6.4.2 Transactional non-persistent fields . 72
6.4.3 Persistent fields . 72

Precision of fields . 72
Primitive types . 73
Immutable Object Class types . 73
Mutable Object Class types . 73
Persistence-capable Class types . 73
Object Class type . 73
Collection Interface types . 74
Other Interface types. 74
Arrays . 74

6.5 Inheritance . 74
7 PersistenceCapable . 76

7.1 Persistence Manager . 76
7.2 Make Dirty . 77
7.3 JDO Identity . 77

7.3.1 Version. 77
7.4 Status interrogation . 78

7.4.1 Dirty . 78
7.4.2 Transactional . 78
7.4.3 Persistent . 78
7.4.4 New . 78
7.4.5 Deleted . 78
7.4.6 Detached . 78

7.5 New instance . 79
7.6 State Manager . 79
7.7 Replace Flags . 79
7.8 Replace Fields . 80
7.9 Provide Fields . 80
7.10 Copy Fields . 80
7.11 Static Fields . 80
7.12 JDO identity handling . 80

interface ObjectIdFieldSupplier . 82
interface ObjectIdFieldConsumer. 82
interface ObjectIdFieldManager . 82

7.13 Detachable . 82
8 JDOHelper . 84

8.1 Persistence Manager . 84
8.2 Make Dirty . 84
8.3 JDO Identity . 85
8.4 JDO Version . 85
8.5 Status interrogation . 85
JDO 2.0 9 February 28, 2006

Java Data Objects 2.0
8.5.1 Dirty . 85
8.5.2 Transactional . 85
8.5.3 Persistent . 86
8.5.4 New . 86
8.5.5 Deleted . 86
8.5.6 Detached . 86

8.6 PersistenceManagerFactory methods . 86
9 JDOImplHelper . 89

9.1 JDOImplHelper access . 89
9.2 Metadata access . 89
9.3 Persistence-capable instance factory . 90
9.4 Registration of PersistenceCapable classes . 90

9.4.1 Notification of PersistenceCapable class registrations . 90
RegisterClassEvent . 91
RegisterClassListener . 91

9.5 Security administration . 91
9.6 Application identity handling . 92
9.7 Persistence-capable class state interrogation . 92

10 InstanceCallbacks . 94
10.1 jdoPostLoad . 94
10.2 jdoPreStore . 94
10.3 jdoPreClear . 95
10.4 jdoPreDelete . 95
10.5 jdoPreDetach and jdoPostDetach . 95
10.6 jdoPreAttach and jdoPostAttach . 96

11 PersistenceManagerFactory . 97
11.1 Interface PersistenceManagerFactory . 97

Construction by Properties . 99
11.2 ConnectionFactory . 100
11.3 PersistenceManager access . 101
11.4 Close the PersistenceManagerFactory . 101
11.5 Non-configurable Properties . 102
11.6 Optional Feature Support . 102
11.7 Static Properties constructor . 104
11.8 Second-level cache management . 105

Evicting objects from the cache . 105
Pinning objects in the cache . 106
Unpinning objects in the cache . 106

11.9 Registering for life cycle events . 106
12 PersistenceManager . 107

12.1 Overview . 107
12.2 Goals . 107
12.3 Architecture: JDO PersistenceManager . 107
12.4 Threading . 108
12.5 Class Loaders . 108
JDO 2.0 10 February 28, 2006

Java Data Objects 2.0
12.6 Interface PersistenceManager . 109
State Transitions for persistent instances at close. 110
Null management . 110

12.6.1 Cache management . 110
12.6.2 Transaction factory interface . 112
12.6.3 Query factory interface . 112
12.6.4 Extent Management . 112

Extents of interfaces . 113
12.6.5 JDO Identity management . 113

Getting Multiple Persistent Instances . 115
Getting an Object by Class and Key. 115

12.6.6 Persistent instance factory . 116
12.6.7 JDO Instance life cycle management. 116

Make instances persistent . 116
Delete persistent instances . 117
Make instances transient . 118
Make instances transactional . 118
Make instances nontransactional . 119

12.6.8 Detaching and attaching instances . 119
Committing the transaction with DetachAllOnCommit . 119
Serializing Persistent Instances. 120
Explicit detach . 120
Behavior of Detached Instances . 121

12.7 Fetch Plan . 121
12.7.1 Fetch Groups . 122
12.7.2 MaxFetchDepth . 123
12.7.3 Root instances . 124
12.7.4 Recursion-depth . 124
12.7.5 The FetchPlan interface . 124
12.7.6 Defining fetch groups . 127

12.8 Flushing instances . 129
12.9 Transaction completion . 130
12.10 Multithreaded Synchronization . 130
12.11 User associated objects . 131
12.12 PersistenceManagerFactory . 131
12.13 ObjectId class management . 131
12.14 Sequence . 132
12.15 Life-cycle callbacks . 133

InstanceLifecycleEvent. 135
12.16 Access to internal datastore connection . 136

SQL Portability . 137
13 Transactions and Connections . 138

13.1 Overview . 138
13.2 Goals . 138
13.3 Architecture: PersistenceManager, Transactions, and Connections 138

Connection Management Scenarios . 139
JDO 2.0 11 February 28, 2006

Java Data Objects 2.0
Native Connection Management . 139
Non-native Connection Management . 140
Optimistic Transactions . 140

13.4 Interface Transaction . 141
13.4.1 PersistenceManager . 141
13.4.2 Transaction options . 141

Nontransactional access to persistent values . 141
Optimistic concurrency control . 141
Retain values at transaction commit . 142
Restore values at transaction rollback . 142

13.4.3 Synchronization . 142
13.4.4 Transaction demarcation . 143

Non-managed environment. 143
Managed environment . 144

13.4.5 RollbackOnly . 144
13.5 Optimistic transaction management . 145

14 Query . 147
14.1 Overview . 147
14.2 Goals . 147
14.3 Architecture: Query . 148
14.4 Namespaces in queries . 149

Keywords . 150
14.5 Query Factory in PersistenceManager interface . 150
14.6 Query Interface . 152

Persistence Manager . 152
Fetch Plan . 152
Query element binding . 153
Query options . 154
Query modification . 154
Query evaluation. 154
Query compilation . 154

14.6.1 Query execution . 155
14.6.2 Filter specification . 156
14.6.3 Parameter declaration . 160

Implicit parameter declaration . 161
14.6.4 Import statements. 161
14.6.5 Variable declaration . 161

Implicit variable declaration . 161
14.6.6 Ordering statement. 162
14.6.7 Closing Query results. 162
14.6.8 Limiting the Cardinality of the Query Result . 163
14.6.9 Specifying the Result of a Query (Projections, Aggregates) 163

Distinct results . 164
Named Result Expressions . 165
Aggregate Types . 165
Primitive Types. 165
JDO 2.0 12 February 28, 2006

Java Data Objects 2.0
Null Results. 165
Default Result . 165

14.6.10 Grouping Aggregate Results . 165
14.6.11 Specifying Uniqueness of the Query Result . 166

Default Unique setting . 166
14.6.12 Specifying the Class of the Result . 166

Result Class Requirements . 166
14.6.13 Single-string Query element binding. 167

14.7 SQL Queries . 168
14.7.1 Mapping Columns of SQL Queries to User-specified Result Classes. 170

14.8 Deletion by Query . 170
14.9 Extensions . 171
14.10 Examples: . 171

14.10.1 Basic query. 172
14.10.2 Basic query with ordering.. 172
14.10.3 Parameter passing. 172
14.10.4 Navigation through single-valued field. . 173
14.10.5 Navigation through multi-valued field. 173
14.10.6 Membership in a collection . 173
14.10.7 Projection of a Single Field . 174
14.10.8 Projection of Multiple Fields and Expressions . 174
14.10.9 Projection of Multiple Fields and Expressions into a Constructed instance . . . 175
14.10.10 Aggregation of a single Field. 176
14.10.11 Aggregation of Multiple Fields and Expressions . 176
14.10.12 Aggregation of Multiple fields with Grouping . 177
14.10.13 Selection of a Single Instance . 177
14.10.14 Selection of a Single Field . 177
14.10.15 Projection of “this” to User-defined Result Class with Matching Field 178
14.10.16 Projection of “this” to User-defined Result Class with Matching Method . . . 178
14.10.17 Projection of variables . 179
14.10.18 Deleting Multiple Instances . 180

15 Object-Relational Mapping . 181
Mapping Overview . 181
Mapping Strategies . 181

15.1 Column Elements . 182
15.1.1 Mapping single-valued fields to columns . 182

15.2 Join Condition . 183
15.2.1 Secondary Table mapping . 183
15.2.2 Map using join table . 185

15.3 Relationship Mapping . 187
Mapping Strategies . 187

15.3.1 Many-to-One using foreign key. 188
15.3.2 One-to-Many using foreign key. 189
15.3.3 Many-to-One and One-to-Many using mapped-by . 190
15.3.4 Many-to-One and One-to-Many using compound foreign key 191
15.3.5 Many-to-One and One-to-Many using Map<Department, String> 193
JDO 2.0 13 February 28, 2006

Java Data Objects 2.0
15.3.6 Many-to-One and One-to-Many using Map<String, Employee> 194
15.4 Embedding . 195

15.4.1 Mapping relationships using embedded, referenced, and join table 196
15.5 Foreign Key Constraints . 198

Delete Action, Update Action. 198
15.5.1 Many-to-One with foreign key constraint . 199

15.6 Indexes . 200
Unique Constraints . 201

15.6.1 Single-field and Compound Indexes . 201
15.7 Inheritance . 202
15.8 Versioning . 203

15.8.1 Inheritance with superclass-table and version . 203
15.8.2 Inheritance with new-table and version . 204
15.8.3 Inheritance with subclass-table . 206

16 Enterprise Java Beans . 208
16.1 Session Beans . 208

16.1.1 Stateless Session Bean with Container Managed Transactions. 209
16.1.2 Stateful Session Bean with Container Managed Transactions 209
16.1.3 Stateless Session Bean with Bean Managed Transactions 209
16.1.4 Stateful Session Bean with Bean Managed Transactions 210

16.2 Entity Beans . 210
17 JDO Exceptions . 211

17.1 JDOException . 211
17.1.1 JDOFatalException . 212
17.1.2 JDOCanRetryException. 212
17.1.3 JDOUnsupportedOptionException . 212
17.1.4 JDOUserException . 212
17.1.5 JDOFatalUserException . 213
17.1.6 JDOFatalInternalException . 213
17.1.7 JDODataStoreException . 213
17.1.8 JDOFatalDataStoreException . 213
17.1.9 JDOObjectNotFoundException . 213
17.1.10 JDOOptimisticVerificationException . 213
17.1.11 JDODetachedFieldAccessException . 214

18 XML Metadata . 215
Mapping to Relational Databases . 217

18.1 ELEMENT jdo . 217
18.2 ELEMENT package . 217
18.3 ELEMENT interface . 217
18.4 ELEMENT column . 218
18.5 ELEMENT class . 220

18.5.1 ELEMENT datastore-identity . 222
18.5.2 ELEMENT version . 222

18.6 ELEMENT primary-key . 223
18.7 ELEMENT join . 223
JDO 2.0 14 February 28, 2006

Java Data Objects 2.0
18.8 ELEMENT inheritance . 224
18.9 ELEMENT discriminator . 224
18.10 ELEMENT implements . 224
18.11 ELEMENT foreign-key . 225

18.11.1 ATTRIBUTE update-action . 225
18.11.2 ATTRIBUTE delete-action . 225
18.11.3 ATTRIBUTE deferred . 225
18.11.4 ATTRIBUTE name . 225

18.12 ELEMENT unique . 225
18.13 ELEMENT index . 226
18.14 ELEMENT property . 226
18.15 ELEMENT field . 226

Default persistence-modifier. 227
Embedded . 228
Column Mapping . 229
Foreign key . 230

18.15.1 ELEMENT collection . 230
18.15.2 ELEMENT map. 231
18.15.3 ELEMENT array . 231
18.15.4 ELEMENT embedded . 232
18.15.5 ELEMENT key . 232
18.15.6 ELEMENT value . 232
18.15.7 ELEMENT element . 233
18.15.8 ELEMENT order . 233

18.16 ELEMENT query . 233
18.17 ELEMENT sequence . 233
18.18 ELEMENT extension . 234
18.19 ELEMENT orm . 234
18.20 ELEMENT jdoquery . 234
18.21 The jdo Schema Descriptor . 234
18.22 The orm Schema Descriptor . 240
18.23 The jdoquery Schema Descriptor . 245
18.24 Example XML file . 246

19 Extent . 248
19.1 Overview . 248
19.2 Goals . 248
19.3 Interface Extent . 249

20 Portability Guidelines . 251
20.1 Optional Features . 251

20.1.1 Optimistic Transactions . 251
20.1.2 Nontransactional Read . 251
20.1.3 Nontransactional Write . 251
20.1.4 Transient Transactional . 251
20.1.5 RetainValues . 251
20.1.6 IgnoreCache . 251

20.2 Object Model . 251
JDO 2.0 15 February 28, 2006

Java Data Objects 2.0
20.3 JDO Identity . 252
20.4 PersistenceManager . 252
20.5 Query . 252
20.6 XML metadata . 253
20.7 Life cycle . 253
20.8 JDOHelper . 253
20.9 Transaction . 253
20.10 Binary Compatibility . 253

21 JDO Reference Enhancer . 254
21.1 Overview . 254
21.2 Goals . 254
21.3 Enhancement: Architecture . 255
21.4 Inheritance . 258
21.5 Field Numbering . 258
21.6 Serialization . 259
21.7 Cloning . 260
21.8 Introspection (Java core reflection) . 260
21.9 Field Modifiers . 261

21.9.1 Non-persistent . 261
21.9.2 Transactional non-persistent . 261
21.9.3 Persistent . 261
21.9.4 PrimaryKey . 262
21.9.5 Embedded . 262
21.9.6 Null-value . 262

21.10 Treatment of standard Java field modifiers . 262
21.10.1 Static . 262
21.10.2 Final . 263
21.10.3 Private . 263
21.10.4 Public, Protected . 263

21.11 Fetch Groups . 263
21.12 jdoFlags Definition . 263
21.13 Exceptions . 264
21.14 Modified field access . 264
21.15 Generated fields in least-derived PersistenceCapable class 265
21.16 Generated fields in all PersistenceCapable classes . 265

Generated static initializer . 266
21.17 Generated methods in least-derived PersistenceCapable class 266
21.18 Generated methods in PersistenceCapable root classes 268
21.19 Generated method in least-derived Detachable classes . 269
21.20 Generated methods in all PersistenceCapable classes . 269
21.21 Example class: Employee . 272

21.21.1 Generated fields . 272
21.21.2 Generated static initializer . 273
21.21.3 Generated interrogatives . 273
21.21.4 Generated jdoReplaceStateManager . 274
21.21.5 Generated jdoReplaceFlags . 275
JDO 2.0 16 February 28, 2006

Java Data Objects 2.0
21.21.6 Generated jdoNewInstance helpers . 275
21.21.7 Generated jdoGetManagedFieldCount . 275
21.21.8 Generated jdoGetXXX methods (one per persistent field) 276
21.21.9 Generated jdoSetXXX methods (one per persistent field) 277
21.21.10 Generated jdoReplaceField and jdoReplaceFields . 278
21.21.11 Generated jdoProvideField and jdoProvideFields . 279
21.21.12 Generated jdoCopyField and jdoCopyFields methods 280
21.21.13 Generated writeObject method . 281
21.21.14 Generated jdoPreSerialize method. 281
21.21.15 Generated jdoNewObjectIdInstance . 281
21.21.16 Generated jdoCopyKeyFieldsToObjectId . 282
21.21.17 Generated jdoCopyKeyFieldsFromObjectId . 282
21.21.18 Generated Detachable methods . 282

22 Interface StateManager . 284
22.1 Overview . 284

Clone support . 284
22.2 StateManager Management . 284
22.3 PersistenceManager Management . 285
22.4 Dirty management . 285
22.5 State queries . 285
22.6 JDO Identity . 286
22.7 Serialization support . 286
22.8 Field Management . 286

22.8.1 User-requested value of a field . 287
22.8.2 User-requested modification of a field . 287
22.8.3 StateManager-requested value of a field . 288
22.8.4 StateManager-requested modification of a field . 289

22.9 Detached instance support . 289
23 JDOPermission . 290
24 JDOQL BNF . 291

24.1 Grammar Notation . 291
24.2 Single-String JDOQL . 291
24.3 Filter Specification . 292
24.4 Parameter Declaration . 293
24.5 Variable Declaration . 294
24.6 Import Declaration . 294
24.7 Ordering Specification . 294
24.8 Result Specification . 295
24.9 Grouping Specification . 295
24.10 Types . 296
24.11 Literals . 296
24.12 Names . 297
24.13 Keywords . 297

25 Items Deferred to the Next Release . 299
25.1 Nested Transactions . 299
JDO 2.0 17 February 28, 2006

Java Data Objects 2.0
25.2 Savepoint, Undosavepoint . 299
25.3 Inter-PersistenceManager References . 299
25.4 Enhancer Invocation API . 299
25.5 Prefetch API . 299
25.6 BLOB/CLOB datatype support . 299
25.7 Managed (inverse) relationship support . 300
25.8 Case-Insensitive Query . 300
25.9 String conversion in Query . 300
25.10 Read-only fields . 300
25.11 Enumeration pattern . 300
25.12 Non-static inner classes . 301
25.13 Projections in query . 301
25.14 LogWriter support . 301
25.15 New Exceptions . 301
25.16 Distributed object support . 301
25.17 Object-Relational Mapping . 301

26 JDO 1.0.1 Metadata . 303
26.1 ELEMENT jdo . 304
26.2 ELEMENT package . 304
26.3 ELEMENT class . 304
26.4 ELEMENT field . 305

Default persistence-modifier. 305
26.4.1 ELEMENT collection . 306
26.4.2 ELEMENT map. 307
26.4.3 ELEMENT array . 307

26.5 ELEMENT extension . 307
26.6 The Document Type Descriptor . 307
26.7 Example XML file . 308

Appendix A: References . 310
Appendix B: Design Decisions . 311

B.1 Enhancer . 311
Appendix C: Revision History . 312

C.1 Changes since Draft 0.1 . 312
C.1 Changes since Draft 0.2 . 312
C.1 Changes since Draft 0.3 . 312
C.1 Changes since Draft 0.4 . 312
C.1 Changes since Draft 0.5 . 313
C.1 Changes since Draft 0.6 (Participant Review Draft) . 314
C.1 Changes since Draft 0.7 . 314
C.1 Changes since Draft 0.8 . 315
C.1 Changes since Draft 0.9 . 315
C.1 Changes since draft 0.91 . 316
C.1 Changes since draft 0.92 . 317
C.1 Changes since draft 0.93 . 317
C.1 Changes since draft 0.94 . 318
JDO 2.0 18 February 28, 2006

Java Data Objects 2.0
C.1 Changes since draft 0.95 (Proposed Final Draft) . 319
C.1 Changes since draft 0.96 . 319
C.1 Changes since draft 0.97 . 320
C.1 Changes since Approved Draft . 321
C.1 Changes since 1.0.1 . 323
C.1 Changes since Proposed Final Draft . 325
JDO 2.0 19 February 28, 2006

Java Data Objects 2.0

JDO 2.0 20 February 28, 2006

List of Tables
Which Enhancement Interface is Used .26
State Transitions .60
State interrogation. .78
Query Operators .158
Query Methods .159
Shape of Result (C is the candidate class) .167
Shape of Result of SQL Query .169
Default jdbc-type .219
Field access mediation .265

Java Data Objects 2.0

JDO 2.0 21 February 28, 2006

List of Figures
Figure 1: Standard plug-and-play between application programs and EISes using JDO. 29
Figure 2: Overview of non-managed JDO architecture . 31
Figure 3: Contracts between application server and native JDO resource adapter. 34
Figure 4: Contracts between application server and layered JDO implementation 35
Figure 5: Scenario: Embedded calendar manager . 38
Figure 6: Scenario: Enterprise Calendar Manager . 40
Figure 7: Life Cycle: New Persistent Instances . 63
Figure 8: Life Cycle: Transactional Access . 63
Figure 9: Life Cycle: Datastore Transactions . 64
Figure 10: Life Cycle: Optimistic Transactions . 64
Figure 11: Life Cycle: Access Outside Transactions . 64
Figure 12: Life Cycle: Transient TransactionalLife Cycle: Transient Transactional 65
Figure 13: Life Cycle: Detached. 65
Figure 14: JDO Instance State Transitions . 66
Figure 15: Instantiated persistent objects . 68
Figure 16: Transactions and Connections. 140

Java Data Objects 2.0
1 Introduction

Java is a language that defines a runtime environment in which user-defined classes exe-
cute. The instances of these user-defined classes might represent real world data. The data
might be stored in databases, file systems, or mainframe transaction processing systems.
These data sources are collectively referred to as Enterprise Information Systems (EIS).
Additionally, small footprint environments often require a way to manage persistent data
in local storage.

The data access techniques are different for each type of data source, and accessing the
data presents a challenge to application developers, who currently need to use a different
Application Programming Interface (API) for each type of data source.

This means that application developers need to learn at least two different languages to
develop business logic for these data sources: the Java programming language; and the
specialized data access language required by the data source.

Currently, aside from JDO, there are three Java standards for storing Java data persistent-
ly: serialization, JDBC, and Enterprise JavaBeans. Serialization preserves relationships
among a graph of Java objects, but does not support sharing among multiple users. JDBC
requires the user to explicitly manage the values of fields and map them into relational da-
tabase tables. Enterprise JavaBeans require a container in which to run.

Developers can be more productive if they focus on creating Java classes that implement
business logic, and use native Java classes to represent data from the data sources. Map-
ping between the Java classes and the data source, if necessary, can be done by an EIS do-
main expert.

JDO defines interfaces and classes to be used by application programmers when using
classes whose instances are to be stored in persistent storage (persistence-capable classes),
and specifies the contracts between suppliers of persistence-capable classes and the run-
time environment (which is part of the JDO Implementation).

The supplier of the JDO Implementation is hereinafter called the JDO vendor.

1.1 Overview

There are two major objectives of the JDO architecture: first, to provide application pro-
grammers a transparent Java-centric view of persistent information, including enterprise
data and locally stored data; and second, to enable pluggable implementations of data-
stores into application servers.

The Java Data Objects architecture defines a standard API to data contained in local stor-
age systems and heterogeneous enterprise information systems, such as ERP, mainframe
transaction processing and database systems. The architecture also refers to the Connector
architecture [see Appendix A reference 4] which defines a set of portable, scalable, secure,
and transactional mechanisms for the integration of EIS with an application server.
 JDO 2.0 22 February 28, 2006

Java Data Objects 2.0
This architecture enables a local storage expert, an enterprise information system (EIS)
vendor, or an EIS domain expert to provide a standard data view (JDO Implementation)
for the local data or EIS.

1.2 Scope

The JDO architecture defines a standard set of contracts between an application program-
mer and an JDO vendor. These contracts focus on the view of the Java instances of persis-
tence-capable classes.

JDO uses the Connector Architecture [see Appendix A reference 4] to specify the contract
between the JDO vendor and an application server. These contracts focus on the important
aspects of integration with heterogeneous enterprise information systems: instance man-
agement, connection management, and transaction management.

To provide transparent storage of local data, the JDO architecture does not require the
Connector Architecture in non-managed (non-application server) environments.

1.3 Target Audience

The target audience for this specification includes:

• application developers

• JDO vendors

• enterprise information system (EIS) vendors and EIS Connector providers

• container providers

• enterprise system integrators

• enterprise tool vendors

JDO defines two types of interfaces: the JDO API, of primary interest to application developers (the
JDO instance life cycle) and the JDO SPI, of primary interest to container providers and JDO ven-
dors. An italicized notice may appear at the end of a section, directing readers interested only in the
API side to skip to the next API-side section.

1.4 Organization

This document describes the rationale and goals for a standard architecture for specifying
the interface between an application developer and a local file system or EIS datastore. It
then elaborates the JDO architecture and its relationship to the Connector architecture.

The document next describes two typical JDO scenarios, one managed (application server)
and the other non-managed (local file storage). This chapter explains key roles and respon-
sibilities involved in the development and deployment of portable Java applications that
require persistent storage.

The document then details the prescriptive aspects of the architecture. It starts with the
JDO instance, which is the application programmer-visible part of the system. It then de-
tails the JDO PersistenceManager, which is the primary interface between a persis-
tence-aware application, focusing on the contracts between the application developer and
JDO implementation provider. Finally, the contracts for connection and transaction man-
agement between the JDO vendor and application server vendor are defined.
 JDO 2.0 23 February 28, 2006

Java Data Objects 2.0
1.5 Document Convention

A Palatino font is used for describing the JDO architecture.

A courier font is used for code fragments.

1.6 Terminology Convention

“Must” is used where the specified component is required to implement some interface or
action to be compliant with the specification.

“Might” is used where there is an implementation choice whether or how to implement a
method or function.

“Should” is used to describe objectives of the specification and recommended application
programming usage. If the recommended usage is not followed by applications, behavior
is non-portable, unexpected, or unspecified.

“Should” is also used where there is a recommended choice for possibly different imple-
mentation actions. If the recommended usage is not followed by implementations, ineffi-
ciencies might result.
 JDO 2.0 24 February 28, 2006

Java Data Objects 2.0
2 Overview

This chapter introduces key concepts that are required for an understanding of the JDO
architecture. It lays down a reference framework to facilitate a formal specification of the
JDO architecture in the subsequent chapters of this document.

2.1 Definitions

2.1.1 JDO common interfaces

JDO Instance

A JDO instance is a Java programming language instance of a Java class that implements
the application functions, and represents data in a local file system or enterprise datastore.
Without limitation, the data might come from a single datastore entity, or from a collection
of entities. For example, an entity might be a single object from an object database, a single
row of a relational database, the result of a relational database query consisting of several
rows, a merging of data from several tables in a relational database, or the result of execut-
ing a data retrieval API from an ERP system.

The objective of JDO is that most user-written classes, including both entity-type classes
and utility-type classes, might be persistence capable. The limitations are that the persis-
tent state of the class must be represented entirely by the state of its Java fields. Thus, sys-
tem-type classes such as System, Thread, Socket, File, and the like cannot be JDO
persistence-capable, but common user-defined classes can be.

JDO Implementation

A JDO implementation is a collection of classes that implement the JDO contracts. The JDO
implementation might be provided by an EIS vendor or by a third party vendor, collective-
ly known as JDO vendor. The third party might provide an implementation that is opti-
mized for a particular application domain, or might be a general purpose tool (such as a
relational mapping tool, embedded object database, or enterprise object database).

The primary interface to the application is PersistenceManager, with interfaces Que-
ry and Transaction playing supporting roles for application control of the execution
environment.

JDO Enhancer

To use persistence-capable classes with binary-compatible JDO implementations, the
classes must implement the PersistenceCapable contract, which includes implement-
ing the javax.jdo.spi.PersistenceCapable contract, as well as adding other meth-
ods including static registration methods. This contract enables management of classes
including transparent loading and storing of the fields of their persistent instances. A JDO
enhancer, or byte code enhancer, is a program that modifies the byte codes of application-
component Java class files to implement this interface.

The JDO reference implementation (reference enhancement) contains an approach for the
enhancement of Java class files to allow for enhanced class files to be shared among several
coresident JDO implementations.
 JDO 2.0 25 February 28, 2006

Java Data Objects 2.0
There are alternative approaches to byte code enhancement for having the classes imple-
ment the PersistenceCapable contract. These include preprocessing or code genera-
tion. If one of these alternatives is used instead of byte code enhancement, the
PersistenceCapable contract is implemented explicitly.

A JDO implementation is free to extend the Reference Enhancement contract with imple-
mentation-specific methods and fields that might be used by its runtime environment.

Binary Compatibility

A JDO implementation may optionally choose to support binary compatibility with other
JDO implementations by supporting the PersistenceCapable contract for persistence-
capable classes. If it does, then enhanced classes produced by another implementation or
by the reference enhancer must be supported according to the following requirements.

• classes enhanced by the reference enhancer must be usable by any JDO compliant
implementation that supports BinaryCompatibility;

• classes enhanced by a JDO compliant implementation must be usable by the
reference implementation; and

• classes enhanced by a JDO compliant implementation must be usable by any other
JDO compliant implementation that supports BinaryCompatibility.

The following table determines which interface is used by a JDO implementation based on

the enhancement of the persistence-capable class. For example, if Vendor A runtime de-
tects that the class was enhanced by its own enhancement, then the runtime will use its en-
hancement contract. Otherwise, it will use the Reference Enhancement contract.

Readers primarily interested in JDO as a local persistence mechanism can ignore the following sec-
tion, as it details architectural features not relevant to local environments. Skip to 2.2 – Rationale.

2.1.2 JDO in a managed environment

This discussion provides a bridge to the Connector architecture, which JDO uses for transaction and
connection management in application server environments.

Enterprise Information System (EIS)

An EIS provides the information infrastructure for an enterprise. An EIS offers a set of ser-
vices to its clients. These services are exposed to clients as local and/or remote interfaces.
Examples of EIS include:

• relational database system;

• object database system;

• ERP system; and

• mainframe transaction processing system.

Table 1: Which Enhancement Interface is Used

Reference Runtime Vendor A Runtime Vendor B Runtime

Reference Enhancer Reference Enhancement Reference Enhancement Reference Enhancement

Vendor A Enhancer Reference Enhancement Vendor A Enhancement Reference Enhancement

Vendor B Enhancer Reference Enhancement Reference Enhancement Vendor B Enhancement
 JDO 2.0 26 February 28, 2006

Java Data Objects 2.0
EIS Resource

An EIS resource provides EIS-specific functionality to its clients. Examples are:

• a record or set of records in a database system;

• a business object in an ERP system; and

• a transaction program in a transaction processing system

Resource Manager (RM)

A resource manager manages a set of shared resources. A client requests access to a re-
source manager to use its managed resources. A transactional resource manager can par-
ticipate in transactions that are externally controlled and coordinated by a transaction
manager.

Connection

A connection provides connectivity to a resource manager. It enables an application client
to connect to a resource manager, perform transactions, and access services provided by
that resource manager. A connection can be either transactional or non-transactional. Ex-
amples include a database connection and a SAP R/3 connection.

Application Component

An application component can be a server-side component, such as an EJB, JSP, or servlet,
that is deployed, managed and executed on an application server. It can be a component
executed on the web-client tier but made available to the web-client by an application serv-
er, such as a Java applet, or DHTML page. It might also be an embedded component exe-
cuted in a small footprint device using flash memory for persistent storage.

Session Beans

Session objects are EJB application components that execute on behalf of a single client,
might be transaction aware, might update data in an underlying datastore, and do not di-
rectly represent data in the datastore.

Message-driven Beans

Message-driven beans are EJB application components that execute on behalf of a single
client in response to an incoming message, might be transaction aware, might update data
in an underlying datastore, and do not directly represent data in the datastore.

Entity Beans

Entity objects are EJB application components that provide an object view of transactional
data in an underlying datastore, allow shared access from multiple users, including ses-
sion objects and remote clients, and directly represent data in the datastore.

Helper objects

Helper objects are application components that provide an object view of data in an un-
derlying datastore, allow transactionally consistent view of data in multiple transactions,
are usable by local session and entity beans, but do not have a remote interface.

Container

A container is a part of an application server that provides deployment and runtime sup-
port for application components. It provides a federated view of the underlying applica-
tion server services for the application components. For more details on different types of
standard containers, refer to Enterprise JavaBeans (EJB) [see Appendix A reference 1], Java
Server Pages (JSP), and Servlets specifications.
 JDO 2.0 27 February 28, 2006

Java Data Objects 2.0
2.2 Rationale

There is no existing Java platform specification that proposes a standard architecture for
storing the state of Java objects persistently in transactional datastores.

The JDO architecture offers a Java solution to the problem of presenting a consistent view
of data from the large number of application programs and enterprise information sys-
tems already in existence. By using the JDO architecture, it is not necessary for application
component vendors to customize their products for each type of datastore.

This architecture enables an EIS vendor to provide a standard data access interface for its
EIS. The JDO implementation is plugged into an application server and provides underly-
ing infrastructure for integration between the EIS and application components.

Similarly, a third party vendor can provide a standard data access interface for locally
managed data such as would be found in an embedded device.

An application component vendor extends its system only once to support the JDO archi-
tecture and then exploits multiple data sources. Likewise, an EIS vendor provides one
standard JDO implementation and it has the capability to work with any application com-
ponent that uses the JDO architecture.

The Figure 1.0 on page 29 shows that an application component can plug into multiple
JDO implementations. Similarly, multiple JDO implementations for different EISes can
plug into an application component. This standard plug-and-play is made possible
through the JDO architecture.
 JDO 2.0 28 February 28, 2006

Java Data Objects 2.0
Figure 1.0 Standard plug-and-play between application programs and EISes using JDO

2.3 Goals

The JDO architecture has been designed with the following goals:

• The JDO architecture provides a transparent interface for application component
and helper class developers to store data without learning a new data access
language for each type of persistent data storage.

• The JDO architecture simplifies the development of scalable, secure and
transactional JDO implementations for a wide range of EISes — ERP systems,
database systems, mainframe-based transaction processing systems.

• The JDO architecture is implementable for a wide range of heterogeneous local file
systems and EISes. The intent is that there will be various implementation choices
for different EIS—each choice based on possibly application-specific
characteristics and mechanisms of a mapping to an underlying EIS.

• The JDO architecture is suitable for a wide range of uses from embedded small
footprint systems to large scale enterprise application servers. This architecture
provides for exploitation of critical performance features from the underlying EIS,
such as query evaluation and relationship management.

Enterprise Information
Application Programs System

Application Program

JDO

JDO

Application program/EJB container

JDO implementation provided by JDO vendor

Legend:

implementations

implementation

Systems

Enterprise Information
 JDO 2.0 29 February 28, 2006

Java Data Objects 2.0
• The JDO architecture uses the J2EE Connector Architecture to make it applicable
to all J2EE platform compliant application servers from multiple vendors.

• The JDO architecture makes it easy for application component developers to use
the Java programming model to model the application domain and transparently
retrieve and store data from various EIS systems.

• The JDO architecture defines contracts and responsibilities for various roles that
provide pieces for standard connectivity to an EIS. This enables a standard JDO
implementation from a EIS or third party vendor to be pluggable across multiple
application servers.

• The connector architecture also enables an application programmer in a non-
managed application environment to directly use the JDO implementation to
access the underlying file system or EIS. This is in addition to a managed access to
an EIS with the JDO implementation deployed in the middle-tier application
server. In the former case, application programmers will not rely on the services
offered by a middle-tier application server for security, transaction, and
connection management, but will be responsible for managing these system-level
aspects by using the EIS connector.
 JDO 2.0 30 February 28, 2006

Java Data Objects 2.0
3 JDO Architecture

3.1 Overview

Multiple JDO implementations - possibly multiple implementations per type of EIS or lo-
cal storage - are pluggable into an application server or usable directly in a two tier or em-
bedded architecture. This enables application components, deployed either on a middle-
tier application server or on a client-tier, to access the underlying datastores using a con-
sistent Java-centric view of data. The JDO implementation provides the necessary map-
ping from Java objects into the special data types and relationships of the underlying
datastore.

Figure 2.0 Overview of non-managed JDO architecture

In a non-managed environment, the JDO implementation hides the EIS specific issues such
as data type mapping, relationship mapping, and data retrieval and storage. The applica-
tion component sees only the Java view of the data organized into classes with relation-
ships and collections presented as native Java constructs.

Managed environments additionally provide transparency for the application compo-
nents’ use of system-level mechanisms - distributed transactions, security, and connection
management, by hiding the contracts between the application server and JDO implemen-
tations.

Enterprise Information

Local Persistent
Storage

System

JDO PersistenceManager

JDO PersistenceManager

Application

transient
instance

transient
instance

transient
instance

Java Virtual Machine

JDO instance
JDO instance

JDO instance
JDO instance

JDO instance
JDO instance

JDO instance
JDO instance

Query

Transaction

Transaction

Query
 JDO 2.0 31 February 28, 2006

Java Data Objects 2.0
With both managed and non-managed environments, an application component develop-
er focuses on the development of business and presentation logic for the application com-
ponents without getting involved in the issues related to connectivity with a specific EIS.

3.2 JDO Architecture

3.2.1 Two tier usage

For simple two tier usage, JDO exposes to the application component two primary inter-
faces: javax.jdo.PersistenceManager, from which services are requested; and
javax.jdo.JDOHelper, which provides the bootstrap and management view of user-
defined persistence-capable classes.

The PersistenceManager interface provides services such as query management,
transaction management, and life cycle management for instances of persistence-capable
classes.

The JDOHelper class provides services such as bootstrap methods to acquire an instance
of PersistenceManagerFactory and life cycle state interrogation for instances of per-
sistence-capable classes.

Readers primarily interested in JDO as a local persistence mechanism can ignore the following sec-
tions. Skip to 4 – Roles and Scenarios.

3.2.2 Application server usage

For application server usage, the JDO architecture uses the J2EE Connector architecture,
which defines a standard set of system-level contracts between the application server and
EIS connectors. These system-level contracts are implemented in a resource adapter from
the EIS side.

The JDO persistence manager is a caching manager as defined by the J2EE Connector ar-
chitecture, that might use either its own (native) resource adapter or a third party resource
adapter. If the JDO PersistenceManager has its own resource adapter, then imple-
mentations of the system-level contracts specified in the J2EE Connector architecture must
be provided by the JDO vendor. These contracts include ManagedConnectionFacto-
ry, XAResource, and LocalTransaction interfaces.

The JDO Transaction must implement the Synchronization interface so that trans-
action completion events can cause flushing of state through the underlying connector to
the EIS.

The application components are unable to distinguish between JDO implementations that
use native resource adapters and JDO implementations that use third party resource
adapters. However, the deployer will need to understand that there are two configurable
components: the JDO PersistenceManager and its underlying resource adapter.

For convenience, the PersistenceManagerFactory provides the interface necessary
to configure the underlying resource adapter.

Resource Adapter

A resource adapter provided by the JDO vendor is called a native resource adapter, and
the interface is specific to the JDO vendor. It is a system-level software driver that is used
by an application server or an application client to connect to a resource manager.

The resource adapter plugs into a container (provided by the application server). The ap-
plication components deployed on the container then use the client API exposed by jav-
ax.jdo.PersistenceManager to access the JDO PersistenceManager. The JDO
 JDO 2.0 32 February 28, 2006

Java Data Objects 2.0
implementation in turn uses the underlying resource adapter interface specific to the
datastore. The resource adapter and application server collaborate to provide the underly-
ing mechanisms - transactions, security and connection pooling - for connectivity to the
EIS.

The resource adapter is located within the same VM as the JDO implementation using it.
Examples of JDO native resource adapters are:

• Object/Relational (O/R) products that use their own native drivers to connect to
object relational databases

• Object Database (OODBMS) products that store Java objects directly in object
databases

Examples of non-native resource adapter implementations are:

• O/R mapping products that use JDBC drivers to connect to relational databases

• Hierarchical mapping products that use mainframe connectivity tools to connect
to hierarchical transactional systems

Pooling

There are two levels of pooling in the JDO architecture. JDO PersistenceManagers
might be pooled, and the underlying connections to the datastores might be independent-
ly pooled.

Pooling of the connections is governed by the Connector Architecture contracts. Pooling
of PersistenceManagers is an optional feature of the JDO Implementation, and is not
standardized for two-tier applications. For managed environments, PersistenceMan-
ager pooling is required to maintain correct transaction associations with Persis-
tenceManagers.

For example, a JDO PersistenceManager instance might be bound to a session run-
ning a long duration optimistic transaction. This instance cannot be used by any other user
for the duration of the optimistic transaction.

During the execution of a business method associated with the session, a connection might
be required to fetch data from the datastore. The PersistenceManager will request a
connection from the connection pool to satisfy the request. Upon termination of the busi-
ness method, the connection is returned to the pool but the PersistenceManager re-
mains bound to the session.

After completion of the optimistic transaction, the PersistenceManager instance
might be returned to the pool and reused for a subsequent transaction.

Contracts

JDO specifies the application level contract between the application components and the
JDO PersistenceManager.

The J2EE Connector architecture specifies the standard contracts between application
servers and an EIS connector used by a JDO implementation. These contracts are required
for a JDO implementation to be used in an application server environment. The Connector
architecture defines important aspects of integration: connection management, transaction
management, and security.

The connection management contracts are implemented by the EIS resource adapter
(which might include a JDO native resource adapter).

The transaction management contract is between the transaction manager (logically dis-
tinct from the application server) and the connection manager. It supports distributed
 JDO 2.0 33 February 28, 2006

Java Data Objects 2.0
transactions across multiple application servers and heterogeneous data management pro-
grams.

The security contract is required for secure access by the JDO connection to the underlying
datastore.

Figure 3.0 Contracts between application server and native JDO resource adapter

Application
Component

Container

Transaction Manager

JDO Native

Adapter

Application Server

JDO data

Connection
Management

contract

Security
contract

JDO API

Transaction
contract

Resource

store
 JDO 2.0 34 February 28, 2006

Java Data Objects 2.0
Figure 4.0 Contracts between application server and layered JDO implementation

The above diagram illustrates the relationship between a JDO implementation provided by a third
party vendor and an EIS-provided resource adapter.

Application
Component

Container

Transaction Manager

Resource

Adapter

Application Server

Resource
Manager

XAResource

Synchronization
contract

JDO API EIS-
specific
APIs

JDO implementation

(EIS datastore)

Connector Contracts
(e.g. ManagedConnection)
 JDO 2.0 35 February 28, 2006

Java Data Objects 2.0
4 Roles and Scenarios

4.1 Roles

This chapter describes roles required for the development and deployment of applications
built using the JDO architecture. The goal is to identify the nature of the work specific to
each role so that the contracts specific to each role can be implemented on each side of the
contracts.

The detailed contracts are specified in other chapters of this specification. The specific in-
tent here is to identify the primary users and implementors of these contracts.

4.1.1 Application Developer

The application developer writes software to the JDO API. The JDO application developer
does not have to be an expert in the technology related to a specific datastore.

4.1.2 Application Component Provider

The application component provider produces an application library that implements ap-
plication functionality through Java classes with business methods that store data persis-
tently in one or more EISes through the JDO API.

There are two types of application components that interact with JDO. JDO-transparent
application components, typically helper classes, are those that use JDO to have their state
stored in a transactional datastore, and directly access other components by references of
their fields. Thus, they do not need to use JDO APIs directly.

JDO-aware application components (message-driven beans and session beans) use servic-
es of JDO by directly accessing its API. These components use JDO query facilities to re-
trieve collections of JDO instances from the datastore, make specific instances persistent in
a particular datastore, delete specific persistent instances from the datastore, interrogate
the cached state of JDO instances, or explicitly manage the cache of the JDO Persis-
tenceManager. These application components are non-transparent users of JDO.

Session beans that use helper JDO classes interact directly with PersistenceManager
and JDOHelper. They can use the life cycle methods and query factory methods, while
ignoring the transaction demarcation methods if they use container-managed transac-
tions.

The output of the application component provider is a set of jar files containing application
components.

4.1.3 Application Assembler

The application assembler is a domain expert who assembles application components
from multiple sources including in-house developers and application library vendors. The
application assembler can combine different types of application components, for example
EJBs, servlets, or JSPs, into a single end-user-visible application.
 JDO 2.0 36 February 28, 2006

Java Data Objects 2.0
The input of the application assembler is one or more jar files, produced by application
component providers. The output is one or more jar files with deployment specific de-
scriptions.

4.1.4 Deployer

The deployer is responsible for configuring assembled components into specific opera-
tional environments. The deployer resolves all external references from components to
other components or to the operational system.

For example, the deployer will bind application components in specific operating environ-
ments to datastores in those environments, and will resolve references from one applica-
tion component to another. This typically involves using container-provided tools.

The deployer must understand, and be able to define, security roles, transactions, and con-
nection pooling protocols for multiple datastores, application components, and contain-
ers.

4.1.5 System Administrator

The system administrator manages the configuration and administration of multiple con-
tainers, resource adapters and EISs that combine into an operational system.

Readers primarily interested in developing applications with the JDO API can ignore the following
sections. Skip to 4.2 – Scenario: Embedded calendar management system.

4.1.6 JDO Vendor

The JDO vendor is an expert in the technology related to a specific datastore and is respon-
sible for providing a JDO SPI implementation for that specific datastore. Since this role is
highly datastore specific, a datastore vendor will often provide the standard JDO imple-
mentation.

A vendor can also provide a JDO implementation and associated set of application devel-
opment tools through a loose coupling with a specific third party datastore. Such provid-
ers specialize in writing connectors and related tools for a specific EIS or might provide a
more general tool for a large number of datastores.

The JDO vendor requires that the EIS vendor has implemented the J2EE Connector archi-
tecture and the role of the JDO implementation is that of a synchronization adapter to the
connector architecture.

Readers primarily interested in JDO as a local persistence mechanism can ignore the following sec-
tion. Skip to 4.2 – Scenario: Embedded calendar management system.

4.1.7 Connector Provider

The connector provider is typically the vendor of the EIS or datastore, and is responsible
for supplying a library of interface implementations that satisfy the resource adapter inter-
face.

In the JDO architecture, the Connector is a separate component, supplied by either the JDO
vendor or by an EIS vendor or third party.

4.1.8 Application Server Vendor

An application server vendor [see Appendix A reference 1], provides an implementation
of a J2EE compliant application server that provides support for component-based enter-
prise applications. A typical application server vendor is an OS vendor, middleware ven-
dor, or database vendor.
 JDO 2.0 37 February 28, 2006

Java Data Objects 2.0
The role of application server vendor will typically be the same as that of the container pro-
vider.

4.1.9 Container Provider

For bean-managed persistence, the container provides deployed application components
with transaction and security management, distribution of clients, scalable management
of resources and other services that are generally required as part of a managed server
platform.

4.2 Scenario: Embedded calendar management system

This section describes a scenario to illustrate the use of JDO architecture in an embedded
mobile device such as a personal information manager (PIM) or telephone.

Figure 5.0 Scenario: Embedded calendar manager

Sven’s Phones is a manufacturer of high function telephones for the traveling businessper-
son. They have implemented a Java operating environment that provides persistence via
a Java file I/O subsystem that writes to flash RAM.

Apache Persistware is a supplier of JDO software that has a small footprint and as such, is
especially suited for embedded devices such as personal digital assistants and telephones.
They use Java file I/O to store JDO instances persistently.

Calendars-R-Us is a supplier of appointment and calendar software that is written for sev-
eral operating environments, from high function telephones to desktop workstations and
enterprise application servers.

Calendars-R-Us uses the JDO API directly to manage calendar appointments on behalf of
the user. The calendar application needs to insert, delete, and change calendar appoint-
ments based on the user’s keypad input. It uses Java application domain classes: Ap-

Flash RAM

Telephone JVM

File Manager

JDO

implementation

Java File

I/O APIs

Calendar

Manager

Application JDO

API

Calendars-R-Us Apache Persistware Sven’s Phones
 JDO 2.0 38 February 28, 2006

Java Data Objects 2.0
pointment, Contact, Note, Reminder, Location, and TelephoneNumber. It
employs JDK library classes: Time, Date, ArrayList, and Calendar.

Calendars-R-Us previously used Java file I/O APIs directly, but ran into several difficul-
ties. The most efficient storage for some environments was an indexed file system, which
was required only for management of thousands of entries. However, when they ported
the application to the telephone, the indexed file system was too resource-intensive, and
had to be abandoned.

They then wrote a data access manager for sequential files, but found that it burned out
the flash RAM due to too much rewriting of data. They concluded that they needed to use
the services of another software provider who specialized in persistence for flash RAM in
embedded devices.

Apache Persistware developed a file access manager based on the Berkeley File System
and successfully sold it to a range of Java customers from embedded devices to worksta-
tions. The interface was proprietary, which meant that every new sale was a challenge, be-
cause customers were loath to invest resources in learning a different interface for each
environment they wanted to support. After all, Java was portable. Why wasn’t file access?

Sven’s Phones was a successful supplier of telephones to the mobile professional, but
found themselves constrained by a lack of software developers. They wanted to offer a
platform on which specially tailored software from multiple vendors could operate, and
take advantage of external developers to write software for their telephones.

The solution to all of these issues was to separate the software into components that could
be tailored by the domain expert for each component.

Sven’s phones implemented the Java runtime environment for their phones, and wrote an
efficient sequential file I/O manager that implemented the Java file I/O interface. This in-
terface was used by Apache Persistware to build a JDO implementation, including a JDO
instance handler and a JDO query manager.

Using the JDO interface, Calendars-R-Us rewrote just the query part of their software. The
application classes did not have to be changed. Only the persistence interface that queried
for specific instances needed to be modified.

Readers primarily interested in JDO as a local persistence mechanism can ignore the following sec-
tion. Skip to 5 – Life Cycle of JDO Instances.

4.3 Scenario: Enterprise Calendar Manager

Calendars-R-Us also supports workstations and enterprise mainframes with their calen-
dar software, and they use the same interface for persistence in all environments. For en-
terprise environments, they simply need to use a different JDO implementation supplied
by a different vendor to achieve persistence for their calendar objects.
 JDO 2.0 39 February 28, 2006

Java Data Objects 2.0
Figure 6.0 Scenario: Enterprise Calendar Manager

In this scenario, the JDO implementation is provided by a vendor that maps Java objects
to relational databases. The implementation uses a JCA Resource Adapter to connect to the
datastore.

The JDO PersistenceManager is a caching manager, as defined by the Connector ar-
chitecture, and it is configured to use a JCA Resource Adapter. The PersistenceMan-
ager instance might be cached when used with a Session Bean, and might be serially
reused for multiple session beans.

Multiple JDO PersistenceManager instances might serially reuse connections from
the same pool of JDBC drivers. Therefore, resource sharing is accomplished while main-
taining state for each session.

JDO

implementation

Calendar

Manager

Session Bean, JDO

API

Application Server

Container

 Entity Beans

Database

JCA

Transaction Manager

Resource
Adapter
 JDO 2.0 40 February 28, 2006

Java Data Objects 2.0
5 Life Cycle of JDO Instances

This chapter specifies the life cycle for persistence capable class instances, hereinafter
“JDO instances”. The classes include behavior as specified by the class (bean) developer,
and for binary compatible implementations, additional behavior as provided by the refer-
ence enhancer or JDO vendor’s deployment tool. The enhancement of the classes allows
application developers to treat JDO instances as if they were normal instances, with auto-
matic fetching of persistent state from the JDO implementation.

5.1 Overview

JDO instances might be transient, detached, or persistent. That is, they might represent the
persistent state of data contained in a transactional datastore. If a JDO instance is transient
(and not transactional), then the instance behaves exactly like an ordinary instance of the
persistence capable class.

If a JDO instance is persistent, its behavior is linked to the transactional datastore with
which it is associated. The JDO implementation automatically tracks changes made to the
values in the instance, and automatically refreshes values from the datastore and saves
values into the datastore as required to preserve transactional integrity of the data. Persis-
tent instances stored in the datastore retain their class and the state of their persistent
fields. Changing the class of a persistent instance is not supported explicitly by the JDO
API. However, it might be possible for an instance to change class based on external (out-
side the JDO environment) modifications to the datastore.

If a JDO instance is detached, its behavior is very similar to that of a transient instance,
with a few significant exceptions. A detached instance does not necessarily have all of its
persistent fields loaded from the data store, and any attempt to access unloaded fields,
whether for read or write, is denied. A detached instance maintains its persistent identity
and the identity can be obtained by an observer. A detached instance allows changes to be
made to loaded fields, and tracks those changes while detached. Detached instances never
observe transaction boundaries.

During the life of a JDO instance, it transitions among various states until it is finally gar-
bage collected by the JVM. During its life, the state transitions are governed by the behav-
iors executed on it directly as well as behaviors executed on the JDO
PersistenceManager by both the application and by the execution environment (in-
cluding the TransactionManager).

During the life cycle, instances at times might be inconsistent with the datastore as of the
beginning of the transaction. If instances are inconsistent, the notation for that instance in
JDO is “dirty”. Instances made newly persistent, deleted, or modified in the transaction
are dirty. Detached instances might be dirty.

At times, the JDO implementation might store the state of persistent instances in the datas-
tore. This process is called “flushing”, and it does not affect the “dirty” state of the instanc-
es.
 JDO 2.0 41 February 28, 2006

Java Data Objects 2.0
Under application control, transient JDO instances might observe transaction boundaries,
in which the state of the instances is either preserved (on commit) or restored (on rollback).
Transient instances that observe transaction boundaries are called transient transactional
instances. Support for transient transactional instances is a JDO option; that is, a JDO com-
pliant implementation is not required to implement the APIs that cause the state transi-
tions associated with transient transactional instances.

Under application control, persistent JDO instances might not observe transaction bound-
aries. These instances are called persistent-nontransactional instances, and the life cycle of
these instances is not affected by transaction boundaries. Support for nontransactional in-
stances is a JDO option.

In a binary-compatible implementation, if a JDO instance is persistent or transactional, it
contains a non-null reference to a JDO StateManager instance which is responsible for
managing the JDO instance state changes and for interfacing with the JDO Persis-
tenceManager.

5.2 Goals

The JDO instance life cycle has the following goals:

• The fact of persistence should be transparent to both JDO instance developer and
application component developer

• JDO instances should be able to be used efficiently in a variety of environments,
including managed (application server) and non-managed (two-tier) cases

• Several JDO PersistenceManagers might be coresident and might share the
same persistence capable classes (although a JDO instance can be associated with
only one PersistenceManager at a time)

5.3 Architecture:

JDO Instances

For transient JDO instances, there is no supporting infrastructure required. That is, tran-
sient instances will never make calls to methods to the persistence infrastructure. There is
no requirement to instantiate objects outside the application domain. In a binary-compat-
ible implementation, there is no difference in behavior between transient instances of en-
hanced classes and transient instances of the same non-enhanced classes, with some
exceptions:

• additional methods and fields added by the enhancement process are visible to
Java core reflection,

• timing of method execution is different because of added byte codes,

• extra methods for registration of metadata are executed at class load time.

Persistent JDO instances execute in an environment that contains an instance of the JDO
PersistenceManager responsible for its persistent behavior. In a binary-compatible
implementation, the JDO instance contains a reference to an instance of the JDO State-
Manager responsible for the state transitions of the instance as well as for managing the
contents of the fields of the instance. The PersistenceManager and the StateMan-
ager might be implemented by the same instance, but their interfaces are distinct.

The contract between the persistence capable class and other application components ex-
tends the contract between the associated non-persistence capable class and application
 JDO 2.0 42 February 28, 2006

Java Data Objects 2.0
components. For both binary-compatible and non-binary-compatible implementations,
these contract extensions support interrogation of the life cycle state of the instances and
are intended for use by management parts of the system.

Persistent instances might be constructed by the application and made persistent; or might
be constructed by the JDO PersistenceManager in response to a query or navigation
from a persistent instance or via the newInstance method. If the JDO PersistenceM-
anager constructs the instance, the class of the instance might be a derived class of the
class of the original instance, and will respond true to instanceof the class of the origi-
nal. Thus, applications must not rely on tests of the actual class of persistent instances, but
must instead use the instanceof test.

JDO State Manager

In a binary-compatible implementation, persistent and transactional JDO instances con-
tain a reference to a JDO StateManager instance to which all of the JDO interrogatives
are delegated. The associated JDO StateManager instance maintains the state changes
of the JDO instance and interfaces with the JDO PersistenceManager to manage the
values of the datastore.

JDO Managed Fields

Only some fields are of interest to the persistence infrastructure: fields whose values are
stored in the datastore are called persistent; fields that participate in transactions (their val-
ues may be restored during rollback) are called transactional; fields of either type are
called managed.

5.4 JDO Identity

Java defines two concepts for determining if two instances are the same instance (identity),
or represent the same data (equality). JDO extends these concepts to determine if two in-
memory instances represent the same stored object.

Java object identity is entirely managed by the Java Virtual Machine. Instances are identi-
cal if and only if they occupy the same storage location within the JVM. The Java VM im-
plements object identity via the = = operator. This can be used by JDO implementations to
determine whether two instances are identical (have the same location) in the VM.

Java object equality is determined by the class. Distinct instances are equal if they repre-
sent the same data, such as the same value for an Integer, or same set of bits for a Bit-
Set.

The application implements hashCode and equals, to create the application's vision of
equality of instances, typically based on values of fields in the instances. The JDO imple-
mentation must not use the application's hashCode and equals methods from the per-
sistence-capable classes except as needed to implement the Collections Framework in
package java.util. The JDO implementation must use the application's hashCode and
equals methods from the application-provided object id classes.

The interaction between Java object identity and equality is an important one for JDO de-
velopers. Java object equality is an application specific concept, and JDO implementations
must not change the application’s semantic of equality. Still, JDO implementations must
manage the cache of JDO instances such that there is only one JDO instance associated
with each JDO PersistenceManager representing the persistent state of each corre-
sponding datastore object. Therefore, JDO defines object identity differently from both the
Java VM object identity and from the application equality.
 JDO 2.0 43 February 28, 2006

Java Data Objects 2.0
Applications should implement equals for persistence-capable classes differently from
Object’s default equals implementation, which simply uses the Java VM object identi-
ty. This is because the JVM object identity of a persistent instance cannot be guaranteed
between PersistenceManagers and across space and time, except in very specific cas-
es noted below.

Additionally, if persistence instances are stored in the datastore and are queried using the
== query operator, or are referred to by a persistent collection that enforces equality (Set,
Map) then the implementation of equals should exactly match the JDO implementation
of equality, using the primary key or ObjectId as the key. This policy is not enforced,
but if it is not correctly implemented, semantics of standard collections and JDO collec-
tions may differ.

To avoid confusion with Java object identity, this document refers to the JDO concept as
JDO identity. The JDO implementation is responsible for the implementation of JDO iden-
tity based on the user's declaration of the identity type of each persistence-capable class.

Three Types of JDO identity

JDO defines three types of JDO identity:

• Application identity - JDO identity managed by the application and enforced by
the datastore; JDO identity is often called the primary key

• Datastore identity - JDO identity managed by the datastore without being tied to
any field values of a JDO instance

• Nondurable identity - JDO identity managed by the implementation to guarantee
uniqueness in the JVM but not in the datastore

The type of JDO identity used is a property of a JDO persistence-capable class and is fixed
at class loading time.

The representation of JDO identity in the JVM is via a JDO object id. Every persistent in-
stance (Java instance representing a persistent object) has a corresponding object id. There
might be an instance in the JVM representing the object id, or not. The object id JVM in-
stance corresponding to a persistent instance might be acquired by the application at run
time and used later to obtain a reference to the same datastore object, and it might be saved
to and retrieved from durable storage (by serialization or other technique).

The class representing the object id for datastore and nondurable identity classes is de-
fined by the JDO implementation. The implementation might choose to use any class that
satisfies the requirements for the specific type of JDO identity for a class. It might choose
the same class for several different JDO classes, or might use a different class for each JDO
class.

The class representing the object id for application identity classes is defined by the appli-
cation in the metadata, and might be provided by the application or by a JDO vendor tool.

The application-visible representation of the JDO identity is an instance that is completely
under the control of the application. The object id instances used as parameters or returned
by methods in the JDO interface (getObjectId, getTransactionalObjectId, and
getObjectById) will never be saved internally; rather, they are copies of the internal
representation or used to find instances of the internal representation.

Therefore, the object returned by any call to getObjectId might be modified by the us-
er, but that modification does not affect the identity of the object that was originally re-
ferred. That is, the call to getObjectId returns only a copy of the object identity used
internally by the implementation.
 JDO 2.0 44 February 28, 2006

Java Data Objects 2.0
It is a requirement that the instance returned by a call to getObjectById(Object) of
different PersistenceManager instances returned by the same PersistenceMan-
agerFactory represent the same persistent object, but with different Java object identity
(specifically, all instances returned by getObjectId from the instances must return
true to equals comparisons with all others).

Further, any instances returned by any calls to getObjectById(Object) with the
same object id instance to the same PersistenceManager instance must be identical
(assuming the instances were not garbage collected between calls).

The JDO identity of transient instances is not defined. Attempts to get the object id for a
transient instance will return null.

Uniquing

JDO identity of persistent instances is managed by the implementation. For a durable JDO
identity (datastore or application), there is only one persistent instance associated with a
specific datastore object per PersistenceManager instance, regardless of how the per-
sistent instance was put into the cache:

• PersistenceManager.getObjectById(Object oid, boolean
validate);

• query via a Query instance associated with the PersistenceManager
instance;

• navigation from a persistent instance associated with the
PersistenceManager instance;

• PersistenceManager.makePersistent(Object pc);

Change of identity

Change of identity is supported only for application identity, and is an optional feature of
a JDO implementation. An application attempt to change the identity of an instance (by
writing a primary key field) where the implementation does not support this optional fea-
ture results in JDOUnsupportedOptionException being thrown. The exception
might be thrown immediately or upon flush or transaction commit.

 NOTE: Application developers should take into account that changing primary
key values changes the identity of the instance in the datastore. In production
environments where audit trails of changes are kept, change of the identity of
datastore instances might cause loss of audit trail integrity, as the historical
record of changes does not reflect the current identity in the datastore.

JDO instances using application identity may change their identity during a transaction if
the application changes a primary key field. In this case, there is a new JDO Identity asso-
ciated with the JDO instance immediately upon completion of the statement that changes
a primary key field. If a JDO instance is already associated with the new JDO Identity, then
a JDOUserException is thrown. The exception might be thrown immediately or upon
flush or transaction commit.

Upon successful commit of the transaction, the existing datastore instance will have been
updated with the changed values of the primary key fields.

JDO Identity Support

A JDO implementation is required to support either or both of application (primary key)
identity or datastore identity, and may optionally support nondurable identity.
 JDO 2.0 45 February 28, 2006

Java Data Objects 2.0
5.4.1 Application (primary key) identity

This is the JDO identity type used for datastores in which the value(s) in the instance de-
termine the identity of the object in the datastore. Thus, JDO identity is managed by the
application. The class provided by the application that implements the JDO object id has
all of the characteristics of an RMI remote object, making it possible to use the JDO object
id class as the EJB primary key class. Specifically:

• the ObjectId class must be public;

• the ObjectId class must implement Serializable;

• the ObjectId class must have a public no-arg constructor, which might be the
default constructor;

• the field types of all non-static fields in the ObjectId class must be serializable,
and for portability should be primitive, String, Date, Byte, Short,
Integer, Long, Float, Double, BigDecimal, or BigInteger
types; JDO implementations are required to support these types and might
support other reference types;

• all serializable non-static fields in the ObjectId class must be public;

• the names of the non-static fields in the ObjectId class must include the names
of the primary key fields in the JDO class, and the types of the corresponding fields
must be identical;

• the equals() and hashCode() methods of the ObjectId class must use the
value(s) of all the fields corresponding to the primary key fields in the JDO class;

• if the ObjectId class is an inner class, it must be static;

• the ObjectId class must override the toString() method defined in Object,
and return a String that can be used as the parameter of a constructor;

• the ObjectId class must provide a constructor taking either a String alone or
a Class and String that returns an instance that compares equal to an instance
that returned that String by the toString() method.

These restrictions allow the application to construct an instance of the primary key class
providing values only for the primary key fields, or alternatively providing only the result
of toString() from an existing instance. The JDO implementation is permitted to ex-
tend the primary key class to use additional fields, not provided by the application, to fur-
ther identify the instance in the datastore. Thus, the JDO object id instance returned by an
implementation might be a subclass of the user-defined primary key class. Any JDO im-
plementation must be able to use the JDO object id instance from any other JDO implemen-
tation.

A primary key identity is associated with a specific set of fields. The fields associated with
the primary key are a property of the persistence-capable class, and cannot be changed af-
ter the class is enhanced for use at runtime. When a transient instance is made persistent,
the implementation uses the values of the fields associated with the primary key to con-
struct the JDO identity.

A primary key instance must have none of its primary key fields set to null when used to
find a persistent instance. The persistence manager will throw JDOUserException if the
primary key instance contains any null values when the key instance is the parameter of
getObjectById.
 JDO 2.0 46 February 28, 2006

Java Data Objects 2.0
Persistence-capable classes that use application identity have special considerations for in-
heritance. To be portable, the key class must be the same for all classes in the inheritance
hierarchy derived from the least-derived (topmost) concrete persistence-capable class in
the hierarchy.

Compound Identity

Compound identity is a special case of application identity. References to other persis-
tence-capable classes can be defined as key fields. In this case, the object id class contains
a field that is of the type of the object id of the relationship field.

For example, two classes have a one-many relationship, and on the reference side of the
relationship, the field is a key field. On the other side of the relationship, there is a Col-
lection or other multi-valued type.

class Order {

long orderId;

Set<OrderItem> items;

...}

class OrderId {

long orderId; // matches orderId field name

...}

class OrderItem {

Order order;

long item;

...}

class OrderItemId {

OrderId order; // matches order field name

long item; matches item field name

...}

5.4.2 Single Field Identity

A common case of application identity uses exactly one persistent field in the class to rep-
resent identity. In this case, the application can use a standard JDO class instead of creating
a new user-defined class for the purpose.

A JDO implementation that supports application identity must also support single field
identity.

package javax.jdo.identity;
public abstract class SingleFieldIdentity implements Externalizable
{

protected SingleFieldIdentity(Class pcClass);
public Class getTargetClass();
public String getTargetClassName();
public Object getKeyAsObject();

}

public class ByteIdentity
extends SingleFieldIdentity {
 JDO 2.0 47 February 28, 2006

Java Data Objects 2.0
public byte getKey();
public ByteIdentity(Class pcClass, byte key);
public ByteIdentity(Class pcClass, Byte key);
public ByteIdentity(Class pcClass, String key);

}

public class CharIdentity
extends SingleFieldIdentity {
public char getKey();
public CharIdentity(Class pcClass, char key);
public CharIdentity(Class pcClass, Character key);
public CharIdentity(Class pcClass, String key);

}
public class ShortIdentity

extends SingleFieldIdentity {
public short getKey();
public ShortIdentity(Class pcClass, short key);
public ShortIdentity(Class pcClass, Short key);
public ShortIdentity(Class pcClass, String key);

}

public class IntIdentity
extends SingleFieldIdentity {
public int getKey();
public IntIdentity(Class pcClass, int key);
public IntIdentity(Class pcClass, Integer key);
public IntIdentity(Class pcClass, String key);

}

public class LongIdentity
extends SingleFieldIdentity {
public long getKey();
public LongIdentity(Class pcClass, long key);
public LongIdentity(Class pcClass, Long key);
public LongIdentity(Class pcClass, String key);

}

public class StringIdentity
extends SingleFieldIdentity {
public String getKey();
public StringIdentity(Class pcClass, String key);

}

public class ObjectIdentity
extends SingleFieldIdentity {
public Object getKey();
public ObjectIdentity(Class pcClass, Object key);

}

The constructors that take reference types throw JDONullIdentityException if the
second argument is null. Valid key values are never null.

Constructors of primitive identity types that take String parameters convert the parameter
to the proper type using the static parseXXX method of the corresponding wrapper class.
 JDO 2.0 48 February 28, 2006

Java Data Objects 2.0
Instances of SingleFieldIdentity classes are immutable. When serialized, the name
of the target class is serialized. When deserialized, the name of the target class is restored,
but not the target class. The deserialized instance will return null to getTargetClass.
All instances will return the “binary” name of the target class (the result of Class.get-
Name()).

The SingleFieldIdentity classes adhere to all of the requirements for application ob-
ject id classes, with the exception of field names. That is, there are no public fields visible
to the application.

5.4.3 Datastore identity

This is the JDO identity type used for datastores in which the identity of the data in the
datastore does not depend on the values in the instance. The implementation guarantees
uniqueness for all instances.

A JDO implementation might choose one of the primitive wrapper classes as the Objec-
tId class (e.g. Short, Integer, Long, or String), or might choose an implementation-
specific class. Implementation-specific classes used as JDO ObjectId have the following
characteristics:

• the ObjectId class must be public;

• the ObjectId class must implement Serializable;

• the ObjectId class must have a public no-arg constructor, which might be the
default constructor;

• all serializable fields in the ObjectId class must be public;

• the field types of all non-static fields in the ObjectId class must be serializable;

• the ObjectId class must override the toString() method defined in Object,
and return a String that can be used as the parameter of the
PersistenceManager method newObjectIdInstance(Class cls,
String key);

Note that, unlike application identity, datastore identity ObjectId classes are not re-
quired to support equality with ObjectId classes from other JDO implementations. Fur-
ther, the application cannot change the JDO identity of an instance of a class using
datastore identity.

5.4.4 Nondurable JDO identity

The primary usage for nondurable JDO identity is for log files, history files, and other sim-
ilar files, where performance is a primary concern, and there is no need for the overhead
associated with managing a durable identity for each datastore instance. Objects are typi-
cally inserted into datastores with transactional semantics, but are not accessed by key.
They may have references to instances elsewhere in the datastore, but often have no keys
or indexes themselves. They might be accessed by other attributes, and might be deleted
in bulk.

Multiple objects in the datastore might have exactly the same values, yet an application
program might want to treat the objects individually. For example, the application must
be able to count the persistent instances to determine the number of datastore objects with
the same values. Also, the application might change a single field of an instance with du-
plicate objects in the datastore, and the expected result in the datastore is that exactly one
instance has its field changed. If multiple instances in memory are modified, then instanc-
es in the datastore are modified corresponding one-to-one with the modified instances in
 JDO 2.0 49 February 28, 2006

Java Data Objects 2.0
memory. Similarly, if the application deletes some number of multiple duplicate objects,
the same number of the objects in the datastore must be deleted.

As another example, if a datastore instance using nondurable identity is loaded twice into
the VM by the same PersistenceManager, then two separate instances are instantiat-
ed, with two different JDO identities, even though all of the values in the instances are the
same. It is permissible to update or delete only one of the instances. At commit time, if only
one instance was updated or deleted, then the changes made to that instance are reflected
in the datastore by changing the single datastore instance. If both instances were changed,
then the transaction will fail at commit, with a JDOUserException because the changes
must be applied to different datastore instances. Because the JDO identity is not visible in
the datastore, there are special behaviors with regard to nondurable JDO identity:

• the ObjectId is not valid after making the associated instance hollow, and
attempts to retrieve it will throw a JDOUserException;

• the ObjectId cannot be used in a different instance of PersistenceManager
from the one that issued it, and attempts to use it even indirectly (e.g.
getObjectById with a persistence-capable object as the parameter) will throw
a JDOUserException;

• the persistent instance might transition to persistent-nontransactional or hollow
but cannot transition to any other state afterward;

• attempts to access the instance in the hollow state will throw a
JDOUserException;

• the results of a query in the datastore will always return instances that are not
already in the Java VM, so multiple queries that find the same objects in the
datastore will return additional JDO instances with the same values and different
JDO identities;

• makePersistent will succeed even though another instance already has the
same values for all persistent fields.

For JDO identity that is not managed by the datastore, the class that implements JDO Ob-
jectId has the following characteristics:

• the ObjectId class must be public;

• the ObjectId class must have a public constructor, which might be the default
constructor or a no-arg constructor;

• all fields in the ObjectId class must be public;

• the field types of all fields in the ObjectId class must be serializable.

5.5 Life Cycle States

There are many states defined by this specification. Some states are required, and others
states are optional. If an implementation does not support certain operations, then these
optional states are not reachable.

Datastore Transactions

The following descriptions apply to datastore transactions with retainValues=false.
Optimistic transaction and retainValues=true state transitions are covered later in
this chapter.
 JDO 2.0 50 February 28, 2006

Java Data Objects 2.0
5.5.1 Transient (Required)

JDO instances created by using a developer-written or compiler-generated constructor
that do not involve the persistence environment behave exactly like instances of the unen-
hanced class.

There is no JDO identity associated with a transient instance.

There is no intermediation to support fetching or storing values for fields. There is no sup-
port for demarcation of transaction boundaries. Indeed, there is no transactional behavior
of these instances, unless they are referenced by transactional instances at commit time.

When a persistent instance is committed to the datastore, instances referenced by persis-
tent fields of the flushed instance become persistent. This behavior propagates to all in-
stances in the closure of instances through persistent fields. This behavior is called
persistence by reachability.

No methods of transient instances throw exceptions except those defined by the class de-
veloper.

A transient instance transitions to persistent-new if it is the parameter of makePersis-
tent, or if it is referenced by a persistent field of a persistent instance when that instance
is committed or made persistent.

5.5.2 Persistent-new (Required)

JDO instances that are newly persistent in the current transaction are persistent-new. This
is the state of an instance that has been requested by the application component to become
persistent, by using one of the PersistenceManager makePersistent methods on
the instance.

During the transition from transient to persistent-new

• the associated PersistenceManager becomes responsible to implement state
interrogation and further state transitions.

• if the transaction flag restoreValues is true, the values of persistent and
transactional non-persistent fields are saved for use during rollback.

• the values of persistent fields of mutable SCO types (e.g. java.util.Date,
java.util.HashSet, etc.) are replaced with JDO implementation-specific
copies of the field values that track changes and are owned by the persistent
instance.

• a JDO identity is assigned to the instance by the JDO implementation. This identity
uniquely identifies the instance inside the PersistenceManager and might
uniquely identify the instance in the datastore. A copy of the JDO identity will be
returned by the PersistenceManager method getObjectId(Object).

• instances reachable from this instance by fields of persistence-capable types and
collections of persistence-capable types become provisionally persistent and
transition from transient to persistent-new. If the instances made provisionally
persistent are still reachable at commit time, they become persistent. This effect is
recursive, effectively making the transitive closure of transient instances
provisionally persistent.

A persistent-new instance transitions to persistent-new-deleted if it is the parameter of
deletePersistent.

A persistent-new instance transitions to hollow when it is flushed to the datastore during
commit when retainValues is false. This transition is not visible during before-
 JDO 2.0 51 February 28, 2006

Java Data Objects 2.0
Completion, and is visible during afterCompletion. During beforeCompletion,
the user-defined jdoPreStore method is called if the class implements Instance-
Callbacks.

A persistent-new instance transitions to transient at rollback. The instance loses its JDO
Identity and its association with the PersistenceManager. If restoreValues is
false, the values of managed fields in the instance are left as they were at the time roll-
back was called.If restoreValues is true, the values of managed fields in the instance
are restored to the values as they were at the time makePersistent was called.

5.5.3 Persistent-dirty (Required)

JDO instances that represent persistent data that was changed in the current transaction
are persistent-dirty.

A persistent-dirty instance transitions to persistent-deleted if it is the parameter of
deletePersistent.

Persistent-dirty instances transition to hollow during commit when retainValues is
false or during rollback when restoreValues is false. During beforeComple-
tion, the user-defined jdoPreStore method is called if the class implements Store-
Callback.

If an application modifies a managed field, but the new value is equal to the old value, then
it is an implementation choice whether the JDO instance is modified or not. If no modifi-
cation to any managed field was made by the application, then the implementation must
not mark the instance as dirty. If a modification was made to any managed field that
changes the value of the field, then the implementation must mark the instance as dirty.

Since changes to array-type fields cannot be tracked by JDO, setting the value of an array-
type managed field marks the field as dirty, even if the new value is identical to the old
value. This special case is required to allow the user to mark an array-type field as dirty
without having to call the JDOHelper method makeDirty.

5.5.4 Hollow (Required)

JDO instances that represent specific persistent data in the datastore but whose values are
not in the JDO instance are hollow. The hollow state provides for the guarantee of unique-
ness for persistent instances between transactions.

This is permitted to be the state of instances committed from a previous transaction, ac-
quired by the method getObjectById, returned by iterating an Extent, returned in
the result of a query execution, or navigating a persistent field reference. However, the
JDO implementation may choose to return instances in a different state reachable from
hollow.

A JDO implementation is permitted to effect a legal state transition of a hollow instance at
any time, as if a field were read. Therefore, the hollow state might not be visible to the ap-
plication.

During the commit of the transaction in which a dirty persistent instance has had its values
changed (including a new persistent instance), the underlying datastore is changed to
have the transactionally consistent values from the JDO instance, and the instance transi-
tions to hollow.

Requests by the application for an instance with the same JDO identity (query, navigation,
or lookup by ObjectId), in a subsequent transaction using the same PersistenceMan-
ager instance, will return the identical Java instance, assuming it has not been garbage
collected. If the application does not hold a strong reference to a hollow instance, the in-
 JDO 2.0 52 February 28, 2006

Java Data Objects 2.0
stance might be garbage collected, as the PersistenceManager must not hold a strong
reference to any hollow instance.

The hollow JDO instance maintains its JDO identity and its association with the JDO Per-
sistenceManager. If the instance is of a class using application identity, the hollow in-
stance maintains its primary key fields.

A hollow instance transitions to persistent-deleted if it is the parameter of deletePer-
sistent.

A hollow instance transitions to persistent-dirty if a change is made to any managed field.
It transitions to persistent-clean if a read access is made to any persistent field other than
one of the primary key fields.

A hollow instance transitions to detached if the transaction associated with its persistence
manager is committed while the DetachAllOnCommit property is true.

The behavior of persistent instances at close of the corresponding PersistenceManager
is not further defined in this specification.

5.5.5 Persistent-clean (Required)

JDO instances that represent specific transactional persistent data in the datastore, and
whose values have not been changed in the current transaction, are persistent-clean. This
is the state of an instance whose values have been requested in the current datastore trans-
action, and whose values have not been changed by the current transaction.

A persistent-clean instance transitions to persistent-dirty if a change is made to any man-
aged field.

A persistent-clean instance transitions to persistent-deleted if it is the parameter of
deletePersistent.

A persistent-clean instance transitions to hollow at commit when retainValues is
false; or rollback when restoreValues is false. It retains its identity and its associa-
tion with the PersistenceManager.

5.5.6 Persistent-deleted (Required)

JDO instances that represent specific persistent data in the datastore, and that have been
deleted in the current transaction, are persistent-deleted.

Read access to primary key fields is permitted. Any other access to persistent fields is not
supported and might throw a JDOUserException.

Before the transition to persistent-deleted, the user-written jdoPreDelete is called if the
persistence-capable class implements InstanceCallbacks.

A persistent-deleted instance transitions to transient at commit. During the transition, its
persistent fields are written with their Java default values, and the instance loses its JDO
Identity and its association with the PersistenceManager.

A persistent-deleted instance transitions to hollow at rollback when restoreValues is
false. The instance retains its JDO Identity and its association with the Persistence-
Manager.

5.5.7 Persistent-new-deleted (Required)

JDO instances that represent instances that have been newly made persistent and deleted
in the current transaction are persistent-new-deleted.

Read access to primary key fields is permitted. Any other access to persistent fields is not
supported and might throw a JDOUserException.
 JDO 2.0 53 February 28, 2006

Java Data Objects 2.0
Before the transition to persistent-new-deleted, the user-written jdoPreDelete is called
if the persistence-capable class implements InstanceCallbacks.

A persistent-new-deleted instance transitions to transient at commit. During the transi-
tion, its persistent fields are written with their Java default values, and the instance loses
its JDO Identity and its association with the PersistenceManager.

A persistent-new-deleted instance transitions to transient at rollback. The instance loses its
JDO Identity and its association with the PersistenceManager.

If RestoreValues is true, the values of managed fields in the instance are restored to
their state as of the call to makePersistent. If RestoreValues is false, the values
of managed fields in the instance are left as they were at the time rollback was called.

5.5.8 Detached-clean (Required)

JDO instances that have been detached from their persistence manager and have not been
modified are detached-clean. Detach is done by one of three ways:

• the instance or an instance containing a reference to the instance is serialized; in
this case, the serialized instance is detached

• the transaction of the persistence manager managing the instance is committed
and the DetachAllOnCommit property is true; in this case the persistent
instance itself is detached (there is no copy)

• the instance is explicitly detached from the persistence manager via one of the
detachCopy or detachCopyAll methods; in this case the copy is detached.

Detached-clean instances transition to detached-dirty if a loaded field is modified. At-
tempts to change their state via any of the persistence manager methods except for
makePersistent and deletePersistentthrow JDOUserException.

Evict, refresh, retrieve, makeTransient, makeTransactional, makeNon-
transactional, and detachCopy throw JDOUserException if a parameter instance
is in the detached-clean or detached-dirty state.

A detachable class is not serialization-compatible with the corresponding unenhanced
class.

Detached instances are further described in section 12.6.8.

5.5.9 Detached-dirty (Required)

JDO instances that have been removed from their persistence manager and have fields
marked as modified are detached-dirty.

Fields are marked as modified if a field of the detached instance is explicitly modified by
the application.

Detached-dirty instances do not change their life cycle state.

Evict, refresh, retrieve, makeTransient, makeTransactional, makeNon-
transactional, and detachCopy throw JDOUserException if a parameter instance
is in the detached-clean or detached-dirty state.

5.6 Nontransactional (Optional)

Management of nontransactional instances is an optional feature of a JDO implementa-
tion. Usage is primarily for slowly changing data or for optimistic transaction manage-
ment, as the values in nontransactional instances are not guaranteed to be transactionally
consistent.
 JDO 2.0 54 February 28, 2006

Java Data Objects 2.0
The use of this feature is governed by the PersistenceManager options Nontrans-
actionalRead, NontransactionalWrite, Optimistic, and RetainValues.
An implementation might support any or all of these options. For example, an implemen-
tation might support only NontransactionalRead. For options that are not support-
ed, the value of the unsupported property is false and it may not be changed.

If a PersistenceManager does not support this optional feature, an operation that
would result in an instance transitioning to the persistent-nontransactional state or a re-
quest to set the NontransactionalRead, NontransactionalWrite, Optimis-
tic, or RetainValues option to true, throws a
JDOUnsupportedOptionException.

NontransactionalRead, NontransactionalWrite, Optimistic, and Reta-
inValues are independent options. A JDO implementation must not automatically
change the values of these properties as a side effect of the user changing other properties.

With NontransactionalRead set to true:

• Navigation and queries are valid outside a transaction. It is a JDO implementation
decision whether the instances returned are in the hollow or persistent-
nontransactional state.

• When a managed, non-key field of a hollow instance is read outside a transaction,
the instance transitions to persistent-nontransactional.

• If a persistent-clean instance is the parameter of makeNontransactional, the
instance transitions to persistent-nontransactional.

With NontransactionalWrite set to true:

• Modification of persistent-nontransactional instances is permitted outside a
transaction. The changes might participate in a subsequent transaction.

• This is an incompatible change from the behavior in JDO 1.0. Compatibility is only
supported if a subsequent transaction is not begun after making changes to
persistent instances in the cache.

With RetainValues set to true:

• At commit, persistent-clean, persistent-new, and persistent-dirty instances
transition to persistent-nontransactional. Fields defined in the XML metadata as
containing mutable second-class types are examined to ensure that they contain
instances that track changes made to them and are owned by the instance. If not,
they are replaced with new second class object instances that track changes,
constructed from the contents of the second class object instance. These include
java.util.Date, and Collection and Map types. NOTE: This process is not
required to be recursive, although an implementation might choose to recursively
convert the closure of the collection to become second class objects. JDO requires
conversion only of the affected persistence-capable instance’s fields.

With RestoreValues set to true:

• If the JDO implementation does not support persistent-nontransactional instances,
at rollback persistent-deleted, persistent-clean and persistent-dirty instances
transition to hollow.

• If the JDO implementation supports persistent-nontransactional instances, at
rollback persistent-deleted, persistent-clean and persistent-dirty instances
transition to persistent-nontransactional. The state of each managed field in
persistent-deleted and persistent-dirty instances is restored:
 JDO 2.0 55 February 28, 2006

Java Data Objects 2.0
• fields of primitive types (int, float, etc.), wrapper types (Integer, Float,
etc.), immutable types (Locale, etc.), and references to persistence-capable types
are restored to their values as of the beginning of the transaction and the fields are
marked as loaded.

• fields of mutable types (Date, Collection, array-type, etc.) are set to null
and the fields are marked as not loaded.

5.6.1 Persistent-nontransactional (Optional)

NOTE: The following discussion applies only to datastore transactions. See section 5.8 for
a discussion on how optimistic transactions change this behavior.

JDO instances that represent specific persistent data in the datastore, whose values are cur-
rently loaded but not transactionally consistent, are persistent-nontransactional. There is
a JDO Identity associated with these instances, and transactional instances can be obtained
from the object ids.

The persistent-nontransactional state allows persistent instances to be managed as a shad-
ow cache of instances that are updated asynchronously.

As long as a transaction is not in progress:

• if NontransactionalRead is true, persistent field values might be retrieved
from the datastore by the PersistenceManager;

• if NontransactionalWrite is true, the application might make changes to the
persistent field values in the instance. These changes might be committed in a
subsequent transaction.

A persistent-nontransactional instance transitions to persistent-clean if it is the parameter
of a makeTransactional method executed when a transaction is in progress. The state
of the instance in memory is discarded (cleared) and the state is loaded from the datastore.

A persistent-nontransactional instance transitions to persistent-clean if any managed field
is accessed when a datastore transaction is in progress. The state of the instance in memory
is discarded and the state is loaded from the datastore.

A persistent-nontransactional instance transitions to persistent-dirty if any managed field
is written when a transaction is in progress. The state of the instance in memory is saved
for use during rollback, and the state is loaded from the datastore. Then the change is ap-
plied.

A persistent-nontransactional instance transitions to persistent-deleted if it is the parame-
ter of deletePersistent. The state of the instance in memory is saved for use during
rollback.

A persistent-nontransactional instance transitions to detached if a transaction is commited
while the DetachAllOnCommit property is true.

A persistent-nontransactional instance transitions to persistent-nontransactional-dirty if a
change is made outside a transaction while the NontransactionalWrite property is
true.

If the application does not hold a strong reference to a persistent-nontransactional in-
stance, the instance might be garbage collected. The PersistenceManager must not
hold a strong reference to any persistent-nontransactional instance.

The behavior of persistent instances at close of the corresponding PersistenceManager
is not further defined in this specification.
 JDO 2.0 56 February 28, 2006

Java Data Objects 2.0
5.6.2 Persistent-nontransactional-dirty (Optional)

JDO instances that represent specific persistent data in the datastore, whose values may be
currently loaded but not transactionally consistent, and have been modified since the last
commit, are persistent-nontransactional-dirty. There is a JDO Identity associated with
these instances, and transactional instances can be obtained from the object ids.

The persistent-nontransactional-dirty state allows applications to operate on nontransac-
tional instances in the cache and make changes to the instances without having a transac-
tion active. At some future point, the application can begin a transaction and incorporate
the changes into the transactional state. Committing the transaction makes the changes
made outside the transaction durable.

A persistent-nontransactional-dirty instance transitions to hollow if it is the parameter of
evict or evictAll. This allows the application to remove instances from the set of in-
stances whose state is to be committed to the datastore.

If a datastore transaction is begun, commit will write the changes to the datastore with no
checking as to the current state of the instances in the datastore. That is, the changes made
outside the transaction together with any changes made inside the transaction will over-
write the current state of the datastore. The persistent-nontransactional-dirty instances
will transition according to the RetainValues flag. With the RetainValues flag set
to true, persistent-nontransactional-dirty instances will transition to persistent-nontrans-
actional. With the RetainValues flag set to false, persistent-nontransactional-dirty in-
stances will transition to hollow.

If a datastore transaction is begun, rollback will not write any changes to the datastore.
The persistent-nontransactional-dirty instances will transition according to the Restor-
eValues flag. With the RestoreValues flag set to true, persistent-nontransactional-
dirty instances will make no state transition, but the fields will be restored to their values
as of the beginning of the transaction, and any changes made within the transaction will
be discarded. With the RestoreValues flag set to false, persistent-nontransactional-
dirty instances will transition to hollow.

If an optimistic transaction is begun, commit will write the changes to the datastore after
checking as to the current state of the instances in the datastore. The changes made outside
the transaction together with any changes made inside the transaction will update the cur-
rent state of the datastore if the version checking is successful. The persistent-nontransac-
tional-dirty instances will transition according to the RetainValues flag. With the
RetainValues flag set to true, persistent-nontransactional-dirty instances will transi-
tion to persistent-nontransactional. With the RetainValues flag set to false, persis-
tent-nontransactional-dirty instances will transition to hollow.

If an optimistic transaction is begun, rollback will not write any changes to the datas-
tore. The persistent-nontransactional-dirty instances will transition according to the Re-
storeValues flag. With the RestoreValues flag set to true, persistent-
nontransactional-dirty instances will make no state transition, but the fields will be re-
stored to their values as of the beginning of the transaction, and any changes made within
the transaction will be discarded. With the RestoreValues flag set to false, persis-
tent-nontransactional-dirty instances will transition to hollow.

The behavior of persistent instances at close of the corresponding PersistenceManager
is not further defined in this specification.
 JDO 2.0 57 February 28, 2006

Java Data Objects 2.0
5.7 Transient Transactional (Optional)

Management of transient transactional instances is an optional feature of a JDO implemen-
tation. The following sections describe the additional states and state changes when using
transient transactional behavior.

A transient instance transitions to transient-clean if it is the parameter of make-Trans-
actional.

5.7.1 Transient-clean (Optional)

JDO instances that represent transient transactional instances whose values have not been
changed in the current transaction are transient-clean. This state is not reachable if the JDO
PersistenceManager does not implement the optional feature javax.jdo.op-
tion.TransientTransactional.

Changes made outside a transaction are allowed without a state change. A transient-clean
instance transitions to transient-dirty if any managed field is changed in a transaction.
During the transition, values of managed fields are saved by the PersistenceManager
for use during rollback. This behavior is not dependent on the setting of the RestoreVal-
ues flag.

A transient-clean instance transitions to transient if it is the parameter of makeNon-
transactional.

5.7.2 Transient-dirty (Optional)

JDO instances that represent transient transactional instances whose values have been
changed in the current transaction are transient-dirty. This state is not reachable if the JDO
PersistenceManager does not implement the optional feature javax.jdo.op-
tion.TransientTransactional.

A transient-dirty instance transitions to transient-clean at commit. The values of managed
fields saved (for rollback processing) at the time the transition was made from transient-
clean to transient-dirty are discarded. None of the values of fields in the instance are mod-
ified as a result of commit.

A transient-dirty instance transitions to transient-clean at rollback. The values of managed
fields saved at the time the transition was made from transient-clean to transient-dirty are
restored. This behavior is not dependent on the setting of the RestoreValues flag.

A transient-dirty instance transitions to persistent-new at makePersistent. The values
of managed fields saved at the time the transition was made from transient-clean to tran-
sient-dirty are used as the before image for the purposes of rollback.

5.8 Optimistic Transactions (Optional)

Optimistic transaction management is an optional feature of a JDO implementation.

The Optimistic flag set to true changes the state transitions of persistent instances:

• If a persistent field other than one of the primary key fields is read, a hollow
instance transitions to persistent-nontransactional instead of persistent-clean.
Subsequent reads of these fields do not cause a transition from persistent-
nontransactional.

• A persistent-nontransactional instance transitions to persistent-deleted if it is a
parameter of deletePersistent. The state of the managed fields of the
instance in memory is saved for use during rollback, and for verification during
 JDO 2.0 58 February 28, 2006

Java Data Objects 2.0
commit. The values in fields of the instance in memory are unchanged. If fresh
values need to be loaded from the datastore, then the user should first call
refresh on the instance.

• A persistent-nontransactional instance transitions to persistent-clean if it is a
parameter of a makeTransactional method executed when an optimistic
transaction is in progress. The values in managed fields of the instance in memory
are unchanged. If fresh values need to be loaded from the datastore, then the user
should first call refresh on the instance.

• A persistent-nontransactional instance transitions to persistent-dirty if a managed
field is modified when an optimistic transaction is in progress. If RestoreValues
is true, a before image is saved before the state transition. This is used for
restoring field values during rollback. Depending on the implementation the
before image of the instance in memory might be saved for verification during
commit. The values in fields of the instance in memory are unchanged before the
update is applied. If fresh values need to be loaded from the datastore, then the
user should first call refresh on the instance.
 JDO 2.0 59 February 28, 2006

Java Data Objects 2.0
Table 2: State Transitions

method \ current state Transient P-new P-clean P-dirty Hollow

makePersistent P-new unchanged unchanged unchanged unchanged

deletePersistent error P-new-del P-del P-del P-del

makeTransactional T-clean unchanged unchanged unchanged P-clean

makeNontransactional error error P-nontrans error unchanged

makeTransient unchanged error Transient error Transient

commit
retainValues=false

unchanged Hollow Hollow Hollow unchanged

commit
retainValues=true

unchanged P-nontrans P-nontrans P-nontrans unchanged

rollback
restoreValues=false

unchanged Transient Hollow Hollow unchanged

rollback
restoreValues=true

unchanged Transient P-nontrans P-nontrans unchanged

refresh with active
Datastore transaction

unchanged unchanged unchanged P-clean unchanged

refresh with active Opti-
mistic transaction

unchanged unchanged unchanged P-nontrans unchanged

evict n/a unchanged Hollow unchanged unchanged

read field outside transac-
tion

unchanged impossible impossible impossible P-nontrans

read field with active
Optimistic transaction

unchanged unchanged unchanged unchanged P-nontrans

read field with active
Datastore transaction

unchanged unchanged unchanged unchanged P-clean

write field or
makeDirty outside
transaction

unchanged impossible impossible impossible P-nontrans

write field or
makeDirty with
active transaction

unchanged unchanged P-dirty unchanged P-dirty
 JDO 2.0 60 February 28, 2006

Java Data Objects 2.0
retrieve outside or with
active Optimistic transac-
tion

unchanged unchanged unchanged unchanged P-nontrans

retrieve with active Datas-
tore transaction

unchanged unchanged unchanged unchanged P-clean

commit transaction with
DetachAllOnCommit true

unchanged detached-
clean

detached-
clean

detached-
clean

detached-
clean

method \ current state T-clean T-dirty P-new-del P-del P-nontrans

makePersistent P-new P-new unchanged unchanged unchanged

deletePersistent error error unchanged unchanged P-del

makeTransactional unchanged unchanged unchanged unchanged P-clean

makeNontransactional Transient error error error unchanged

makeTransient unchanged unchanged error error Transient

commit
retainValues=false

unchanged T-clean Transient Transient unchanged

commit
retainValues=true

unchanged T-clean Transient Transient unchanged

rollback
restoreValues=false

unchanged T-clean Transient Hollow unchanged

rollback
restoreValues=true

unchanged T-clean Transient P-nontrans unchanged

refresh unchanged unchanged unchanged unchanged unchanged

evict unchanged unchanged unchanged unchanged Hollow

read field outside transac-
tion

unchanged impossible impossible impossible unchanged

read field with Optimistic
transaction

unchanged unchanged error error unchanged

read field with active
Datastore transaction

unchanged unchanged error error P-clean

write field or
makeDirty outside
transaction

unchanged impossible impossible impossible unchanged

Table 2: State Transitions

method \ current state Transient P-new P-clean P-dirty Hollow
 JDO 2.0 61 February 28, 2006

Java Data Objects 2.0
write field or
makeDirty with
active transaction

T-dirty unchanged error error P-dirty

retrieve outside or with
active Optimistic transac-
tion

unchanged unchanged unchanged unchanged unchanged

retrieve with active Datas-
tore transaction

unchanged unchanged unchanged unchanged P-clean

commit transaction with
DetachAllOnCommit true

unchanged unchanged Transient Transient detached-
clean

method \ current state
P-nontrans-

dirty
detached-

clean
detached-

dirty

makePersistent unchanged unchanged unchanged

deletePersistent error unchanged unchanged

makeTransactional unchanged error error

makeNontransactional error error error

makeTransient error error error

commit with
retainValues=false

hollow unchanged unchanged

commit with
retainValues=true

P-nontrans unchanged unchanged

rollback unchanged unchanged unchanged

refresh unchanged error error

evict hollow error error

read field unchanged unchanged unchanged

write field or
makeDirty

unchanged detached-
dirty

unchanged

retrieve unchanged error error

commit transaction with
DetachAllOnCommit true

detached unchanged unchanged

method \ current state T-clean T-dirty P-new-del P-del P-nontrans
 JDO 2.0 62 February 28, 2006

Java Data Objects 2.0
error: a JDOUserException is thrown; the state does not change
unchanged: no state change takes place; no exception is thrown due to the state change
n/a: not applicable; if this instance is an explicit parameter of the method, a JDOUserException
is thrown; if this instance is an implicit parameter, it is ignored.
impossible: the state cannot occur in this scenario

Figure 7.0 Life Cycle: New Persistent Instances

Figure 8.0 Life Cycle: Transactional Access

Persistent-
new

Transient Hollow

Persistent-
new-deleted

makePersistent

rollback

commit,
rollback

deletePersistent

commit

Transient

Persistent-
deleted

Hollow

Active
Persistent
Instances

deletePersistent

read field,
write field

commit,
rollback

deletePersistent

rollback
commit
 JDO 2.0 63 February 28, 2006

Java Data Objects 2.0
Figure 9.0 Life Cycle: Datastore Transactions

Figure 10.0 Life Cycle: Optimistic Transactions

Figure 11.0 Life Cycle: Access Outside Transactions

Hollow

Persistent-

Persistent-

write field

read field

commit,
rollback

write field

commit,
rollback

clean

dirty

Hollow

Persistent-

Persistent-

write field

read field

commit,
rollback

write field

commit,
rollback

nontransactional

dirty

Hollow
Persistent-

nontransactional

read field,
write field

evict

read field

Persistent-
nontransactional-
dirty

evict

write field
 JDO 2.0 64 February 28, 2006

Java Data Objects 2.0
Figure 12.0 Life Cycle: Transient TransactionalLife Cycle: Transient Transactional

Figure 13.0 Life Cycle: Detached

Transient

Transient-

Transient-

makeTransactional

write field

makeNontransactional

commit,
rollback

clean

dirty

Detached-

Detached-

write field

dirty

clean
 JDO 2.0 65 February 28, 2006

Java Data Objects 2.0
Figure 14.0 JDO Instance State Transitions

NOTE: Not all possible state transitions are shown in this diagram.

1. A transient instance transitions to persistent-new when the instance is the
parameter of a makePersistent method.

2. A persistent-new instance transitions to hollow when the transaction in which it
was made persistent commits.

3. A hollow instance transitions to persistent-clean when a field is read.

4. A persistent-clean instance transitions to persistent-dirty when a field is written.

5. A persistent-dirty instance transitions to hollow at commit or rollback.

6. A persistent-clean instance transitions to hollow at commit or rollback.

7. A transient instance transitions to transient-clean when it is the parameter of a
makeTransactional method.

8. A transient-clean instance transitions to transient-dirty when a field is written.

9. A transient-dirty instance transitions to transient-clean at commit or rollback.

10. A transient-clean instance transitions to transient when it is the parameter of a
makeNontransactional method.

11. A hollow instance transitions to persistent-dirty when a field is written.

transient-clean

transient-dirty

transient

persistent-

persistent-dirty

persistent-clean

hollow

TRANSIENT PERSISTENT

READ-OK

WRITE-OK

nontransactional

1.

3.
4.

2.
6.

8.

7.

9.

10.

12.

persistent-
new

13.

14.

5.

persistent-deleted

persistent-
new-deleted

16.

17.

18.

19.

20.

19.

21.

15.

22.

19.

11.
23.

24.
 JDO 2.0 66 February 28, 2006

Java Data Objects 2.0
12. A persistent-clean instance transitions to persistent-nontransactional at commit
when RetainValues is set to true, at rollback when RestoreValues is set
to true, or when it is the parameter of a makeNontransactional method.

13. A persistent-nontransactional instance transitions to persistent-clean when it is
the parameter of a makeTransactional method.

14. A persistent-nontransactional instance transitions to persistent-dirty when a
field is written in a transaction.

15. A persistent-new instance transitions to transient on rollback.

16. A persistent-new instance transitions to persistent-new-deleted when it is the
parameter of deletePersistent.

17. A persistent-new-deleted instance transitions to transient on rollback. The
values of the fields are restored as of the makePersistent method.

18. A persistent-new-deleted instance transitions to transient on commit. No
changes are made to the values.

19. A hollow, persistent-clean, or persistent-dirty instance transitions to persistent-
deleted when it is the parameter of deletePersistent.

20. A persistent-deleted instance transitions to transient when the transaction in
which it was deleted commits.

21. A persistent-deleted instance transitions to hollow when the transaction in
which it was deleted rolls back.

22. A hollow instance transitions to persistent-nontransactional when the
NontransactionalRead option is set to true, a field is read, and there is
either an optimistic transaction or no transaction active.

23. A persistent-dirty instance transitions to persistent-nontransactional at commit
when RetainValues is set to true or at rollback when RestoreValues is
set to true.

24. A persistent-new instance transitions to persistent-nontransactional at commit
when RetainValues is set to true.
 JDO 2.0 67 February 28, 2006

Java Data Objects 2.0
6 The Persistent Object Model

This chapter specifies the object model for persistence capable classes. To the extent possi-
ble, the object model is the same as the Java object model. Differences between the Java ob-
ject model and the JDO object model are highlighted.

6.1 Overview

The Java execution environment supports different kinds of classes that are of interest to
the developer. The classes that model the application and business domain are the primary
focus of JDO. In a typical application, application classes are highly interconnected, and
the graph of instances of those classes includes the entire contents of the datastore.

Applications typically deal with a small number of persistent instances at a time, and it is
the function of JDO to allow the illusion that the application can access the entire graph of
connected instances, while in reality only small subset of instances needs to be instantiated
in the JVM. This concept is called transparent data access, transparent persistence, or sim-
ply transparency.

Figure 15.0 Instantiated persistent objects

Instantiated persistent objects

Persistent objects

Java VM

Datastore virtual objects

Datastore

Mapping function
Transient objects
 JDO 2.0 68 February 28, 2006

Java Data Objects 2.0
Within a JVM, there may be multiple independent units of work that must be isolated from
each other. This isolation imposes requirements on JDO to permit the instantiation of the
same datastore object into multiple Java instances. The connected graph of Java instances
is only a subset of the entire contents of the datastore. Whenever a reference is followed
from one persistent instance to another, the JDO implementation transparently instanti-
ates the required instance into the JVM.

The storage of objects in datastores might be quite different from the storage of objects in
the JVM. Therefore, there is a mapping between the Java instances and the objects in the
datastore. This mapping is performed by the JDO implementation, using metadata that is
available at runtime. The metadata is generated by a JDO vendor-supplied tool, in coop-
eration with the deployer of the system. The mapping is not standardized by JDO except
in the case of relational databases, for which a subset of mapping functionality is standard.
The standard part of the mapping is specified in Chapter 15.

JDO instances are stored in the datastore and retrieved, possibly field by field, from the
datastore at specific points in their life cycle. The class developer might use callbacks at
certain points to make a JDO instance ready for execution in the JVM, or make a JDO in-
stance ready to be removed from the JVM. While executing in the JVM, a JDO instance
might be connected to other instances, both persistent and transient.

There is no restriction on the types of non-persistent fields of persistence-capable classes.
These fields behave exactly as defined by the Java language. Persistent fields of persis-
tence-capable classes have restrictions in JDO, based on the characteristics of the types of
the fields in the class definition.

6.2 Goals

The JDO Object Model has the following objectives:

• All field types supported by the Java language, including primitive types,
reference types and interface types should be supported by JDO instances.

• All class and field modifiers supported by the Java language including private,
public, protected, static, transient, abstract, final, synchronized, and volatile,
should be supported by JDO instances.

• All user-defined classes should be allowed to be persistence-capable.

• Some system-defined classes (especially those for modeling state) should be
persistence-capable.

6.3 Architecture

In Java, variables (including fields of classes) have types. Types are either primitive types
or reference types. Reference types are either classes or interfaces. Arrays are treated as
classes.

An object is an instance of a specific class, determined when the instance is constructed.
Instances may be assigned to variables if they are assignment compatible with the variable
type.

Persistence-capable

The JDO Object Model distinguishes between two kinds of classes: those that are marked
as persistence-capable and those that aren’t. A user-defined class can be persistence-capa-
ble unless its state depends on the state of inaccessible or remote objects (e.g. it extends
 JDO 2.0 69 February 28, 2006

Java Data Objects 2.0
java.net.SocketImpl or uses JNI (native calls) to implement java.net.Socke-
tOptions). A non-static inner class cannot be persistence-capable because the state of its
instances depends on the state of their enclosing instances.

Except for system-defined classes specially addressed by the JDO specification, system-de-
fined classes (those defined in java.lang, java.io, java.util, java.net, etc.) are
not persistence-capable, nor is a system-defined class allowed to be the type of a persistent
field.

First Class Objects and Second Class Objects

A First Class Object (FCO) is an instance of a persistence-capable class that has a JDO Iden-
tity, can be stored in a datastore, and can be independently deleted and queried. A Second
Class Object (SCO) has no JDO Identity of its own and is stored in the datastore only as
part of a First Class Object. In some JDO implementations, some SCO instances are actually
artifacts that have no literal datastore representation at all, but are used only to represent
relationships. For example, a Collection of instances of a persistence-capable class
might not be stored in the datastore, but created when needed to represent the relationship
in memory. At commit time, the memory artifact is discarded and the relationship is rep-
resented entirely by datastore relationships.

First Class Objects

FCOs support uniquing; whenever an FCO is instantiated into memory, there is guaran-
teed to be only one instance representing that FCO managed by the same Persistence-
Manager instance. They are passed as arguments by reference.

An FCO can be shared among multiple FCOs, and if an FCO is changed (and the change
is committed to the datastore), then the changes are visible to all other FCOs that refer to it.

Second Class Objects

Second Class Objects are either instances of immutable system classes (java.lang.In-
teger, java.lang.String, etc.), JDO implementation subclasses of mutable system
classes that implement the functionality of their system class (java.util.Date, ja-
va.util.HashSet, etc.), or persistence-capable classes.

Second Class Objects of mutable system classes and persistence-capable classes track
changes made to them, and notify their owning FCO that they have changed. The change
is reflected as a change to the owning FCO (e.g. the owning instance might change state
from persistent-clean to persistent-dirty). They are stored in the datastore only as part of a
FCO. They do not support uniquing, and the Java object identity of the values of the per-
sistent fields containing them is lost when the owning FCO is flushed to the datastore.
They are passed as arguments by reference.

SCO fields must be explicitly or by default identified in the metadata as embedded. If a
field, or an element of a collection or a map key or value is identified as embedded (em-
bedded-element, embedded-key, or embedded-value) then any instances so identified in
the collection or map are treated as SCO during commit. That is, the value is stored with
the owning FCO and the value loses its own identity if it had one.

SCO fields of persistence-capable types are identified as embedded. The behavior of em-
bedded persistence-capable types is intended to mirror the behavior of system types, but
this is not standard, and portable applications must not depend on this behavior.

It is possible for an application to assign the same instance of a mutable SCO class to mul-
tiple FCO embedded fields, but this non-portable behavior is strongly discouraged for the
following reason: if the assignment is done to persistent-new, persistent-clean, or persis-
tent-dirty instances, then at the time that the FCOs are committed to the datastore, the Java
 JDO 2.0 70 February 28, 2006

Java Data Objects 2.0
object identity of the owned SCOs might change, because each FCO might have its own
unshared SCO. If the assignment is done before makePersistent is called to make the
FCOs persistent, the embedded fields are immediately replaced by copies, and no sharing
takes place.

When an FCO is instantiated in the JVM by a JDO implementation, and an embedded field
of a mutable type is accessed, the JDO implementation assigns to these fields a new in-
stance that tracks changes made to itself, and notifies the owning FCO of the change. Sim-
ilarly, when an FCO is made persistent, either by being the parameter of
makePersistent or makePersistentAll or by being reachable from a parameter of
makePersistent or makePersistentAll at the time of the execution of the makeP-
ersistent or makePersistentAll method call, the JDO implementation replaces the
field values of mutable SCO types with instances of JDO implementation subclasses of the
mutable system types.

Therefore, the application cannot assume that it knows the actual class of instances as-
signed to SCO fields, although it is guaranteed that the actual class is assignment compat-
ible with the type.

There are few differences visible to the application between a field mapped to an FCO and
an SCO. One difference is in sharing. If an FCO1 is assigned to a persistent field in FCO2
and FCO3, then any changes at any time to instance FCO1 will be visible from FCO2 and
FCO3.

If an SCO1 is assigned to a persistent field in persistent instances FCO1 and FCO2, then
any changes to SCO1 will be visible from instances FCO1 and FCO2 only until FCO1 and
FCO2 are committed. After commit, instance SCO1 might not be referenced by either
FCO1 or FCO2, and any changes made to SCO1 might not be reflected in either FCO1 or
FCO2.

Another difference is in visibility of SCO instances by queries. SCO instances are not add-
ed to Extents. If the SCO instance is of a persistence-capable type, it is not visible to que-
ries of the Extent of the persistence-capable class. Furthermore, the field values of SCO
instances of persistence-capable types might not be visible to queries at all.

Sharing of immutable SCO fields is supported in that it is good practice to assign the same
immutable instance to multiple SCO fields. But the field values should not be compared
using Java identity, but only by Java equality. This is the same good practice used with
non-persistent instances.

Arrays

Arrays are system-defined classes that do not necessarily have any JDO Identity of their
own, and support by a JDO implementation is optional. If an implementation supports
them, they might be stored in the datastore as part of an FCO. They do not support uniqu-
ing, and the Java object identity of the values of the persistent fields containing them is lost
when the owning FCO is flushed to the datastore. They are passed as arguments by refer-
ence.

Tracking changes to Arrays is not required to be done by a JDO implementation. If an Ar-
ray owned by an FCO is changed, then the changes might not be flushed to the datastore.
Portable applications must not require that these changes be tracked. In order for changes
to arrays to be tracked, the application must explicitly notify the owning FCO of the
change to the Array by calling the makeDirty method of the JDOHelper class, or by re-
placing the field value with its current value.

Since changes to array-type fields cannot be tracked by JDO, setting the value of an array-
type managed field marks the field as dirty, even if the new value is identical to the old
 JDO 2.0 71 February 28, 2006

Java Data Objects 2.0
value. This special case is required to allow the user to mark an array-type field as dirty
without having to call the JDOHelper method makeDirty.

Furthermore, an implementation is permitted, but not required to, track changes to Arrays
passed as references outside the body of methods of the owning class. There is a method
defined on class JDOHelper that allows the application to mark the field containing such
an Array to be modified so its changes can be tracked. Portable applications must not re-
quire that these changes be tracked automatically. When a reference to the Array is re-
turned as a result of a method call, a portable application first marks the Array field as
dirty.

It is possible for an application to assign the same instance of an Array to multiple FCOs,
but after the FCO is flushed to the datastore, the Java object identity of the Array might
change.

When an FCO is instantiated in the JVM, the JDO implementation assigns to fields with an
Array type a new instance with a different Java object identity from the instance stored.

Therefore, the application cannot assume that it knows the identity of instances assigned
to Array fields, although it is guaranteed that the actual value is the same as the value
stored.

Primitives

Primitives are types defined in the Java language and comprise boolean, byte, short,
int, long, char, float, and double. They might be stored in the datastore only as part
of an FCO. They have no Java identity and no datastore identity of their own. They are
passed as arguments by value.

Interfaces

Interfaces are types whose values may be instances of any class that declare that they im-
plement that interface.

6.4 Field types of persistence-capable classes

6.4.1 Nontransactional non-persistent fields

There are no restrictions on the types of nontransactional non-persistent fields. These
fields are managed entirely by the application, not by the JDO implementation. Their state
is not preserved by the JDO implementation, although they might be modified during ex-
ecution of user-written callbacks defined in interface InstanceCallbacks at specific
points in the life cycle, or any time during the instance’s existence in the JVM.

6.4.2 Transactional non-persistent fields

There are no restrictions on the types of transactional non-persistent fields. These fields are
partly managed by the JDO implementation. Their state is preserved and restored by the
JDO implementation during certain state transitions.

6.4.3 Persistent fields

Precision of fields

JDO implementations may not represent Java types precisely in the datastore, because not
all datastores are able to natively represent all Java types. Some type mapping may be re-
quired. The precision of the mapping is a quality of service issue with the JDO implemen-
tation and the particular datastore.
 JDO 2.0 72 February 28, 2006

Java Data Objects 2.0
The mapping precision restriction applies to the range of values that can be faithfully
stored and retrieved, the precision of the values, and the scale of BigDecimal values.

Primitive types

JDO implementations must support fields of any of the primitive types

• boolean, byte, short, int, long, char, float, and double.

Primitive values are stored in the datastore associated with their owning FCO. They have
no JDO Identity.

Immutable Object Class types

JDO implementations must support fields that reference instances of immutable object
classes, and may choose to support these instances as SCOs or FCOs:

• package java.lang: Boolean, Character, Byte, Short, Integer, Long,
Float, Double, and String;

• package java.util: Locale, Currency.

• package java.math: BigDecimal, BigInteger.

Portable JDO applications must not depend on whether instances of these classes are treat-
ed as SCOs or FCOs.

The scale of BigDecimal values is not guaranteed to be preserved by implementations.
For example, saving a persistent field with value BigDecimal(“1.2300”) might be re-
turned as value BigDecimal(“1.23”).

Mutable Object Class types

JDO implementations must support fields that reference instances of the following muta-
ble object classes, and may choose to support these instances as SCOs or FCOs:

• package java.util: Date, HashSet, HashMap, Hashtable,
LinkedHashMap, LinkedHashSet.

JDO implementations may optionally support fields that reference instances of the follow-
ing mutable object classes, and may choose to support these instances as SCOs or FCOs:

• package java.util:ArrayList, LinkedList, TreeMap, TreeSet, and
Vector.

Because the treatment of these fields may be as SCO, the behavior of these mutable object
classes when used in a persistent instance is not identical to their behavior in a transient
instance.

Portable JDO applications must not depend on whether instances of these classes refer-
enced by fields are treated as SCOs or FCOs.

Persistence-capable Class types

JDO implementations must support references to FCO instances of persistence-capable
classes and are permitted, but not required, to support references to SCO instances of per-
sistence-capable classes.

Portable JDO applications must not depend on whether these fields are treated as SCOs or
FCOs.

Object Class type

JDO implementations must support fields of Object class type as FCOs. The implemen-
tation is permitted, but is not required, to allow any class to be assigned to the field. If an
 JDO 2.0 73 February 28, 2006

Java Data Objects 2.0
implementation restricts instances to be assigned to the field, a ClassCastException
must be thrown at the time of any incorrect assignment.

Portable JDO applications must not depend on whether these fields are treated as SCOs or
FCOs.

Collection Interface types

JDO implementations must support fields of interface types, and may choose to support
them as SCOs or FCOs: package java.util: Collection, Map, Set, and List. Col-
lection, Map, and Set are required; List is optional.

Portable JDO applications must not depend on whether these fields are treated as SCOs or
FCOs.

Other Interface types

JDO implementations must support fields of interface types other than Collection in-
terface types as FCOs. The implementation is permitted, but is not required, to allow any
class that implements the interface to be assigned to the field. If an implementation further
restricts instances that can be assigned to the field, a ClassCastException must be
thrown at the time of any incorrect assignment.

Portable JDO applications must treat these fields as FCOs.

Arrays

JDO implementations may optionally support fields of array types, and may choose to
support them as SCOs or FCOs. If Arrays are supported by JDO implementations, they are
permitted, but not required, to track changes made to Arrays that are fields of persistence
capable classes in the methods of the classes. They need not track changes made to Arrays
that are passed by reference as arguments to methods, including methods of persistence-
capable classes.

Portable JDO applications must not depend on whether these fields are treated as SCOs or
FCOs.

6.5 Inheritance

A class might be persistence-capable even if its superclass is not persistence-capable. This
allows users to extend classes that were not designed to be persistence-capable. If a class
is persistence-capable, then its subclasses might or might not be persistence-capable them-
selves.

Further, subclasses of such classes that are not persistence-capable might be persistence-
capable. That is, it is possible for some classes in the inheritance hierarchy to be persis-
tence-capable and some not persistence-capable.

The expression "obj instanceof PersistenceCapable" can be true (because of a
persistence-capable superclass) when in fact the class of obj is not persistence-capable.
Thus, it is not possible for an application to examine a class to determine whether an in-
stance of that class is allowed to be persistent.

Fields identified in the XML metadata as persistent or transactional in persistence-capable
classes must be fields declared in that Java class definition. That is, inherited fields cannot
be named in the XML metadata.

Fields identified as persistent in persistence-capable classes will be persistent in subclass-
es; fields identified as transactional in persistence-capable classes will be transactional in
 JDO 2.0 74 February 28, 2006

Java Data Objects 2.0
subclasses; and fields identified as non-persistent in persistence-capable classes will be
non-persistent in subclasses.

Of course, a class might define a new field with the same name as the field declared in the
superclass, and might define it with a different persistence-modifier from the inherited
field. But Java treats the declared field as a different field from the inherited field, so there
is no conflict.

All persistence-capable classes must have a no-arg constructor. This constructor might be
a private constructor, as it is only used from within the jdoNewInstance methods. The
constructor might be the default no-arg constructor created by the compiler when the
source code does not define any constructors.

The identity type of the least-derived persistence-capable class defines the identity type for
all persistence-capable classes that extend it.

Persistence-capable classes that use application identity have special considerations for in-
heritance:

Key fields may be declared only in abstract superclasses and least-derived concrete classes
in inheritance hierarchies. Key fields declared in these classes must also be declared in the
corresponding objectid classes, and the objectid classes must form an inheritance hierar-
chy corresponding to the inheritance hierarchy of the persistence-capable classes. A per-
sistence-capable class can only have one concrete objectid class anywhere in its inheritance
hierarchy.

For example, if an abstract class Component declares a key field masterId, the objectid
class ComponentKey must also declare a field of the same type and name. If Compo-
nentKey is concrete, then no subclass is allowed to define an objectid class.

If ComponentKey is abstract, an instance of a concrete subclass of ComponentKey must
be used to find a persistent instance. A concrete class Part that extends Component must
declare a concrete objectid class (for example, PartKey) that extends ComponentKey.
There might be no key fields declared in Part or PartKey. Persistence-capable subclass-
es of Part must not have an objectid class.

Another concrete class Assembly that extends Component must declare a concrete ob-
jectid class (for example, AssemblyKey) that extends ComponentKey. If there is a key
field, it must be declared in both Assembly and AssemblyKey. Persistence-capable sub-
classes of Assembly must not have an objectid class.

There might be other abstract classes or non-persistence-capable classes in the inheritance
hierarchy between Component and Part, or between Component and Assembly.
These classes are ignored for the purposes of objectid classes and key fields.

Readers primarily interested in developing applications with the JDO API can ignore the following
chapter. Skip to 8 – JDOHelper.
 JDO 2.0 75 February 28, 2006

Java Data Objects 2.0
7 PersistenceCapable

For JDO implementations that support the BinaryCompatibility rules, every instance that
is managed by a JDO PersistenceManager must be of a class that implements the
public PersistenceCapable interface. This interface defines methods that allow the
implementation to manage the instances. It also defines methods that allow a JDO aware
application to examine the runtime state of instances, for example to discover whether the
instance is transient, persistent, transactional, dirty, etc., and to discover its associated
PersistenceManager if it has one.

The JDO Reference Enhancer modifies the class to implement PersistenceCapable
prior to loading the class into the runtime environment. The enhancer additionally adds
code to implement the methods defined by PersistenceCapable. Other enhancers
can be used for specific binary-compatible JDO implementations.

The PersistenceCapable interface is designed to avoid name conflicts in the scope of
user-defined classes. All of its declared method names are prefixed with “jdo”.

Class implementors may explicitly declare that the class implements PersistenceCa-
pable. If this is done, the implementor must implement the PersistenceCapable
contract, and the enhancer will ignore the class instead of enhancing it.

The recommended (and only portable) approach for applications to interrogate the state
of persistence-capable instances is to use the class JDOHelper, which provides static
methods that delegate to the instance if it implements PersistenceCapable, and if
not, attempts to find the JDO implementation responsible for the instance, and if unable to
do so, returns the values that would have been returned by a transient instance.

Classes that are to be detached from the persistence manager further implement the De-
tachable interface. This interface is used to establish the fields loaded before detachment
and to query the instance if it is presented for attachment later.

The persistence modifier, identity type, identity class, key fields, persistent fields, and de-
tachability of the class are fixed at enhancement time, or when the class is loaded, which-
ever occurs first.

 NOTE: This interface is not intended to be used by application programmers.
It is for use only by implementations. Applications should use the methods
defined in class JDOHelper instead of these methods.

package javax.jdo.spi;

public interface PersistenceCapable {

7.1 Persistence Manager

PersistenceManager jdoGetPersistenceManager();

This method returns the associated PersistenceManager or null if the instance is
transient.
 JDO 2.0 76 February 28, 2006

Java Data Objects 2.0
7.2 Make Dirty

void jdoMakeDirty (String fieldName);void jdoMakeDirty (int
fieldNumber);

These methods mark the specified field dirty so that its values will be modified in the
datastore when the transaction in which the instance is modified is committed. The
fieldName is the name of the field to be marked as dirty, optionally including the fully
qualified package name and class name of the field. This method returns with no effect if
the instance is not managed by a StateManager. This method has the same effect on the
life cycle state of the instance as changing a managed field would. The fieldNumber pa-
rameter is the internal field number assigned during class enhancement.

If the same name is used for multiple fields (a class declares a field of the same name as a
field in one of its superclasses) then the unqualified name refers to the most-derived class
in which the field is declared to be persistent. The qualified name (className.fieldName)
should always be used to identify the field to avoid ambiguity with subclass-defined
fields.

The rationale for this is that a method in a superclass might call this method, and specify
the name of the field that is hidden by a subclass. The StateManager has no way of
knowing which class called this method, and therefore assumes the Java rule regarding
field names.

It is always safe to explicitly name the class and field referred to in the parameter to the
method. The StateManager will resolve the scope of the name in the class named in the
parameter.

For example, if class C inherits class B which inherits class A, and field X is declared in
classes A and C, a method declared in class B may refer to the field in the method as “B.X”
and it will refer to the field declared in class A. Field X is not declared in B; however, in the
scope of class B, X refers to A.X.

7.3 JDO Identity

Object jdoGetObjectId();

This method returns the JDO identity of the instance. If the instance is transient, null is
returned. If the identity is being changed in a transaction, this method returns the identity
as of the beginning of the transaction. If the instance is detached, this method returns the
identity as of the time of detachment.

Object jdoGetTransactionalObjectId();

This method returns the JDO identity of the instance. If the instance is transient, null is
returned. If the identity is being changed in a transaction, this method returns the current
identity in the transaction. If the instance is detached, this method returns the identity as
of the time of detachment.

7.3.1 Version

Object jdoGetVersion();

This method returns the version of the instance.
 JDO 2.0 77 February 28, 2006

Java Data Objects 2.0
7.4 Status interrogation

The status interrogation methods return a boolean that represents the state of the instance:

7.4.1 Dirty

boolean jdoIsDirty();

Instances whose state has been changed in the current transaction return true. If the in-
stance is transient or detached, false is returned.

7.4.2 Transactional

boolean jdoIsTransactional();

Instances whose state is associated with the current transaction return true. If the in-
stance is transient or detached, false is returned.

7.4.3 Persistent

boolean jdoIsPersistent();

Instances that represent persistent objects in the datastore return true. If the instance is
transient or detached, false is returned.

7.4.4 New

boolean jdoIsNew();

Instances that have been made persistent in the current transaction return true. If the in-
stance is transient or detached, false is returned.

7.4.5 Deleted

boolean jdoIsDeleted();

Instances that have been deleted in the current transaction return true. If the instance is
transient or detached, false is returned.

7.4.6 Detached

boolean jdoIsDetached();

Table 3: State interrogation

Persistent Transactional Dirty New Deleted Detached

Transient

Transient-clean

Transient-dirty

Persistent-new

Persistent-
nontransactional

Persistent-nontrans-
actional-dirty
 JDO 2.0 78 February 28, 2006

Java Data Objects 2.0
Instances that have been detached return true.

7.5 New instance

PersistenceCapable jdoNewInstance(StateManager sm);

This method creates a new instance of the class of the instance. It is intended to be used as
a performance optimization compared to constructing a new instance by reflection using
the constructor. It is intended to be used only by JDO implementations, not by applica-
tions. If the class is abstract, null is returned.

PersistenceCapable jdoNewInstance(StateManager sm, Object oid);

This method creates a new instance of the class of the instance, and copies key field values
from the oid parameter instance. It is intended to be used as a performance optimization
compared to constructing a new instance by reflection using the constructor, and copying
values from the oid instance by reflection. It is intended to be used only by JDO implemen-
tations for classes that use application identity, not by applications. If the class is abstract,
null is returned.

7.6 State Manager

void jdoReplaceStateManager (StateManager sm)

throws SecurityException;

This method sets the jdoStateManager field to the parameter. This method is normally
used by the StateManager during the process of making an instance persistent, trans-
actional, or transient. The caller of this method must have JDOPermission("set-
StateManager") for the instance, otherwise SecurityException is thrown.

7.7 Replace Flags

void jdoReplaceFlags ();

This method tells the instance to call the owning StateManager’s replacingFlags
method to get a new value for the jdoFlags field.

Persistent-clean

Persistent-dirty

Hollow

Persistent-deleted

Persistent-new-
deleted

Detached-clean

Detached-dirty

Table 3: State interrogation

Persistent Transactional Dirty New Deleted Detached
 JDO 2.0 79 February 28, 2006

Java Data Objects 2.0
7.8 Replace Fields

void jdoReplaceField (int fieldNumber);

This method gets a new value from the StateManager for the field specified in the pa-
rameter. The field number must refer to a field declared in this class or in a superclass.

void jdoReplaceFields (int[] fieldNumbers);

This method iterates over the array of field numbers and calls jdoReplaceField for
each one.

7.9 Provide Fields

void jdoProvideField (int fieldNumber);

This method provides the value of the specified field to the StateManager. The field
number must refer to a field declared in this class or in a superclass.

void jdoProvideFields (int[] fieldNumbers);

This method iterates over the array of field numbers and calls jdoProvideField for
each one.

7.10 Copy Fields

void jdoCopyFields (Object other, int[] fieldNumbers);

void jdoCopyField (Object other, int fieldNumber);

These methods copy fields from another instance of the same class. These methods can be
invoked only when both this and other are managed by the same StateManager.

7.11 Static Fields

The following fields define the permitted values for the jdoFlags field.

public static final byte READ_WRITE_OK = 0;

public static final byte READ_OK = -1;

public static final byte LOAD_REQUIRED = 1;

The following fields define the flags for the jdoFieldFlags elements.

public static final byte CHECK_READ = 1;

public static final byte MEDIATE_READ = 2;

public static final byte CHECK_WRITE = 4;

public static final byte MEDIATE_WRITE = 8;

public static final byte SERIALIZABLE = 16;

7.12 JDO identity handling

public Object jdoNewObjectIdInstance();

This method creates a new instance of the class used for JDO identity. It is intended only
for application identity. If the class has been enhanced for datastore identity, or if the class
is abstract, null is returned.
 JDO 2.0 80 February 28, 2006

Java Data Objects 2.0
For classes using single field identity, this method must be called on an instance of a per-
sistence-capable class with its primary key field initialized (not null), or a JDONullIden-
tityException is thrown.

The instance returned is initialized with the value(s) of the primary key field(s) of the in-
stance on which the method is called.

public Object jdoNewObjectIdInstance(Object key);

This method creates a new instance of the class used for JDO identity, using the appropri-
ate constructor of the object id class. It is intended only for application identity, including
single field identity. If the class has been enhanced for datastore identity, or if the class is
abstract, null is returned. The identity instance returned has no relationship with the val-
ues of the primary key fields of the persistence-capable instance on which the method is
called.

For single field identity, there is specific behavior required for parameters of these types:

• ObjectIdFieldSupplier: the field value is fetched and used to construct the
single field identity instance.

• Number or Character: the parameter key must be an instance of the key type or,
for primitive key types, the wrapper of the key type; the key is passed as a
parameter to the single field identity constructor.

• String: the String is parsed to a value of the appropriate type and the value is
used to construct the single field identity instance. For ObjectIdentity, the
String is decomposed into two parts using “:” as a delimiter. The first part is the
class name; the second is the String representation of the value of the class.

• Object: for ObjectIdentity, the key type must be assignable from the
parameter key.

public void jdoCopyKeyFieldsToObjectId(Object oid);

This method copies all key fields from this instance to the parameter. The parameter must
be an instance of the JDO identity class, or ClassCastException is thrown. If the class
uses single field identity, this method always throws JDOFatalInternalException.

public void jdoCopyKeyFieldsToObjectId(ObjectIdFieldSupplier
fs, Object oid);

This method copies fields from the field manager instance to the second parameter in-
stance. Each key field in the ObjectId class matching a key field in the Persistence-
Capable class is set by the execution of this method. For each key field, the method of the
ObjectIdFieldSupplier is called for the corresponding type of field. The second pa-
rameter must be an instance of the JDO identity class. If the parameter is not of the correct
type, then ClassCastException is thrown. If the class uses single field identity, this
method always throws JDOFatalInternalException.

public void jdoCopyKeyFieldsFromObjectId(ObjectIdFieldConsumer
fc, Object oid);

This method copies fields to the field manager instance from the second parameter in-
stance. Each key field in the ObjectId class matching a key field in the Persistence-
Capable class is retrieved by the execution of this method. For each key field, the method
of the ObjectIdFieldConsumer is called for the corresponding type of field. The sec-
ond parameter must be an instance of the JDO identity class. If the parameter is not of the
correct type, then ClassCastException is thrown.
 JDO 2.0 81 February 28, 2006

Java Data Objects 2.0
interface ObjectIdFieldSupplier

boolean fetchBooleanField (int fieldNumber);

char fetchCharField (int fieldNumber);

short fetchShortField (int fieldNumber);

int fetchIntField (int fieldNumber);

long fetchLongField (int fieldNumber);

float fetchFloatField (int fieldNumber);

double fetchDoubleField (int fieldNumber);

String fetchStringField (int fieldNumber);

Object fetchObjectField (int fieldNumber);

These methods all fetch one field from the field manager. The returned value is stored in
the object id instance. The generated code in the PersistenceCapable class calls a
method in the field manager for each key field in the object id. The field number is the same
as in the persistence capable class for the corresponding key field.

interface ObjectIdFieldConsumer

void storeBooleanField (int fieldNumber, boolean value);

void storeCharField (int fieldNumber, char value);

void storeShortField (int fieldNumber, short value);

void storeIntField (int fieldNumber, int value);

void storeLongField (int fieldNumber, long value);

void storeFloatField (int fieldNumber, float value);

void storeDoubleField (int fieldNumber, double value);

void storeStringField (int fieldNumber, String value);

void storeObjectField (int fieldNumber, Object value);

These methods all store one field to the field manager. The value is retrieved from the ob-
ject id instance. The generated code in the PersistenceCapable class calls a method
in the field manager for each key field in the object id. The field number is the same as in
the persistence capable class for the corresponding key field.

interface ObjectIdFieldManager

This interface is a convenience interface that extends both ObjectIdFieldSupplier
and ObjectIdFieldConsumer.

7.13 Detachable

This interface contains the method used by the StateManager to manage the detached
state in a detached instance. This interface is not intended to be used by application pro-
grams.

The detached state is stored as a field in each instance of Detachable. The field is serial-
ized so as to maintain the state of the instance while detached. While detached, only the
BitSet of modified fields will be modified. The structure is as follows.

Object[] jdoDetachedState;
 JDO 2.0 82 February 28, 2006

Java Data Objects 2.0
jdoDetachedState[0]: the Object Id of the instance

jdoDetachedState[1]: the Version of the instance

jdoDetachedState[2]: a BitSet of loaded fields

jdoDetachedState[3]: a BitSet of modified fields

package javax.jdo.spi;

public interface Detachable {

void jdoReplaceDetachedState();

}

This method calls the StateManager with the current detached state instance as a pa-
rameter and replaces the current detached state instance with the value provided by the
StateManager.
 JDO 2.0 83 February 28, 2006

Java Data Objects 2.0
8 JDOHelper

JDOHelper is a class with static methods that is intended for use by persistence-aware
classes. It contains methods that allow interrogation of the persistent state of an instance
of a persistence-capable class.

Each method delegates to the instance, if it implements PersistenceCapable. Other-
wise, it delegates to any JDO implementations registered with JDOImplHelper via the
StateInterrogation interface.

If no registered implementation recognizes the instance, then

• if the method returns a value of reference type, it returns null;

• if the method returns a value of boolean type, it returns false;

if the method returns void, there is no effect.If no registered implementation recognizes
the instance, then

• if the method returns a value of reference type, it returns null;

• if the method returns a value of boolean type, it returns false;

if the method returns void, there is no effect.If no registered implementation recognizes
the instance, then

• if the method returns a value of reference type, it returns null;

• if the method returns a value of boolean type, it returns false;

• if the method returns void, there is no effect.

package javax.jdo;

class JDOHelper {

8.1 Persistence Manager

static PersistenceManager getPersistenceManager (Object pc);

This method returns the associated PersistenceManager. It returns null if the in-
stance is transient or null or if its class is not persistence-capable.

See also PersistenceCapable.jdoGetPersistenceManager().

8.2 Make Dirty

static void makeDirty (Object pc, String fieldName);

This method marks the specified field dirty so that its values will be modified in the datas-
tore when the instance is flushed. The fieldName is the name of the field to be marked
as dirty, optionally including the fully qualified package name and class name of the field.
This method has no effect if the instance is transient or null, or if its class is not persis-
tence-capable; or fieldName is not a managed field.
 JDO 2.0 84 February 28, 2006

Java Data Objects 2.0
See also PersistenceCapable.jdoMakeDirty(String fieldName).

8.3 JDO Identity

static Object getObjectId (Object pc);

This method returns the JDO identity of the instance for persistent and detached instances.
It returns null if the instance is transient or null or if its class is not persistence-capable.
If the identity is being changed in a transaction, this method returns the identity as of the
beginning of the transaction.

See also PersistenceCapable.jdoGetObjectId() and PersistenceMan-
ager.getObjectId(Object pc).

static Object[] getObjectIds (Object[] pcs);

static Collection getObjectIds (Collection pcs);

These methods return the JDO identities of the parameter instances. For each instance in
the parameter, the getObjectId method is called. They return one identity instance for
each persistence-capable instance in the parameter. The order of iteration of the returned
Collection exactly matches the order of iteration of the parameter Collection.

static Object getTransactionalObjectId (Object pc);

This method returns the JDO identity of the instance. It returns null if the instance is tran-
sient or null or does not implement PersistenceCapable. If the identity is being
changed in a transaction, this method returns the current identity in the transaction.

See also PersistenceCapable.jdoGetTransactionalObjectId()and Per-
sistenceManager.getTransactionalObjectId(Object pc).

8.4 JDO Version

static Object getVersion (Object pc);

This method returns the JDO version of the instance for persistent and detached instances.
It returns null if the instance is transient or null or if its class is not persistence-capable.

8.5 Status interrogation

The status interrogation methods return a boolean that represents the state of the in-
stance:

8.5.1 Dirty

static boolean isDirty (Object pc);

Instances whose state has been changed in the current transaction return true. It returns
false if the instance is transient or null or if its class is not persistence-capable.

See also PersistenceCapable.jdoIsDirty();

8.5.2 Transactional

static boolean isTransactional (Object pc);

Instances whose state is associated with the current transaction return true. It returns
false if the instance is transient or null or if its class is not persistence-capable.

See also PersistenceCapable.jdoIsTransactional().
 JDO 2.0 85 February 28, 2006

Java Data Objects 2.0
8.5.3 Persistent

static boolean isPersistent (Object pc);

Instances that represent persistent objects in the datastore return true. It returns false
if the instance is transient or null or if its class is not persistence-capable.

See also PersistenceCapable.jdoIsPersistent();

8.5.4 New

static boolean isNew (Object pc);

Instances that have been made persistent in the current transaction return true. It returns
false if the instance is transient or null or if its class is not persistence-capable.

See also PersistenceCapable.jdoIsNew();

8.5.5 Deleted

static boolean isDeleted (Object pc);

Instances that have been deleted in the current transaction return true. It returns false
if the instance is transient or null or if its class is not persistence-capable.

See also PersistenceCapable.jdoIsDeleted();

8.5.6 Detached

static boolean isDetached (Object pc);

Instances that have been detached return true. The method returns false if the instance is
transient or null or if its class is not detachable.

See also PersistenceCapable.jdoIsDetached();

8.6 PersistenceManagerFactory methods

public static

PersistenceManagerFactory getPersistenceManagerFactory

(Map props, ClassLoader loader);

public static

PersistenceManagerFactory getPersistenceManagerFactory

(Map props);

These methods return a PersistenceManagerFactory based on properties con-
tained in the Map parameter. In the method without a class loader parameter, the calling
thread’s current contextClassLoader is used to resolve the class name.

public static

PersistenceManagerFactory getPersistenceManagerFactory

(File propsFile);

public static

PersistenceManagerFactory getPersistenceManagerFactory

(File propsFile, ClassLoader loader);

public static

PersistenceManagerFactory getPersistenceManagerFactory
 JDO 2.0 86 February 28, 2006

Java Data Objects 2.0
(String propsResourceName);

public static

PersistenceManagerFactory getPersistenceManagerFactory

(String propsResourceName, ClassLoader loader);

public static

PersistenceManagerFactory getPersistenceManagerFactory

(String propsResourceName, ClassLoader propsLoader,

ClassLoader pmfLoader);

public static

PersistenceManagerFactory getPersistenceManagerFactory

(InputStream stream);

public static

PersistenceManagerFactory getPersistenceManagerFactory

(InputStream stream, ClassLoader loader);public static

PersistenceManagerFactory getPersistenceManagerFactory

(String jndiLocation, Context context);

public static

PersistenceManagerFactory getPersistenceManagerFactory

(String jndiLocation, Context context, ClassLoader loader);

These methods use the parameter(s) passed as arguments to construct a Properties in-
stance, and then delegate to the static method getPersistenceManagerFactory in
the class named in the property javax.jdo.PersistenceManagerFactoryClass.
If there are any exceptions while trying to construct the Properties instance or to call
the static method, then either JDOFatalUserException or JDOFatalInternalEx-
ception is thrown, depending on whether the exception is due to the user or the imple-
mentation. The nested exception indicates the cause of the exception.

The method taking a String as the propsResourceName argument uses the props-
Loader to load the properties and uses the pmfLoader to resolve the PersistenceM-
anagerFactory class name. The method taking a String as the propsResourceName
argument with one ClassLoader uses the parameter ClassLoader to load both the
properties and the PersistenceManagerFactory class name.The method taking a
String alone uses the context class loader for both purposes.

If the class named by the javax.jdo.PersistenceManagerFactoryClass prop-
erty cannot be found, or is not accessible to the user, then JDOFatalUserException is
thrown. If there is no public static implementation of the getPersistenceManager-
Factory(Map) method, then JDOFatalInternalException is thrown. If the im-
plementation of the static getPersistenceManagerFactory(Map) method throws
an exception, it is rethrown by this method.

The following are standard key values for the properties:

javax.jdo.PersistenceManagerFactoryClass

javax.jdo.option.Optimistic
 JDO 2.0 87 February 28, 2006

Java Data Objects 2.0
javax.jdo.option.RetainValues

javax.jdo.option.RestoreValues

javax.jdo.option.IgnoreCache

javax.jdo.option.NontransactionalRead

javax.jdo.option.NontransactionalWrite

javax.jdo.option.Multithreaded

javax.jdo.option.ConnectionDriverName

javax.jdo.option.ConnectionUserName

javax.jdo.option.ConnectionPassword

javax.jdo.option.ConnectionURL

javax.jdo.option.ConnectionFactoryName

javax.jdo.option.ConnectionFactory2Name

javax.jdo.option.Mapping

JDO implementations are permitted to define key values of their own. Any key values not
recognized by the implementation must be ignored. Key values that are recognized but not
supported by an implementation must result in a JDOFatalUserException thrown by
the method.

The returned PersistenceManagerFactory is not configurable (the setXXX meth-
ods will throw an exception). JDO implementations might manage a map of instantiated
PersistenceManagerFactory instances based on specified property key values, and
return a previously instantiated PersistenceManagerFactory instance. In this case,
the properties of the returned instance must exactly match the requested properties.

public static

PersistenceManagerFactory getPersistenceManagerFactory

(String jndiName, Context context);

This method looks up the PersistenceManagerFactory using the naming context
and name supplied. The implementation’s factory method is not called. The behavior of
this method depends on the implementation of the context and its interaction with the
saved PersistenceManagerFactory object. As with the other factory methods, the
returned PersistenceManagerFactory is not configurable.
 JDO 2.0 88 February 28, 2006

Java Data Objects 2.0
9 JDOImplHelper

This class is a public helper class for use by JDO implementations. It contains a registry of
metadata by class. Use of the methods in this class avoids the use of reflection at runtime.
PersistenceCapable classes register metadata with this class during class initializa-
tion.

 NOTE: This interface is not intended to be used by application programmers.
It is for use only by implementations.

package javax.jdo.spi;

public class JDOImplHelper {

9.1 JDOImplHelper access

public static JDOImplHelper getInstance()

throws SecurityException;

This method returns an instance of the JDOImplHelper class if the caller is authorized
for JDOPermission(“getMetadata”), and throws SecurityException if not
authorized. This instance gives access to all of the other methods, except for register-
Class, which is static and does not need any authorization.

9.2 Metadata access

public String[] getFieldNames (Class pcClass);

This method returns the names of persistent and transactional fields of the parameter
class. If the class does not implement PersistenceCapable, or if it has not been en-
hanced correctly to register its metadata, a JDOFatalUserException is thrown.

Otherwise, the names of fields that are either persistent or transactional are returned, in
order. The order of names in the returned array are the same as the field numbering. Rel-
ative field 0 refers to the first field in the array. The length of the array is the number of
persistent and transactional fields in the class.

public Class[] getFieldTypes (Class pcClass);

This method returns the types of persistent and transactional fields of the parameter class.
If the parameter does not implement PersistenceCapable, or if it has not been en-
hanced correctly to register its metadata, a JDOFatalUserException is thrown.

Otherwise, the types of fields that are either persistent or transactional are returned, in or-
der. The order of types in the returned array is the same as the field numbering. Relative
field 0 refers to the first field in the array. The length of the array is the number of persistent
and transactional fields in the class.

public byte[] getFieldFlags (Class pcClass);
 JDO 2.0 89 February 28, 2006

Java Data Objects 2.0
This method returns the field flags of persistent and transactional fields of the parameter
class. If the parameter does not implement PersistenceCapable, or if it has not been
enhanced correctly to register its metadata, a JDOFatalUserException is thrown.

Otherwise, the types of fields that are either persistent or transactional are returned, in or-
der. The order of types in the returned array is the same as the field numbering. Relative
field 0 refers to the first field in the array. The length of the array is the number of persistent
and transactional fields in the class.

public Class getPersistenceCapableSuperclass (Class pcClass);

This method returns the PersistenceCapable superclass of the parameter class, or
null if there is none.

9.3 Persistence-capable instance factory

public PersistenceCapable newInstance (Class pcClass,

StateManager sm);

public PersistenceCapable newInstance (Class pcClass, StateMan-
ager sm, Object oid);

If the class does not implement PersistenceCapable, or if it has not been enhanced
correctly to register its metadata, a JDOFatalUserException is thrown. If the class is
abstract, a JDOFatalInternalException is thrown.

Otherwise, a new instance of the class is constructed and initialized with the parameter
StateManager. The new instance has its jdoFlags set to LOAD_REQUIRED but has no
defined state. The behavior of the instance is determined by the owning StateManager.

The second form of the method returns a new instance of PersistenceCapable that
has had its key fields initialized by the ObjectId parameter instance. If the class has been
enhanced for datastore identity, then the oid parameter is ignored.

See also PersistenceCapable.jdoNewInstance(StateManager sm) and
PersistenceCapable.jdoNewInstance (StateManager sm, Object oid).

9.4 Registration of PersistenceCapable classes

public static void registerClass

(Class pcClass, String[] fieldNames,

Class[] fieldTypes,

byte[] fieldFlags,

Class persistenceCapableSuperclass,

PersistenceCapable pcInstance);

This method registers a PersistenceCapable class so that the other methods can re-
turn the correct information. The registration must be done in a static initializer for the per-
sistence-capable class.

9.4.1 Notification of PersistenceCapable class registrations

addRegisterClassListener(RegisterClassListener rcl);

This method registers a RegisterClassListener to be notified upon new Persis-
tenceCapable Class registrations. A RegisterClassEvent instance is generated
 JDO 2.0 90 February 28, 2006

Java Data Objects 2.0
for each class registered already plus classes registered in future, which is sent to each reg-
istered listener. The same event instance might be sent to multiple listeners.

removeRegisterClassListener(RegisterClassListener rcl);

This method removes a RegisterClassEvent from the list to be notified upon new
PersistenceCapable Class registrations.

RegisterClassEvent

public class RegisterClassEvent extends java.util.EventObject {

An instance of this class is generated for each class that registers itself, and is sent to each
registered listener.

public Class getRegisteredClass();

Returns the newly registered Class.

public String[] getFieldNames();

Returns the field names of the newly registered Class.

public Class[] getFieldTypes();

Returns the field types of the newly registered Class.

public byte[] getFieldFlags();

Returns the field flags of the newly registered Class.

public Class getPersistenceCapableSuperclass();

Returns the PersistenceCapable superclass of the newly registered Class.

} // class RegisterClassEvent

RegisterClassListener

public interface RegisterClassListener extends

java.util.EventListener {

This interface must be implemented by classes that register as listeners to be notified
of registrations of PersistenceCapable classes.

void registerClass (RegisterClassEvent rce);

This method is called for each PersistenceCapable class that registers itself.

} // interface RegisterClassListener

9.5 Security administration

public static void registerAuthorizedStateManagerClass

(Class smClass);

This method manages the list of classes authorized to execute replaceStateManager.
During execution of this method, the security manager, if present, is called to validate that
the caller is authorized for JDOPermission(“setStateManager”). If successful, the
parameter class is added to the list of authorized StateManager classes.

This method provides for a fast security check during makePersistent. An implemen-
tation of StateManager should register itself with the JDOImplHelper to take advan-
tage of this fast check.

public static void checkAuthorizedStateManager(StateManager sm);
 JDO 2.0 91 February 28, 2006

Java Data Objects 2.0
This method is called by enhanced persistence-capable class method replaceStateM-
anager. If the parameter instance is of a class in the list of authorized StateManager
classes, then this method returns silently. If not, then the security manager, if present, is
called to validate that the caller is authorized for JDOPermission(“setStateMan-
ager”). If successful, the method returns silently. If not, a SecurityException is
thrown.

9.6 Application identity handling

public Object newObjectIdInstance(Class pcClass);

This method creates a new instance of the ObjectId class for the PersistenceCa-
pable class. If the class uses datastore identity, then null is returned. If the class is ab-
stract, a JDOFatalInternalException is thrown.

public Object newObjectIdInstance(Class pcClass, Object key);

This method creates a new instance of the ObjectId class for the PersistenceCa-
pable class, using the appropriate constructor of the object id class. If the class uses datas-
tore identity, then null is returned. If the class is abstract, a
JDOFatalInternalException is thrown.

public Object newObjectIdInstance(PersistenceCapable pc);

This method returns an instance of the ObjectId class for the parameter Persis-
tenceCapable instance. If the class of the instance uses an immutable ObjectId class,
then the oid instance associated with the persistent instance might be returned. If the class
of the instance uses datastore identity, then null is returned.

public void copyKeyFieldsToObjectId (Class pcClass, Persis-
tenceCapable.ObjectIdFieldSupplier fs, Object oid);

This method copies key fields from the field manager to the ObjectId instance oid. This
is intended for use by the implementation to copy fields from a datastore-specific repre-
sentation to the ObjectId. If the class is abstract, a JDOFatalInternalException is
thrown.

public void copyKeyFieldsFromObjectId (Class pcClass, Persis-
tenceCapable.ObjectIdFieldConsumer fc, Object oid);

This method copies key fields to the field manager from the ObjectId instance oid. This
is intended for use by the implementation to copy fields to a datastore-specific representa-
tion from the ObjectId. If the class is abstract, a JDOFatalInternalException is
thrown.

9.7 Persistence-capable class state interrogation

For JDO implementations that do not support BinaryCompatibility, an instance of
StateInterrogation must be registered with JDOImplHelper to handle JDOHelper
methods for instances that do not implement PersistenceCapable.

The StateInterrogation interface is implemented by a JDO implementation class to
take responsibility for determining the life cycle state and object identity, and for marking
fields dirty.

package javax.jdo.spi;
public interface StateInterrogation {
Boolean isPersistent(Object pc);
 JDO 2.0 92 February 28, 2006

Java Data Objects 2.0
Boolean isTransactional(Object pc);
Boolean isDirty(Object pc);
Boolean isNew(Object pc);
Boolean isDeleted(Object pc);
Boolean isDetached(Object pc);
PersistenceManager getPersistenceManager(Object pc);
Object getObjectId(Object pc);
Object getTransactionalObjectId(Object pc);
boolean makeDirty(Object pc, String fieldName);
Object getVersion(Object pc);
}

For methods returning Boolean, PersistenceManager, and Object, if the StateIn-
terrogation instance does not recognize the parameter instance, null is returned, and
the next registered StateInterrogation instance is called.

For makeDirty, if the StateInterrogation instance does not recognize the parameter
instance, false is returned, and the next registered StateInterrogation instance is
called.

public void addStateInterrogation(StateInterrogation si);
This method of JDOImplHelper registers an instance of StateInterrogation for del-
egation of life cycle state queries made on JDOHelper.

public void removeStateInterrogation(StateInterrogation si);
This method of JDOImplHelper removes an instance of StateInterrogation, so it is
no longer called by JDOHelper for life cycle state queries.
 JDO 2.0 93 February 28, 2006

Java Data Objects 2.0
10 InstanceCallbacks

Instance callbacks provide a mechanism for instances to take some action on specific JDO
instance life cycle events. For example, classes that include non-persistent fields might use
callbacks to correctly populate the values in these fields. Classes that affect the runtime en-
vironment might use callbacks to register and deregister themselves with other objects.
This interface defines the methods executed by the StateManager for these life cycle
events.

These methods will be called only on instances for which the class implements the corre-
sponding callback interface . For backward compatibility, InstanceCallbacks is rede-
fined as follows:

package javax.jdo;

public interface InstanceCallbacks extends

javax.jdo.listener.LoadCallback,

javax.jdo.listener.StoreCallback,

javax.jdo.listener.ClearCallback,

javax.jdo.listener.DeleteCallback {

}

10.1 jdoPostLoad

package javax.jdo.listener;

public interface LoadCallback {

void jdoPostLoad();

}

This method is called after values have been loaded from the StateManager into the in-
stance, if an active fetch group has been defined with the post-load attribute set to true.
Non-persistent fields whose value depends on values of loaded fields should be initialized
in this method. This method is not modified by the enhancer. Only fields that are loaded
by an active fetch group should be accessed by this method, as other fields are not guaran-
teed to be initialized. This method might register the instance with other objects in the
runtime environment.

The context in which this call is made does not allow access to other persistent JDO in-
stances.

10.2 jdoPreStore

package javax.jdo.listener;

public interface StoreCallback {
 JDO 2.0 94 February 28, 2006

Java Data Objects 2.0
void jdoPreStore();

}

This method is called before the values are stored from the instance to the datastore. This
happens during beforeCompletion and flush for persistent-new and persistent-
dirty instances of persistence-capable classes that implement StoreCallback. Datas-
tore fields that might have been affected by modified non-persistent fields should be up-
dated in this method. This method is modified by the enhancer so that changes to
persistent fields will be reflected in the datastore.

The context in which this call is made allows access to the PersistenceManager and
other persistent JDO instances.

This method is not called for deleted instances.

10.3 jdoPreClear

package javax.jdo.listener;

public interface ClearCallback {

void jdoPreClear();

}

This method is called before the implementation clears the values in the instance to their
Java default values. This happens during an application call to evict, and in afterCom-
pletion for commit with RetainValues false and rollback with RestoreValues
false. The method is called during any state transition to hollow. Non-persistent, non-
transactional fields should be cleared in this method. Associations between this instance
and others in the runtime environment should be cleared. This method is not modified by
the enhancer, so access to fields is not mediated.

10.4 jdoPreDelete

package javax.jdo.listener;

public interface DeleteCallback {

void jdoPreDelete();

}

This method is called during the execution of deletePersistent before the state tran-
sition to persistent-deleted or persistent-new-deleted. Access to field values within this
call are valid. Access to field values after this call are disallowed. This method is modified
by the enhancer so that fields referenced can be used in the business logic of the method.

To implement a containment aggregate, the user could implement this method to delete
contained persistent instances.

10.5 jdoPreDetach and jdoPostDetach

package javax.jdo.listener;

public interface DetachCallback {

void jdoPreDetach();
 JDO 2.0 95 February 28, 2006

Java Data Objects 2.0
This method is called during the execution of detachCopy on the persistent instance be-
fore the copy is made.

public void jdoPostDetach(Object detached);

This method is called during the execution of detachCopy on the detached instance after
the copy is made. The parameter is the corresponding persistent instance.

}

10.6 jdoPreAttach and jdoPostAttach

package javax.jdo.listener;

public interface AttachCallback {

void jdoPreAttach();

This method is called during the execution of makePersistent on the detached in-
stance before the copy is made.

public void jdoPostAttach(Object attached);

This method is called during the execution of makePersistent on the persistent in-
stance after the copy is made. The parameter is the corresponding detached instance.

}

 JDO 2.0 96 February 28, 2006

Java Data Objects 2.0
11 PersistenceManagerFactory

This chapter details the PersistenceManagerFactory, which is responsible for cre-
ating PersistenceManager instances for application use.

package javax.jdo;

public interface PersistenceManagerFactory {

11.1 Interface PersistenceManagerFactory

A JDO vendor must provide a class that implements PersistenceManagerFactory
and is permitted to provide a PersistenceManager constructor[s].

A non-managed JDO application might choose to use a PersistenceManager con-
structor (JDO vendor specific) or use a PersistenceManagerFactory (provided by
the JDO vendor). A portable JDO application must use the PersistenceManagerFac-
tory.

In a managed environment, the JDO PersistenceManager instance is acquired by a
two step process: the application uses JNDI lookup to retrieve an environment-named ob-
ject, which is then cast to javax.jdo.PersistenceManagerFactory; and then calls
one of the factory’s getPersistenceManager methods.

In a non-managed environment, the JDO PersistenceManager instance is acquired by
lookup as above; by constructing a javax.jdo.PersistenceManager; or by con-
structing a javax.jdo.PersistenceManagerFactory, configuring the factory,
and then calling the factory’s getPersistenceManager method. These constructors
are not part of the JDO standard. However, the following is recommended to support por-
table applications.

Configuring the PersistenceManagerFactory follows the Java Beans pattern. Sup-
ported properties have a get method and a set method.

The following properties, if set in the PersistenceManagerFactory, are the default
settings of all PersistenceManager instances created by the factory:

• Optimistic: the transaction mode that specifies concurrency control

• RetainValues: the transaction mode that specifies the treatment of persistent
instances after commit

• RestoreValues: the transaction mode that specifies the treatment of persistent
instances after rollback

• IgnoreCache: the query mode that specifies whether cached instances are
considered when evaluating the filter expression

• NontransactionalRead: the PersistenceManager mode that allows
instances to be read outside a transaction
 JDO 2.0 97 February 28, 2006

Java Data Objects 2.0
• NontransactionalWrite: the PersistenceManager mode that allows
instances to be written outside a transaction

• Multithreaded: the PersistenceManager mode that indicates that the
application will invoke methods or access fields of managed instances from
multiple threads.

• DetachAllOnCommit: the PersistenceManager mode that indicates that
instances will be detached when the transaction commits.

The following properties can only be set in the PersistenceManagerFactory:

Mapping: the name of the mapping model for object-to-datastore mappingCatalog: the
name of the catalog for object-to-relational mappingSchema: the name of the schema for
object-to-relational mapping

The following properties are for convenience, if there is no connection pooling or other
need for a connection factory:

• ConnectionUserName: the name of the user establishing the connection

• ConnectionPassword: the password for the user

• ConnectionURL: the URL for the data source

• ConnectionDriverName: the class name of the driver

For a portable application, if any other connection properties are required, then a connec-
tion factory must be configured.

The following properties are for use when a connection factory is used, and override the
connection properties specified in ConnectionURL, ConnectionUserName, or Con-
nectionPassword.

• ConnectionFactory: the connection factory from which datastore connections
are obtained

• ConnectionFactoryName: the name of the connection factory from which
datastore connections are obtained. This name is looked up with JNDI to locate the
connection factory.

If multiple connection properties are set, then they are evaluated in order:

• if ConnectionFactory is specified (not null), all other properties are ignored;

• else if ConnectionFactoryName is specified (not null), all other properties
are ignored.

For the application server environment, connection factories always return connections
that are enlisted in the thread’s current transaction context. To use optimistic transactions
in this environment requires a connection factory that returns connections that are not en-
listed in the current transaction context. For this purpose, the following two properties are
used:

• ConnectionFactory2: the connection factory from which nontransactional
datastore connections are obtained

• ConnectionFactory2Name: the name of the connection factory from which
nontransactional datastore connections are obtained. This name is looked up with
JNDI to locate the connection factory.
 JDO 2.0 98 February 28, 2006

Java Data Objects 2.0
Construction by Properties

An implementation must provide a method to construct a PersistenceManagerFac-
tory by a Map instance. This static method is called by the JDOHelper method get-
PersistenceManagerFactory (Map props).

static PersistenceManagerFactory getPersistenceManagerFactory
(Map props);

The properties consist of: “javax.jdo.PersistenceManagerFactoryClass”,
whose value is the name of the implementation class; any JDO vendor-specific properties;
and the following standard property names, which correspond to the properties as docu-
mented in this chapter:

• "javax.jdo.option.Optimistic"

• "javax.jdo.option.RetainValues"

• "javax.jdo.option.RestoreValues"

• "javax.jdo.option.IgnoreCache"

• "javax.jdo.option.NontransactionalRead"

• "javax.jdo.option.NontransactionalWrite"

• "javax.jdo.option.Multithreaded"

• "javax.jdo.option.DetachAllOnCommit"

• "javax.jdo.option.ConnectionUserName"

• "javax.jdo.option.ConnectionPassword"

• "javax.jdo.option.ConnectionURL"

• "javax.jdo.option.ConnectionDriverName"

• "javax.jdo.option.ConnectionFactoryName"

• "javax.jdo.option.ConnectionFactory2Name"

• "javax.jdo.option.Mapping"

• "javax.jdo.mapping.Catalog"

• "javax.jdo.mapping.Schema"

The property “javax.jdo.PersistenceManagerFactoryClass” is the fully
qualified class name of the PersistenceManagerFactory.

The String type properties are taken without change from the value of the correspond-
ing keys. Boolean type properties treat the String value as representing true if the
value of the String compares equal, ignoring case, to “true”, and false if the value
of the String is anything else.

Any property not recognized by the implementation must be silently ignored. Any stan-
dard property corresponding to an optional feature not supported by the implementation
must throw JDOUnsupportedOptionException.

The Mapping property specifies the object-data store mapping to be used by the imple-
mentation. The property is used to construct the names of resource files containing meta-
data. For more information on the use of this property, see Chapters 15 and 18.
 JDO 2.0 99 February 28, 2006

Java Data Objects 2.0
Default values for properties not specified in the props parameter are provided by the im-
plementation. A portable application must specify all values for properties needed by the
application.

There are properties that are provided by the JDOHelper methods in the following cases.
• If the user uses the methods getPersistenceManagerFactory(File
file) or getPersistenceManagerFactory(File file,
ClassLoader loader) then the Map instance passed to the static method will
contain a property with a key of “javax.jdo.spi.PropertiesFileName”,
and a value equal to the result of calling getAbsolutePath() on the file
parameter. Absence of this property means that neither of these methods was
used.

• If the user uses the methods getPersistenceManagerFactory(String
resourceName) or getPersistenceManagerFactory(String
resourceName, ClassLoader loader) then the Properties instance
passed to the static method will contain a property with a key of
”javax.jdo.spi.PropertiesResourceName”, and a value equal to the
name of the resource. Absence of this property means that neither of these
methods was used.

11.2 ConnectionFactory

For implementations that layer on top of standard Connector implementations, the con-
figuration will typically support all of the associated ConnectionFactory properties.

When used in a managed environment, the ConnectionFactory will be obtained from
a ManagedConnectionFactory, which is then responsible for implementing the re-
source adapter interactions with the container.

The following properties of the ConnectionFactory should be used if the data source
has a corresponding concept:

• URL: the URL for the data source

• UserName: the name of the user establishing the connection

• Password: the password for the user

• DriverName: the driver name for the connection

• ServerName: name of the server for the data source

• PortNumber: port number for establishing connection to the data source

• MaxPool: the maximum number of connections in the connection pool

• MinPool: the minimum number of connections in the connection pool

• MsWait: the number of milliseconds to wait for an available connection from the
connection pool before throwing a JDODataStoreException

• LogWriter: the PrintWriter to which messages should be sent

• LoginTimeout: the number of seconds to wait for a new connection to be
established to the data source

In addition to these properties, the PersistenceManagerFactory implementation
class can support properties specific to the data source or to the PersistenceManager.
 JDO 2.0 100 February 28, 2006

Java Data Objects 2.0
Aside from vendor-specific configuration APIs, there are these required methods for Per-
sistenceManagerFactory:

11.3 PersistenceManager access

PersistenceManager getPersistenceManager();

PersistenceManager getPersistenceManager(String userid, String
password);

Returns a PersistenceManager instance with the configured properties. The instance
might have come from a pool of instances. The default values for option settings are reset
to the value specified in the PersistenceManagerFactory before returning the in-
stance.This method will never return the same instance as was returned by a previous in-
vocation of the method. Note that this implies that pooled implementations must use
proxies and not return the identical pooled instance.

After the first use of getPersistenceManager, none of the set methods will succeed.
The settings of operational parameters might be modified dynamically during runtime via
a vendor-specific interface.

If the method with the userid and password is used to acquire the PersistenceMan-
ager, then all accesses to the connection factory during the life of the PersistenceM-
anager will use the userid and password to get connections. If PersistenceManager
instances are pooled, then only PersistenceManager instances with the same userid
and password will be used to satisfy the request.

11.4 Close the PersistenceManagerFactory

During operation of JDO, resources might be acquired on behalf of a PersistenceMan-
agerFactory, e.g. connection pools, persistence manager pools, compiled queries,
cached metadata, etc. If a PersistenceManagerFactory is no longer needed, these re-
sources should be returned to the system. The close method disables the Persistence-
ManagerFactory and allows cleanup of resources.

Premature close of a PersistenceManagerFactory has a significant impact on the op-
eration of the system. Therefore, a security check is performed to check that the caller has
the proper permission. The security check is for JDOPermission("closePersis-
tenceManagerFactory"). If the security check fails, the close method throws Securi-
tyException.

void close();

Close this PersistenceManagerFactory. Check for JDOPermission("closePer-
sistenceManagerFactory") and if not authorized, throw SecurityException.

If the authorization check succeeds, check to see that all PersistenceManager instances
obtained from this PersistenceManagerFactory have no active transactions. If any
PersistenceManager instances have an active transaction, throw a JDOUserExcep-
tion, with one nested JDOUserException for each PersistenceManager with an ac-
tive Transaction.

If there are no active transactions, then close all PersistenceManager instances ob-
tained from this PersistenceManagerFactory and mark this PersistenceMan-
agerFactory as closed. After close completes, disallow all methods except close,
 JDO 2.0 101 February 28, 2006

Java Data Objects 2.0
isClosed, and get methods except for getPersistenceManager. If any disallowed
method is called after close, then JDOUserException is thrown.boolean is-
Closed();

Return true if this PersistenceManagerFactory is closed; and false otherwise.

11.5 Non-configurable Properties

The JDO vendor might store certain non-configurable properties and make those proper-
ties available to the application via a Properties instance. This method retrieves the
Properties instance.

Properties getProperties();

The application is not prevented from modifying the instance.

Each key and value is a String. The keys defined for standard JDO implementations are:

• VendorName: The name of the JDO vendor.

• VersionNumber: The version number string.

Other properties are vendor-specific.

11.6 Optional Feature Support

Collection supportedOptions();

The JDO implementation might optionally support certain features, and will report the
features that are supported. The supported query languages are included in the returned
Collection.

This method returns a Collection of String, each String instance representing an
optional feature of the implementation or a supported query language. The following are
the values of the String for each optional feature in the JDO specification:

javax.jdo.option.TransientTransactional

The JDO implementation supports the transient transactional life cycle states.

javax.jdo.option.NontransactionalRead

The JDO implementation supports reading and querying outside a transaction.

javax.jdo.option.NontransactionalWrite

The JDO implementation supports the persistent-nontransactional-dirty life cycle state.

javax.jdo.option.RetainValues

The JDO implementation supports retaining values of persistent instances after commit.

javax.jdo.option.Optimistic

The JDO implementation supports the optimistic transaction semantics.

javax.jdo.option.ApplicationIdentity

The JDO implementation supports application identity for persistent classes.

javax.jdo.option.DatastoreIdentity

The JDO implementation supports datastore identity for persistent classes.

javax.jdo.option.NonDurableIdentity

The JDO implementation supports nondurable identity for persistent classes
 JDO 2.0 102 February 28, 2006

Java Data Objects 2.0
javax.jdo.option.ArrayList

The JDO implementation supports persistent field types of ArrayList.

javax.jdo.option.LinkedList

The JDO implementation supports persistent field types of LinkedList.

javax.jdo.option.TreeMap

The JDO implementation supports persistent field types of TreeMap.

javax.jdo.option.TreeSet

The JDO implementation supports persistent field types of TreeSet.

javax.jdo.option.Vector

The JDO implementation supports persistent field types of Vector.

javax.jdo.option.List

The JDO implementation supports persistent field types of List. This is now a require-
ment but the option is for compatibility with JDO 1.0 where this support was optional.

javax.jdo.option.Array

The JDO implementation supports persistent field types of array.

javax.jdo.option.NullCollection

The JDO implementation allows null collections to be stored. Most relational implementa-
tions do not distinguish between empty and null collections, and this option will not be set
for those implementations.

javax.jdo.option.ChangeApplicationIdentity

The JDO implementation supports changing of the application identity of instances.

javax.jdo.option.BinaryCompatibility

The JDO implementation supports the binary compatibility contract.

javax.jdo.option.GetDataStoreConnection

The JDO implementation supports use of a direct datastore connection.

javax.jdo.option.GetJDBCConnection

The JDO implementation supports use of a direct datastore connection that implements
the java.sql.Connection interface.

javax.jdo.query.SQL

The JDO implementation supports SQL for queries executed via the javax.jdo.Query
interface.

javax.jdo.option.UnconstrainedQueryVariables

The JDO implementation supports JDOQL queries that contain a variable without a con-
tains clause to constrain the variable.

javax.jdo.option.version.DateTime

The JDO implementation supports use of a the date-time strategy for version checking.

javax.jdo.option.version.StateImage

The JDO implementation supports use of the state-image strategy for version checking.

javax.jdo.option.PreDirtyEvent

The JDO implementation supports event notifications of changes made to persistent in-
stances before the instance is made dirty.
 JDO 2.0 103 February 28, 2006

Java Data Objects 2.0
javax.jdo.option.mapping.HeterogeneousObjectType

The JDO implementation supports mapping a persistent field of type Object to multiple
types. There is no standard way to map this support.

javax.jdo.option.mapping.HeterogeneousInterfaceType

The JDO implementation supports mapping a persistent field of a persistent interface type
to multiple types. There is no standard way to map this support.

javax.jdo.option.mapping.JoinedTablePerClass

The JDO implementation supports mapping persistent class inheritance hierarchies to ta-
bles in which each class, including abstract classes, is mapped to a table; and each table
mapped to a subclass defines a primary key that has a foreign key relationship to the pri-
mary key of the table mapped by the superclass.

javax.jdo.option.mapping.JoinedTablePerConcreteClass

The JDO implementation supports mapping persistent class inheritance hierarchies to ta-
bles in which each concrete class (excluding abstract classes) is mapped to a table; and each
table mapped to a subclass defines a primary key that has a foreign key relationship to the
primary key of the table mapped by the superclass.

javax.jdo.option.mapping.NonJoinedTablePerConcreteClass

The JDO implementation supports mapping persistent class inheritance hierarchies to ta-
bles in which each concrete class (excluding abstract classes) is mapped to a table; and
there is not necessarily any foreign key relationship among the mapped tables.

javax.jdo.option.mapping.RelationSubclassTable

The JDO implementation supports mapping persistent fields containing relationships to
classes in an inheritance relationship that use subclass-table as the field mapping strategy.

The standard JDO query must be returned as the String:

javax.jdo.query.JDOQL

Other query languages are represented by a String not defined in this specification.

11.7 Static Properties constructor

public static PersistenceManagerFactory

getPersistenceManagerFactory (Map props);

This static method is not a method defined in the PersistenceManagerFactory in-
terface, but rather must be defined on the class that implements PersistenceMan-
agerFactory. It returns an instance of PersistenceManagerFactory based on the
properties in the parameter.

The method is used by JDOHelper to construct an instance of PersistenceManager-
Factory based on user-specified properties.

The following are standard key values for the props:

javax.jdo.PersistenceManagerFactoryClass

javax.jdo.option.Optimistic

javax.jdo.option.RetainValues

javax.jdo.option.RestoreValues

javax.jdo.option.IgnoreCache
 JDO 2.0 104 February 28, 2006

Java Data Objects 2.0
javax.jdo.option.NontransactionalRead

javax.jdo.option.NontransactionalWrite

javax.jdo.option.Multithreaded

javax.jdo.option.ConnectionUserName

javax.jdo.option.ConnectionPassword

javax.jdo.option.ConnectionURL

javax.jdo.option.ConnectionFactoryName

javax.jdo.option.ConnectionFactory2Name

javax.jdo.option.Mapping

javax.jdo.mapping.Catalog

javax.jdo.mapping.Schema

JDO implementations are permitted to define key values of their own. Any key values not
recognized by the implementation must be ignored. Key values that are recognized but not
supported by an implementation must result in a JDOFatalUserException thrown by
the method.

The returned PersistenceManagerFactory is not configurable (the setXXX meth-
ods will throw an exception). JDO implementations might manage a map of instantiated
PersistenceManagerFactory instances based on specified property key values, and
return a previously instantiated PersistenceManagerFactory instance. In this case,
the properties of the returned instance must exactly match the requested properties.

11.8 Second-level cache management

Most JDO implementations allow instances to be cached in a second-level cache, and allow
direct management of the cache by knowledgeable applications. The second-level cache is
typically a single VM cache and is used for persistent instances associated with a single
PersistenceManagerFactory. For the purpose of standardizing this behavior, the
DataStoreCache interface is used.

To obtain a reference to the cache manager, the getDataStoreCache() method of Per-
sistenceManagerFactory is used.

DataStoreCache getDataStoreCache();

If there is no second-level cache, the returned instance silently does nothing.

package javax.jdo.datastore;

public interface DataStoreCache {

Evicting objects from the cache

void evict(Object oid);

void evictAll();

void evictAll(Object[] oids);

void evictAll(Collection oids);

void evictAll(Class pcClass, boolean subclasses);

The evict methods are hints to the implementation that the instances referred to by the ob-
ject ids are stale and should be evicted from the cache. Evicting an instance does not unpin
it.
 JDO 2.0 105 February 28, 2006

Java Data Objects 2.0
Pinning objects in the cache

void pin(Object oid);

void pinAll(Collection oids);

void pinAll(Object[] oids);

void pinAll(Class pcClass, boolean subclasses);

The pin methods are hints to the implementation that the instances referred to by the object
ids should be pinned in the cache (not subject to algorithm-based eviction, but subject to
explicit eviction). There is no requirement that an instance be in the cache in order to pin
or unpin it. The pinAll method with the Class parameter automatically pins all instanc-
es of that class, including those instances already in the cache and future instances of the
class. When a class is pinned, pin and unpin methods on instances of the pinned class are
ignored.

Unpinning objects in the cache

void unpin(Object oid);

void unpinAll(Collection oids);

void unpinAll(Object[] oids);

void unpinAll(Class pcClass, boolean subclasses);

The unpin methods are hints to the implementation that the instances referred to by the
object ids should be unpinned (subject to eviction based on algorithm). There is no require-
ment that an instance be in the cache in order to pin or unpin it. The unpinAll method
with the Class parameter automatically unpins all instances of that class, including those
instances already in the cache and future instances of the class. When a class is pinned, pin
and unpin methods on instances of the pinned class are ignored.

}

11.9 Registering for life cycle events

void addInstanceLifecycleListener (InstanceLifecycleListener lis-
tener, Class[] classes);

This PersistenceManagerFactory method adds the listener to the list of instance life-
cycle event listeners set as the initial listeners for each PersistenceManager created by
this PersistenceManagerFactory. The classes parameter identifies all of the classes of
interest. If the classes parameter is specified as null, events for all persistent classes and
interfaces are generated. If the classes specified have persistence-capable subclasses, all
such subclasses are registered implicitly.

The listener will be called for each event for which it implements the corresponding listen-
er interface.

void removeInstanceLifecycleListener (InstanceLifecycleListener
listener);

This PersistenceManagerFactory method removes the listener from the list of event
listeners set as the initial listeners for each PersistenceManager created by this Per-
sistenceManagerFactory.

The addInstanceLifecycleListener and removeInstanceLifecycleListener
methods are considered to be configuration methods and can only be called when the
PersistenceManagerFactory is configurable (before the first getPersistenceM-
anager is called).
 JDO 2.0 106 February 28, 2006

Java Data Objects 2.0
12 PersistenceManager

This chapter specifies the JDO PersistenceManager and its relationship to the appli-
cation components, JDO instances, and J2EE Connector.

12.1 Overview

The JDO PersistenceManager is the primary interface for JDO-aware application
components. It is the factory for the Query interface and contains methods for managing
the life cycle of persistent instances.

The JDO PersistenceManager interface is architected to support a variety of environ-
ments and data sources, from small footprint embedded systems to large enterprise appli-
cation servers. It might be a layer on top of a standard Connector implementation such as
JDBC or JMS, or itself include connection management and distributed transaction sup-
port.

J2EE Connector support is optional . If it is not supported by a JDO implementation, then
a constructor for the JDO PersistenceManager or PersistenceManagerFactory
is required. The details of the construction of the PersistenceManager or Persis-
tenceManagerFactory are not specified by JDO.

12.2 Goals

The architecture of the PersistenceManager has the following goals:

• No changes to application programs to change to a different vendor’s
PersistenceManager if the application is written to conform to the portability
guidelines

• Application to non-managed and managed environments with no code changes

12.3 Architecture: JDO PersistenceManager

The JDO PersistenceManager instance is visible only to certain application compo-
nents: those that explicitly manage the life cycle of JDO instances; and those that query for
JDO instances. The JDO PersistenceManager is not required to be used by JDO in-
stances.

There are three primary environments in which the JDO PersistenceManager is ar-
chitected to work:

• non-managed (non-application server), minimum function, single transaction,
single JDO PersistenceManager where compactness is the primary metric;

• non-managed but where extended features are desired, such as multiple
PersistenceManager instances to support multiple data sources, XA
coordinated transactions, or nested transactions; and
 JDO 2.0 107 February 28, 2006

Java Data Objects 2.0
• managed, where the full range of capabilities of an application server is required.

Support for these three environments is accomplished by implementing transaction com-
pletion APIs on a companion JDO Transaction instance, which contains transaction
policy options and local transaction support.

12.4 Threading

It is a requirement for all JDO implementations to be thread-safe. That is, the behavior of
the implementation must be predictable in the presence of multiple application threads.
Operations implemented by the PersistenceManager directly or indirectly via access
or modification of persistent or transactional fields of persistence-capable classes must be
treated as if they were serialized. The implementation is free to serialize internal data
structures and thus order multi-threaded operations in any way it chooses. The only ap-
plication-visible behavior is that operations might block indefinitely (but not infinitely)
while other operations complete.

Since synchronizing the PersistenceManager is a relatively expensive operation, and
not needed in many applications, the application must specify whether multiple threads
might access the same PersistenceManager or instances managed by the Persis-
tenceManager (persistent or transactional instances of persistence-capable classes; in-
stances of Transaction or Query; query results, etc.).

If applications depend on serializing operations, then the applications must implement the
appropriate synchronizing behavior, using instances visible to the application. This in-
cludes some instances of the JDO implementation (e.g. PersistenceManager, Query,
etc.) and instances of persistence-capable classes.

The implementation must not use user-visible instances (instances of PersistenceM-
anagerFactory, PersistenceManager, Transaction, Query, etc.) as synchroni-
zation objects, with one exception. The implementation must synchronize instances of
persistence-capable classes during state transitions that replace the StateManager. This
is to avoid race conditions where the application attempts to make the same instance per-
sistent in multiple PersistenceManagers.

12.5 Class Loaders

JDO requires access to class instances in several situations where the class instance is not
provided explicitly. In these cases, the only information available to the implementation is
the name of the class.

To resolve class names to class instances, JDO implementations will use Class.forName
(String name, boolean initialize, ClassLoader loader) with up to
three loaders. The initialize parameter can be either true or false depending on the
implementation.

These loaders will be used in this order:

1. The loader that loaded the class or instance referred to in the API that caused this class
to be loaded.

• In case of query, this is the loader of the candidate class, or the loader of the object
passed to the newQuery method.

• In case of navigation from a persistent instance, this is the loader of the class of the
instance.
 JDO 2.0 108 February 28, 2006

Java Data Objects 2.0
• In the case of getExtent with subclasses, this is the loader of the candidate class.

• In the case of getObjectById, this is the loader of the object id instance.

• Other cases do not have an explicit loader.

2. The loader returned in the current context by Thread.getContextClassLoad-
er().

3. The loader returned by Thread.getContextClassLoader() at the time the appli-
cation calls PersistenceManagerFactory.getPersistenceManager(). This
loader is saved with the PersistenceManager and cleared when the Persistence-
Manager is closed.

12.6 Interface PersistenceManager

A JDO PersistenceManager instance supports any number of JDO instances at a time.
It is responsible for managing the identity of its associated JDO instances. A JDO instance
is associated with either zero or one JDO PersistenceManager. It will be zero if and
only if the JDO instance is in the transient or detached state. As soon as a transient instance
is made persistent or transactional, it will be associated with exactly one JDO Persis-
tenceManager.Detached instances are never associated with a PersistenceMan-
ager.

A JDO PersistenceManager instance supports one transaction at a time, and uses one
connection to the underlying data source at a time. The JDO PersistenceManager in-
stance might use multiple transactions serially, and might use multiple connections serial-
ly.

Therefore, to support multiple concurrent connection-oriented data sources in an applica-
tion, multiple JDO PersistenceManager instances are required.

In this interface, for implementations that support BinaryCompatibility, JDO instances
passed as parameters and returned as values must implement PersistenceCapable.
The interface defines these formal parameters as Object because binary compatibility is
optional.

package javax.jdo;

public interface PersistenceManager {

boolean isClosed();

void close();

The isClosed method returns false upon construction of the PersistenceMan-
ager instance, or upon retrieval of a PersistenceManager from a pool. It returns
true only after the close method completes successfully. After being closed, the Per-
sistenceManager instance might be returned to the pool or garbage collected, at the
choice of the JDO implementation. Before being used again to satisfy a getPersis-
tenceManager request, the options will be reset to their default values as specified in the
PersistenceManagerFactory.

In a non-managed environment, if the current transaction is active, close throws
JDOUserException.

After close completes, all methods on the PersistenceManager instance except is-
Closed(), close(), and get methods throw a JDOFatalUserException.
 JDO 2.0 109 February 28, 2006

Java Data Objects 2.0
State Transitions for persistent instances at close

The behavior of persistent instances at close of the corresponding PersistenceManager
is not further defined in this specification.

Null management

In the APIs that follow, Object[] and Collection are permitted parameter types. As
these may contain nulls, the following rules apply.

Null arguments to APIs that take an Object parameter cause the API to have no effect.
Null arguments to APIs that take Object[] or Collection will cause the API to throw
NullPointerException. Non-null Object[] or Collection arguments that con-
tain null elements will have the documented behavior for non-null elements, and the
null elements will be ignored.

12.6.1 Cache management

Normally, cache management is automatic and transparent. When instances are queried,
navigated to, or modified, instantiation of instances and their fields and garbage collection
of unreferenced instances occurs without any explicit control. When the transaction in
which persistent instances are created, deleted, or modified completes, eviction is auto-
matically done by the transaction completion mechanisms. Therefore, eviction is not nor-
mally required to be done explicitly. However, if the application chooses to become more
involved in the management of the cache, several methods are available.

The non-parameter version of these methods applies the operation to each appropriate
JDO instance in the cache. For evictAll, these are all persistent-clean instances; for re-
freshAll, all transactional instances.

void evict (Object pc);

void evictAll ();

void evictAll (Object[] pcs);

void evictAll (Collection pcs);

Eviction is a hint to the PersistenceManager that the application no longer needs the
parameter instances in the cache. Eviction allows the parameter instances to be subse-
quently garbage collected. Evicted instances will not have their values retained after trans-
action completion, regardless of the settings of the retainValues or restoreValues
flags.

If evictAll with no parameters is called, then all persistent-clean instances are evicted
(they transition to hollow). If users wish to automatically evict transactional instances at
transaction commit time, then they should set RetainValues to false. Similarly, to au-
tomatically evict transactional instances at transaction rollback time, then they should set
RestoreValues to false.

If the parameter instance is detached, then JDOUserException is thrown.

For each persistent-clean and persistent-nontransactional instance that the JDO Persis-
tenceManager evicts, it:

• calls the jdoPreClear method on each instance, if the class of the instance
implements InstanceCallbacks

• clears persistent fields on each instance (sets the value of the field to its Java default
value);

• changes the state of instances to hollow.
 JDO 2.0 110 February 28, 2006

Java Data Objects 2.0
void refresh (Object pc);

void refreshAll ();

void refreshAll (Object[] pcs);

void refreshAll (Collection pcs);

void refreshAll (JDOException ex);

The refresh method updates the values in the parameter instance[s] from the data in the
datastore. The intended use is for optimistic transactions where the state of the JDO in-
stance is not guaranteed to reflect the state in the datastore, and for datastore transactions
to undo the changes to a specific set of instances instead of rolling back the entire transac-
tion. This method can be used to minimize the occurrence of commit failures due to mis-
match between the state of cached instances and the state of data in the datastore.

When called with a transaction active, the refreshAll method with no parameters caus-
es all transactional instances to be refreshed. If a transaction is not in progress, then this
call has no effect.

If there is a fetch plan in effect, then the fetch plan affects the results of this method. All
modified fields and all fields in the current fetch plan are unloaded and then fields in the
current fetch plan are fetched from the datastore.

Note that this method will cause loss of changes made to affected instances by the appli-
cation due to refreshing the contents from the datastore.

When used with the JDOException parameter, the JDO PersistenceManager re-
freshes all instances in the exception, including instances in nested exceptions, that failed
verification. Updated and unchanged instances that failed verification are reloaded from
the datastore. Datastore instances corresponding to new instances that failed due to dupli-
cate key are loaded from the datastore.

If the parameter instance is detached, then JDOUserException is thrown.

The JDO PersistenceManager:

• loads persistent values from the datastore into the instance;

• calls the jdoPostLoad method on each persistent instance, if the class of the
instance implements InstanceCallbacks; and

• changes the state of persistent-dirty instances to persistent-clean in a datastore
transaction; or persistent-nontransactional in an optimistic transaction.

void retrieve(Object pc);

void retrieve(Object pc, boolean FGOnly);

void retrieveAll(Collection pcs);

void retrieveAll(Collection pcs, boolean FGOnly);

void retrieveAll(Object[] pcs);

void retrieveAll(Object[] pcs, boolean FGOnly);

These methods request the PersistenceManager to load persistent fields into the pa-
rameter instances. Subsequent to this call, the application might call makeTransient on
the parameter instances, and the fields can no longer be touched by the Persistence-
Manager. The PersistenceManager might also retrieve related instances according
to the current fetch plan or a vendor-specific pre-read policy (not specified by JDO).
 JDO 2.0 111 February 28, 2006

Java Data Objects 2.0
If the FGOnly parameter is false, or the method without the FGOnly parameter is in-
voked, all fields must be loaded from the datastore.

If the FGOnly parameter is true, and the fetch plan has not been modified from its de-
fault setting (see 12.7.5), then this is a hint to the implementation that only the fields in the
current fetch group need to be retrieved. A compliant implementation is permitted to re-
trieve all fields regardless of the setting of this parameter. After the call with the FGOnly
parameter true, all fields in the current fetch group must have been fetched, but other
fields might be fetched lazily by the implementation.

If the FGOnly parameter is true, and the fetch plan has been changed, then only the fields
specified by the fetch plan are loaded.

If the parameter instance or instances are detached, then JDOUserException is thrown.

The JDO PersistenceManager:

• loads persistent values from the datastore into the instance;

• for hollow instances, changes the state to persistent-clean in a datastore
transaction; or persistent-nontransactional in an optimistic transaction;

• if the class of the instance implements LoadCallback calls jdoPostLoad;

• calls postLoad for all LifecycleListener instances that are registered for
load callbacks for the class of the loaded instances.

12.6.2 Transaction factory interface

Transaction currentTransaction();

The currentTransaction method returns the Transaction instance associated
with the PersistenceManager. The identical Transaction instance will be returned
by all currentTransaction calls to the same PersistenceManager until close.
Note that multiple transactions can be begun and completed (serially) with this same in-
stance.

Even if the Transaction instance returned cannot be used for transaction completion
(due to external transaction management), it still can be used to set flags.

12.6.3 Query factory interface

The query factory methods are detailed in the Query chapter .

void setIgnoreCache (boolean flag);

boolean getIgnoreCache ();

These methods get and set the value of the IgnoreCache option for all Query instances
created by this PersistenceManager [see Query options]. The IgnoreCache option
if set to true, is a hint to the query engine that the user expects queries to be optimized to
return approximate results by ignoring changed values in the cache.

The IgnoreCache option also affects the iterator obtained from Extent instances ob-
tained from this PersistenceManager.

The IgnoreCache option is preserved for query instances constructed from other query
instances.

12.6.4 Extent Management

Extents are collections of datastore objects managed by the datastore, not by explicit user
operations on collections. Extent capability is a boolean property of persistence capable
classes and interfaces. If an instance of a class or interface that has a managed extent is
 JDO 2.0 112 February 28, 2006

Java Data Objects 2.0
made persistent via reachability, the instance is put into the extent implicitly. If an instance
of a class that implements an interface that has a managed extent is made persistent, then
that instance is put into the interface’s extent.

Extent getExtent (Class persistenceCapable, boolean subclass-
es);

Extent getExtent (Class persistenceCapable);

The getExtent method returns an Extent that contains all of the instances in the pa-
rameter class or interface, and if the subclasses flag is true, all of the instances of the pa-
rameter class and its subclasses. The method with no subclasses parameter is treated as
equivalent to getExtent (persistenceCapable, true).

If the metadata does not indicate via the requires-extent attribute in the class or in-
terface element that an extent is managed for the parameter class or interface, then
JDOUserException is thrown. The extent might not include instances of those subclass-
es for which the metadata indicates that an extent is not managed for the subclass.

This method can be called whether or not a transaction is active, regardless of whether
NontransactionalRead is supported. If NontransactionalRead is not supported,
then the iterator method will throw a JDOUnsupportedOptionException if called
outside a transaction.

It might be a common usage to iterate over the contents of the Extent, and the Extent
should be implemented in such a way as to avoid out-of-memory conditions on iteration.

The primary use for the Extent returned as a result of this method is as a candidate col-
lection parameter to a Query instance. For this usage, the elements in the Extent typi-
cally will not be instantiated in the Java VM; it is used only to identify the prospective
datastore instances.

Extents of interfaces

If the Class parameter of the getExtent method is an interface, then the interface must
be identified in the metadata as having its extent managed.

12.6.5 JDO Identity management

Object getObjectById (Object oid);

The getObjectById method attempts to find an instance in the cache with the specified
JDO identity. This method behaves exactly as the method getObjectById (Object
oid, boolean validate) with the validate flag set to true.

Object getObjectById (Object oid, boolean validate);

The getObjectById method attempts to find an instance in the cache with the specified
JDO identity. The oid parameter object might have been returned by an earlier call to ge-
tObjectId or getTransactionalObjectId, or might have been constructed by the
application.

If the PersistenceManager is unable to resolve the oid parameter to an ObjectId
instance, then it throws a JDOUserException. This might occur if the implementation
does not support application identity, and the parameter is an instance of an object identity
class.

• If the validate flag is false:

• If there is already an instance in the cache with the same JDO identity as the oid
parameter, then this method returns it. There is no change made to the state of the
returned instance.
 JDO 2.0 113 February 28, 2006

Java Data Objects 2.0
• If there is not an instance already in the cache with the same JDO identity as the
oid parameter, then this method creates an instance with the specified JDO
identity and returns it. If there is no transaction in progress, the returned instance
will be hollow or persistent-nontransactional, at the choice of the implementation.

• If there is a transaction in progress, the returned instance will be hollow,
persistent-nontransactional, or persistent-clean, at the choice of the
implementation.

• It is an implementation decision whether to access the datastore, if required to
determine the exact class. This will be the case of inheritance, where multiple
persistence-capable classes share the same Object Id class.

• If the instance does not exist in the datastore, then this method might not fail. It is
an implementation choice if the method fails immediately with a
JDOObjectNotFoundException. But a subsequent access of the fields of the
instance will throw a JDOObjectNotFoundException if the instance does
not exist at that time. Further, if a relationship is established to this instance, and
the instance does not exist when the instance is flushed to the datastore, then the
transaction in which the association was made will fail.

• If the validate flag is true:

• If there is already a transactional instance in the cache with the same jdo identity
as the oid parameter, then this method returns it. There is no change made to the
state of the returned instance.

• If there is an instance already in the cache with the same jdo identity as the oid
parameter, the instance is not transactional, and the instance does not exist in the
datastore, then a JDOObjectNotFoundException is thrown.

• If there is not an instance already in the cache with the same jdo identity as the oid
parameter, then this method creates an instance with the specified jdo identity,
verifies that it exists in the datastore, and returns it. If the instance does not exist
in the datastore, then a JDOObjectNotFoundException is thrown. If the
fetch plan has been changed from its original value, the fetch plan governs which
fields are fetched from the datastore and which related objects are also fetched
with them.

• If there is no transaction in progress, the returned instance will be hollow or
persistent-nontransactional, at the choice of the implementation.

• If there is a datastore transaction in progress, the returned instance will be
persistent-clean.

• If there is an optimistic transaction in progress, the returned instance will be
persistent-nontransactional.

Object getObjectId (Object pc);

The getObjectId method returns an ObjectId instance that represents the object
identity of the specified JDO instance. The identity is guaranteed to be unique only in the
context of the JDO PersistenceManager that created the identity, and only for two
types of JDO Identity: those that are managed by the application, and those that are man-
aged by the datastore.

If the object identity is being changed in the transaction, by the application modifying one
or more of the application key fields, then this method returns the identity as of the begin-
ning of the transaction. The value returned by getObjectId will be different following
afterCompletion processing for successful transactions.

Within a transaction, the ObjectId returned will compare equal to the ObjectId re-
turned by only one among all JDO instances associated with the PersistenceManager
regardless of the type of ObjectId.
 JDO 2.0 114 February 28, 2006

Java Data Objects 2.0
The ObjectId does not necessarily contain any internal state of the instance, nor is it nec-
essarily an instance of the class used to manage identity internally. Therefore, if the appli-
cation makes a change to the ObjectId instance returned by this method, there is no
effect on the instance from which the ObjectId was obtained.

The getObjectById method can be used between instances of PersistenceMan-
ager of different JDO vendors only for instances of persistence capable classes using ap-
plication-managed (primary key) JDO identity. If it is used for instances of classes using
datastore identity, the method might succeed, but there are no guarantees that the param-
eter and return instances are related in any way.

If the parameter pc is not persistent, or is null, then null is returned.

Object getTransactionalObjectId (Object pc);

If the object identity is being changed in the transaction, by the application modifying one
or more of the application key fields, then this method returns the current identity in the
transaction. If there is no transaction in progress, or if none of the key fields is being mod-
ified, then this method has the same behavior as getObjectId.

To get an instance in a PersistenceManager with the same identity as an instance
from a different PersistenceManager, use the following: aPersistenceMan-
ager.getObjectById(JDOHelper.getObjectId(pc), validate). The val-
idate parameter has a value of true or false depending on your application
requirements.

Getting Multiple Persistent Instances

Collection getObjectsById (Collection oids);

Object[] getObjectsById (Object[] oids);

Collection getObjectsById (Collection oids, boolean validate);

Object[] getObjectsById (Object[] oids, boolean validate);

The getObjectsById method attempts to find instances in the cache with the specified
JDO identities. The elements of the oids parameter object might have been returned by
earlier calls to getObjectId or getTransactionalObjectId, or might have been
constructed by the application.

If a method with no validate parameter is used, the method behaves exactly as the cor-
responding method with the validate flag set to true.

If the Object[] form of the method is used, the returned objects correspond by position
with the object ids in the oids parameter. If the Collection form of the method is used,
the iterator over the returned Collection returns instances in the same order as the oids
returned by an iterator over the parameter Collection. The cardinality of the return
value is the same as the cardinality of the oids parameter.

Getting an Object by Class and Key

Object getObjectById (Class cls, Object key);

The getObjectById method attempts to find an instance in the cache with the derived
JDO identity. The key parameter is either the string representation of the object id, or is an
object representation of a single field identity key.

This is a convenience method that exactly matches the behavior of calling pm.getOb-
jectById (pm.newObjectIdInstance (cls, key), true).
 JDO 2.0 115 February 28, 2006

Java Data Objects 2.0
12.6.6 Persistent instance factory

The following method is used to create an instance of a persistence-capable interface, or of
a concrete or abstract class.

Object newInstance(Class persistenceCapable);

The parameter must be one of the following:

• an abstract class that is declared in the metadata using the class element, or

• an interface that is declared in the metadata using the interface element, or

• a concrete class that is declared in the metadata as persistence-capable. In this case,
the concrete class must declare a public no-args constructor.

The returned instance is transient, and is an “instanceof” the parameter. Applications
might use the instance via the get and set property methods and change its life cycle
state exactly as if it were an instance of a persistence-capable class.

In order for the newInstance method to be used, the parameter interface must be com-
pletely mapped. For relational implementations, the interface must be mapped to a table
and all persistent properties must be mapped to columns. Additionally, interfaces that are
the targets of all relationships from persistent properties must also be mapped. Otherwise,
JDOUserException is thrown by the newInstance method.

For interfaces and classes that use a SingleFieldIdentity as the object-id class, if the
returned instance is subsequently made persistent, the target class stored in the object-id
instance is the parameter of the newInstance method that created it.

12.6.7 JDO Instance life cycle management

The following methods take either a single instance or multiple instances as parameters.

If a collection or array of instances is passed to any of the methods in this section, and one
or more of the instances fail to complete the required operation, then all instances will be
attempted, and a JDOUserException will be thrown which contains a nested exception
array, each exception of which contains one of the failing instances. The succeeding in-
stances will transition to the specified life cycle state, and the failing instances will remain
in their current state.

Make instances persistent

Object makePersistent (Object pc);

Object [] makePersistentAll (Object[] pcs);

Collection makePersistentAll (Collection pcs);

These methods make transient instances persistent and apply detached instance changes
to the cache. They must be called in the context of an active transaction, or a JDOUserEx-
ception is thrown. For a transient instance, they will assign an object identity to the in-
stance and transition it to persistent-new. Any transient instances reachable from this
instance via persistent fields of this instance will become provisionally persistent, transi-
tively. That is, they behave as persistent-new instances (return true to isPersistent,
isNew, and isDirty). But at commit time, the reachability algorithm is run again, and
instances made provisionally persistent that are not currently reachable from persistent in-
stances will revert to transient.For a detached instance, they locate or create a persistent
instance with the same JDO identity as the detached instance, and merge the persistent
state of the detached instance into the persistent instance. Only the state of persistent fields
is merged. If non-persistent state needs to be copied, the application should use the
jdoPostAttach callback or the postAttach lifecycle event listener. Any references to
 JDO 2.0 116 February 28, 2006

Java Data Objects 2.0
the detached instances from instances in the closure of the parameter instances are modi-
fied to refer to the corresponding persistent instance instead of to the detached instance.

During application of changes of the detached state, if the JDO implementation can deter-
mine that there were no changes made during detachment, then the implementation is not
required to mark the corresponding instance dirty. If it cannot determine if changes were
made, then it must mark the instance dirty.

No consistency checking is done during makePersistent of detached instances. If con-
sistency checking is required by the application, then flush or checkConsistency
should be called after attaching the instances.

These methods have no effect on parameter persistent instances already managed by this
PersistenceManager. They will throw a JDOUserException if the parameter in-
stance is managed by a different PersistenceManager.

If an instance is of a class whose identity type (application, datastore, or none) is
not supported by the JDO implementation, then a JDOUserException will be thrown
for that instance.The return value for instances in the transient or persistent states is the
same as the parameter value. The return value for detached instances is the persistent in-
stance corresponding to the detached instance.

The return values for makePersistentAll methods correspond by position to the pa-
rameter instances.

Delete persistent instances

void deletePersistent (Object pc);

void deletePersistentAll (Object[] pcs);

void deletePersistentAll (Collection pcs);

These methods delete persistent instances from the datastore. They must be called in the
context of an active transaction, or a JDOUserException is thrown. The representation
in the datastore will be deleted when this instance is flushed to the datastore (via commit
or evict).

Note that this behavior is not exactly the inverse of makePersistent, due to the transi-
tive nature of makePersistent. The implementation might delete dependent datastore
objects depending on implementation-specific policy options that are not covered by the
JDO specification. However, if a field is marked as containing a dependent reference, the
dependent instance is deleted as well.

These methods have no effect on parameter instances already deleted in the transaction or
on embedded instances. Embedded instances are deleted when their owning instance is
deleted.

If deleting an instance would violate datastore integrity constraints, it is implementation-
defined whether an exception is thrown at commit time, or the delete operation is simply
ignored. Portable applications should use this method to delete instances from the datas-
tore, and not depend on any reachability algorithm to automatically delete instances.

If the parameter instance of deletePersistent() is a detached instance, the method
applies to the associated persistent instance. Similarly, if any of the parameter instances of
deletePersistentAll() is a detached instance, the method applies to the associated
persistent instances. If the class of any instance to be deleted implements DeleteCall-
back, or if there are any InstanceLifecycleListeners registered for deletion call-
backs of instances of any detached objects’ class, then the parameter persistent instances
 JDO 2.0 117 February 28, 2006

Java Data Objects 2.0
of those classes are instantiated, the callback is executed and/or the listeners are called
with the event, as described in section 12.15.

These methods will throw a JDOUserException if the parameter instance is managed
by a different PersistenceManager.These methods will throw a JDOUserExcep-
tion if the parameter instance is transient.

Make instances transient

void makeTransient (Object pc);

void makeTransientAll (Object[] pcs);

void makeTransientAll (Collection pcs);

These methods make persistent instances transient, so they are no longer associated with
the PersistenceManager instance. They do not affect the persistent state in the datas-
tore. They can be used as part of a sequence of operations to move a persistent instance to
another PersistenceManager. The instance transitions to transient, and it loses its
JDO identity. If the instance has state (persistent-nontransactional or persistent-clean) the
state in the cache is preserved unchanged. If the instance is dirty, a JDOUserException
is thrown.

The effect of these methods is immediate and not subject to rollback. Field values in the
instances are not modified. To avoid having the instances become persistent by reachabil-
ity at commit, the application should update all persistent instances containing references
to the parameter instances to avoid referring to them, or make the referring instances tran-
sient.

If the parameter instance or instances are detached, then JDOUserException is thrown.

These methods will be ignored if the instance is transient.

void makeTransient (Object pc, boolean useFetchPlan);

void makeTransientAll (Object[] pcs, boolean useFetchPlan);

void makeTransientAll (Collection pcs, boolean useFetchPlan);

If the useFetchPlan parameter is false, these methods behave exactly as the corre-
sponding makeTransient methods.
If the useFetchPlan parameter is true, the current FetchPlan, including MaxFetch-
Depth, DETACH_LOAD_FIELDS, and DETACH_UNLOAD_FIELDS, is applied to the pc or
pcs parameter instance(s) to load fields and instances from the datastore. The Detach-
mentRoots is not affected. After the fetch plan is used to load instances, the entire graph
of instances reachable via loaded fields of the parameter instances is made transient. Tran-
sient fields are not modified by the method.
If the parameter instance or instances are detached, then JDOUserException is thrown.

Make instances transactional

void makeTransactional (Object pc);

void makeTransactionalAll (Object[] pcs);

void makeTransactionalAll (Collection pcs);

These methods make transient instances transactional and cause a state transition to tran-
sient-clean. After the method completes, the instance observes transaction boundaries. If
the transaction in which this instance is made transactional commits, then the transient in-
stance retains its values. If the transaction is rolled back, then the transient instance takes
its values as of the call to makeTransactional if the call was made within the current
 JDO 2.0 118 February 28, 2006

Java Data Objects 2.0
transaction; or the beginning of the transaction, if the call was made prior to the beginning
of the current transaction.

If the implementation does not support TransientTransactional, and the parame-
ter instance is transient, then JDOUnsupportedOptionException is thrown.

If the parameter instance or instances are detached, then JDOUserException is thrown.

These methods are also used to mark a nontransactional persistent instance as being part
of the read-consistency set of the transaction. In this case, the call must be made in the con-
text of an active transaction, or a JDOUserException is thrown.

The effect of these methods is immediate and not subject to rollback.

Make instances nontransactional

void makeNontransactional (Object pc);

void makeNontransactionalAll (Object[] pcs);

void makeNontransactionalAll (Collection pcs);

These methods make transient-clean instances nontransactional and cause a state transi-
tion to transient. After the method completes, the instance does not observe transaction
boundaries.

These methods make persistent-clean instances nontransactional and cause a state transi-
tion to persistent-nontransactional.

If the parameter instance or instances are detached, then JDOUserException is thrown.

If this method is called with a dirty parameter instance, a JDOUserException is
thrown.

The effect of these methods is immediate and not subject to rollback.

12.6.8 Detaching and attaching instances

These methods provide a way for an application to identify persistent instances, obtain
copies of these persistent instances, modify the detached instances either in the same JVM
or in a different JVM, apply the changes to the same or different PersistenceManager,
and commit the changes.

There are three ways to cause the creation of detached instances:

• explicitly via methods defined on PersistenceManager;

• implicitly by committing the transaction while the DetachAllOnCommit flag is
true;

• or implicitly by serializing persistent instances.

Committing the transaction with DetachAllOnCommit

boolean getDetachAllOnCommit();

The value of the DetachAllOnCommit flag is returned.

void setDetachAllOnCommit(boolean flag);

The value of the DetachAllOnCommit flag is set to the parameter value. The flag takes
effect during the next commit after being called. This method is allowed at any time except
during transaction completion (beforeCompletion and afterCompletion).

In JDO 1.0, the behavior of persistent instances after closing the associated Persis-
tenceManager is undefined. JDO 2 defines a new property called DetachAllOnCommit
 JDO 2.0 119 February 28, 2006

Java Data Objects 2.0
which changes this behavior. With this flag set to false, the state of persistent instances
in the cache after commit is defined by the retainValues flag.

With this flag set to true, during beforeCompletion all cached instances are prepared
for detachment according to the fetch plan in effect at commit. Loading fields and unload-
ing fields required by the fetch plan is done after calling the user’s beforeCompletion
callback. During afterCompletion, before calling the user’s afterCompletion call-
back, all detachable persistent instances in the cache transition to detached; non-detach-
able persistent instances transition to transient; and detachable instances can be serialized
as detached instances. Transient transactional instances are unaffected by this flag.

Serializing Persistent Instances

The JDO 1.0 specification requires that serialized instances be made ready for serialization
by instantiating all serializable persistent fields before calling writeObject. For binary-
compatible implementations, this is done by the enhancer adding a call to the StateM-
anager prior to invoking the user's writeObject method. The behavior is the same in
JDO 2.0, with the additional requirement that restored detachable serialized instances are
treated as detached instances.

Explicit detach

Object detachCopy(Object pc);

Collection detachCopyAll(Collection pcs);

Object[] detachCopyAll(Object[] pcs);

This method makes detached copies of the parameter instances and returns the copies as
the result of the method. The order of instances in the parameter Collection’s iteration
corresponds to the order of corresponding instances in the returned Collection’s itera-
tion.Only persistent fields are copied by the JDO implementation. If transient fields need
to be copied, the application should implement the jdoPreDetach callback or the pre-
Detach lifecycle event listener.

If a detachCopy method is called with an active transaction, the parameter Collection
of instances is first made persistent, and the reachability algorithm is run on the instances.
This ensures that the closure of all of the instances in the the parameter Collection is
persistent.

If a detachCopy method is called outside an active transaction, the reachability algorithm
will not be run; if any transient instances are reachable via persistent fields, a JDOUser-
Exception is thrown for each persistent instance containing such fields.

If the parameter instance is detached, then JDOUserException is thrown.

If a detachCopy method is called outside an active transaction, the Nontransaction-
alRead property must be true or JDOUserException is thrown.

For each instance in the parameter Collection, a corresponding detached copy is re-
turned. Each field in the persistent instance is handled based on its type and whether the
field is contained in the fetch group for the persistence-capable class. If there are duplicates
in the parameter Collection, the corresponding detached copy is used for each such du-
plicate.

Instances in the persistent-new and persistent-dirty state are updated with their current
object identity and version (as if they had been flushed to the datastore prior to copying
their state). This ensures that the object identity and version (if any) is properly set prior
to creating the copy. The transaction in which the flush is performed is assumed to com-
mit; if the transaction rolls back, then the detached instances become invalid (they no long-
 JDO 2.0 120 February 28, 2006

Java Data Objects 2.0
er refer to the correct version of the datastore instances). This situation will be detected at
the subsequent attempt to commit or flush a transaction after attaching the detached in-
stances.

If instances in a deleted state (either persistent-deleted or persistent-new-deleted) are at-
tempted to be detached, a JDOUserException is thrown with nested JDOUserExcep-
tions, one for each such instance.

Instances to be detached that are not of a Detachable class are detached as transient in-
stances.

The FetchPlan in effect in the PersistenceManager at the time of detachment deter-
mines the fields to be fetched in the closure of the persistent instances. If the default fetch
plan is active, instances are detached in their current state. If the user has changed the fetch
plan, then each instance to be detached will have the fetch plan applied to it, including de-
tachment options. The DETACH_LOAD_FIELDS causes the fields in the fetch plan to be
loaded before the instances are detached. The DETACH_UNLOAD_FIELDS causes load-
ed fields that are not in the fetch plan to be unloaded before detachment.

Fields in the FetchPlan of primitive and wrapper types are set to their values from the
datastore. Fields of references to persistence-capable types are set to the detached copy
corresponding to the persistent instance. Fields of Collections and Maps are set to de-
tached SCO instances containing references to detached copies corresponding to persis-
tent instances in the datastore.

The result of the detachCopyAll method is a Collection or array of detached instanc-
es whose closure contains copies of detached instances. Among the closure of detached in-
stances there are no references to persistent instances; all such references from the
persistent instances have been replaced by the corresponding detached instance.

There might or might not be a transaction active when the detachCopy method is called.

Behavior of Detached Instances

While detached, any field access to a field that was not loaded throws JDODetached-
FieldAccessException.

While detached, each detached instance has a persistent identity that can be obtained via
the static JDOHelper method getObjectId(Object pc). The version of detached in-
stances can be obtained by the static JDOHelper method getVersion(Object pc).

While detached, identity fields of application-identity classes might be modified by the ap-
plication. These fields are marked as modified by the detached instance, but the object id
of the detached instance does not change. Upon attachment, the change will be rejected if
the jdo implementation does not support application identity change. See Persistence-
ManagerFactory property javax.jdo.option.ChangeApplicationIdenti-
ty.

Changes made to embedded instances of mutable types including persistence-capable
types are tracked by the detached instance if they are replaced or modified. Changes are
reflected by marking the detached instance’s field as modified.
To apply changes made to instances while detached, use the makePersistent method
with the detached instance as parameter.

12.7 Fetch Plan

A fetch plan defines rules for instantiating the loaded state for an object graph. It specifies
fields to be loaded for all of the instances in the graph. Using fetch plans, users can control
 JDO 2.0 121 February 28, 2006

Java Data Objects 2.0
the field fetching behavior of many JDO APIs. A fetch plan can be associated with a Per-
sistenceManager and, independently, with a Query and with an Extent.

A fetch plan also defines rules for creating the detached object graph for the detach APIs
and for automatic detachment at commit with DetachAllOnCommit set to true.

A fetch plan consists of a number of fetch groups that are combined additively for each af-
fected class; a fetch size that governs the number of instances of multi-valued fields re-
trieved by queries; a recursion-depth per field that governs the recursion depth of the
object graph fetched for that field; a maximum fetch depth that governs the depth of the
object graph fetched starting with the root objects; and flags that govern the behavior of
detachment.

The default fetch plan contains exactly one fetch group, "default". It has a fetch size of 0,
and detachment option DETACH_LOAD_FIELDS. The default fetch plan is in effect when
the PersistenceManager is first acquired from the PersistenceManagerFactory.

With the default fetch plan in effect, the behavior of JDO 2 is very similar to the behavior
of JDO 1. That is, when instances are loaded into memory in response to queries or navi-
gation, fields in the default fetch group are loaded, and the jdoPostLoad callback is ex-
ecuted the first time an instance is fetched from the datastore. The implementation is
allowed to load additional fields, as in JDO 1. Upon detachment, fields that are have been
loaded into the detached instances are preserved, regardless of whether they were loaded
automatically by the implementation or loaded in response to application access; and
fields that have not been loaded are marked in the detached instances as not loaded.

This behavior is sufficient for the most basic use case for detachment, where the detached
instances are simply “data transfer objects” containing primitive fields. The detached in-
stances can be modified in place or serialized and sent to another tier to be changed and
sent back. Upon being received back, the instances can be attached and if there are no ver-
sion conflicts, the changes can be applied to the datastore.

The most common use case for fetch groups is to restrict the fields loaded for an instance
to the primitive values and avoid loading related instances for queries. For more control
over the default behavior, the “default” fetch group can simply be redefined for specific
classes. For example, a String field that contains a typically large document can be de-
fined as not part of the default fetch group, and the field will be loaded only when accessed
by the application. Similarly, an Order field associated with OrderLine might be defined
as part of the default fetch group of OrderLine, and queries on OrderLine will always
load the corresponding Order instance as well. This can easily improve the performance
of applications that always need the Order whenever OrderLine instances are loaded.

For explicit detachment, the parameters of the detach method are each treated as roots for
the purpose of determining the detached object graph. The fetch plan is applied to each of
the roots as if no other roots were also being detached. The roots and their corresponding
object graphs are combined and the resulting object graph is detached in its entirety.

12.7.1 Fetch Groups

Fetch groups are used to identify the list of fields and their associated field recursion-
depth for each class for which the fetch plan is applied.

Fetch groups are identified by name and apply to one or more classes. Names have global
scope so the same fetch group name can be used for any number of classes. This makes it
possible to specify fetch groups per PersistenceManager instead of per extent. This
greatly simplifies the use of fetch groups in an application.

The default fetch group (named "default") for each class is created by the JDO imple-
mentation according to the rules in the JDO 1.0.1 specification. That is, it includes all fields
 JDO 2.0 122 February 28, 2006

Java Data Objects 2.0
that by default belong to the default fetch group (i.e. single-valued fields), and causes the
jdoPostLoad method to be called the first time fields are loaded. The default fetch group
may also be defined by the user in the metadata like any other fetch group, in order to
make use of JDO 2 features.

The implementation must also define another fetch group named "all" for each class. The
"all" group contains all fields in the class, but can be redefined by the user, for example
to add recursion-depth to certain fields, or to exclude some fields from being loaded.

If a fetch plan other than the default fetch plan is active for a PersistenceManager, the
behavior of several APIs changes:

• For detachCopy the JDO implementation must ensure that the graph specified by
the active fetch groups is copied, based on the DETACH_LOAD_FIELDS and
DETACH_UNLOAD_FIELDS flags.

• For refresh, after clearing fields in the instances, the JDO implementation uses
the fetch plan to determine which fields to load from the datastore.

• For retrieve with FGonly true, the implementation uses the fetch plan to
determine which fields are loaded from the datastore. With FGonly false, the
implementation reverts to JDO 1 behavior, which loads all fields from the
datastore; in this case, no related instances are loaded.

• When executing a query the JDO implementation loads the fields as specified in
the fetch plan associated with the Query instance.

• When the application dereferences an unloaded field, the JDO implementation
uses the current fetch plan and the load-fetch-group of the field to create the fetch
strategy for the field. The specific behavior depends on whether the unloaded field
is a relation to another persistence-capable class.

• for non-relation fields, the current fetch plan is applied to the field’s owning
instance, and the fields in the field’s load-fetch-group, plus the field itself are
added to the list of fields.

• for relation fields, the fields in the owning instance are fetched as immediately
above, and additionally the instances referred by the field are loaded using the
current fetch plan plus the field’s load-fetch-group.

FetchPlan getFetchPlan();

This method retrieves the fetch plan associated with the PersistenceManager. It al-
ways returns the identical instance for the same PersistenceManager.

12.7.2 MaxFetchDepth

When relationship fields are included in the active fetch plan, it may be possible to retrieve
the entire contents of the datastore, which might not be the desired effect. To avoid this
behavior, and to allow the application to control the amount of data retrieved from the
datastore, the MaxFetchDepth property of the fetch plan is used. The MaxFetchDepth
is the depth of references (fields of relationship types) to instantiate, starting with the root
instances.

Setting MaxFetchDepth to 1 limits the instances retrieved to the root instances and in-
stances directly reachable from the root instances through a field in the fetch plan for the
root class(es). Setting MaxFetchDepth to 0 has no meaning, and JDOUserException will
be thrown. Setting MaxFetchDepth to -1 does not limit the instances retrieved via rela-
tionship fields in the fetch plan. Caution should be exercised to avoid retrieving more in-
stances than desired.
 JDO 2.0 123 February 28, 2006

Java Data Objects 2.0
For example, assume the class Employee defines field dept of type Department, and
class Department defines field comp of type Company. When a query for Employee is
executed, with a fetch plan that includes Employee.dept and Department.comp and
with MaxFetchDepth set to 1, the Departments referenced by Employees returned
from the query are instantiated, but the Company field is not instantiated. With the
MaxFetchDepth set to 2, Departments and their corresponding Companys are instanti-
ated for the Employee instances returned by the query.

12.7.3 Root instances

Root instances are parameter instances for retrieve, detachCopy, and refresh; result
instances for queries. Root instances for DetachAllOnCommit are defined explicitly by
the user via the FetchPlan property DetachmentRoots or DetachmentRootClass-
es. If not set explicitly, the detachment roots consist of the union of all root instances of
methods executed since the last commit or rollback.

Once set explicitly, the detachment roots will not be changed until commit, at which time
the detachment roots will be set to the empty collection.

Detachment roots and root classes are ignored for all FetchPlans except those associated
directly with the PersistenceManager. Detachment root classes are never changed by
the JDO implementation; they are completely controlled by the user. Detachment root
classes is an empty Class[] when the PersistenceManager is first acquired from the
PersistenceManagerFactory.

12.7.4 Recursion-depth

For object models with bidirectional relationships or self-referencing relationships, it is
useful to limit the depth of the object graph retrieved through these relationships recur-
sively. The recursion-depth attribute of the field element is used for this purpose. The re-
cursion-depth for a relationship field specifies the number of times an instance of the same
class, subclass, or superclass can be fetched via traversing this field.

A value of -1 means that the recursion-depth is not limited by traversing this field. If a field
is defined in multiple fetch groups, the recursion-depth is the largest of the values speci-
fied, treating -1 as a very large positive number. If not specified in any fetch group or in
the base field definition, the default is 1.

For example, assume a class Directory with a field parent of type Directory and a
field children of type Set<Directory>, and assume the recursion-depth of the
parent field is set to -1 and the recursion-depth of the children field is set to 2. When
a query for a Directory is executed, all parents of the selected Directory instances will
be retrieved, and all of the parents’ parents until a parent is found with a null parent. Ad-
ditionally, all children of the selected Directory will be retrieved and all children of the
children of the selected Directory.

12.7.5 The FetchPlan interface

Fetch groups are activated using methods on the interface FetchPlan. PersistenceM-
anager and Query have getFetchPlan() methods. When a Query is retrieved from a
PersistenceManager, its FetchPlan is initialized to the same settings as that of the
PersistenceManager. Subsequent modifications of the Query FetchPlan are not re-
flected in the FetchPlan of the PersistenceManager. When an Extent is created, the
FetchPlan of the PersistenceManager initializes the FetchPlan for the Extent.

Mutating FetchPlan methods return the FetchPlan instance to allow method chaining.

package javax.jdo;
 JDO 2.0 124 February 28, 2006

Java Data Objects 2.0
public interface FetchPlan {

String DEFAULT = “default”;

String ALL = “all”;

int FETCH_SIZE_GREEDY = -1;

int FETCH_SIZE_OPTIMAL = 0;

int DETACH_LOAD_FIELDS = 1;

int DETACH_UNLOAD_FIELDS = 2;

/** Add the fetchgroup to the set of active fetch groups. Duplicate
names will be removed.*/

FetchPlan addGroup(String fetchGroupName);

/** Remove the fetch group from the set active fetch groups. */

FetchPlan removeGroup(String fetchGroupName);

/** Remove all active groups, including the default fetch group. */

FetchPlan clearGroups();

/** Return an immutable Set of the names of all active fetch groups.
*/

Set getGroups();

/** Set a Collection of group names to replace the current groups.
Duplicate names will be removed.*/

FetchPlan setGroups(Collection fetchGroupNames);

/** Set an array of group names to replace the current groups. Du-
plicate names will be removed.*/

FetchPlan setGroups(String[] fetchGroupNames);

/** Set a single group to replace the current groups. */

FetchPlan setGroup(String fetchGroupName);

/** Set the roots for DetachAllOnCommit */

FetchPlan setDetachmentRoots(Collection roots);

/** Get the roots for DetachAllOnCommit */

Collection getDetachmentRoots();

/** Set the roots for DetachAllOnCommit */

FetchPlan setDetachmentRootClasses(Class[] rootClasses);

/** Get the roots for DetachAllOnCommit */

Class[] getDetachmentRootClasses();

/** Set the maximum fetch depth. */

FetchPlan setMaxFetchDepth(int fetchDepth);

/** Get the maximum fetch depth. */

int setMaxFetchDepth();

/** Set the fetch size for large result set support. */

FetchPlan setFetchSize(int fetchSize);

/** Return the fetch size; 0 if not set; -1 for greedy fetching. */
 JDO 2.0 125 February 28, 2006

Java Data Objects 2.0
int getFetchSize();

/** Set detachment options */

FetchPlan setDetachmentOptions(int options);

/** Return the detachment options */

int getDetachmentOptions();

The getGroups method returns a collection of names. After a call to clearGroups()
this method returns an empty Set. It is legal to remove the default fetch group explicitly
via pm.getFetchPlan().removeGroup("default"), or to use setGroups() with
a collection that does not contain "default". This makes it possible to have only a given
fetch group active without the default fetch group. If no fetch groups are active then a Set
with no elements is returned. In this case, loading an instance might not result in loading
the default fetch group fields and the jdoPostLoad method will only be called if there is
an active fetch group that declares post-load=”true”.

The fetch size allows users to explicitly control the number of instances retrieved from
queries. A positive value is the number of result instances to be fetched. A value of
FETCH_SIZE_GREEDY indicates that all results should be obtained immediately. A value
of FETCH_SIZE_OPTIMAL indicates that the JDO implementation should try to optimize
the fetching of results.

Note that the graph and fields specified by a FetchPlan is strictly the union of all the ac-
tive fetch groups not based on any complicated set mathematics. So, if a field f1 is in fetch
groups A and B, and both A and B are added to the FetchPlan,and subsequently B is
removed from the active fetch groups and the instance is loaded, then the field f1 will be
loaded, because it is in fetch group A.

Examples:

pm = pmf.getPersistenceManager();

FetchPlan fp = pm.getFetchPlan();

fp.addGroup("detail").addGroup("list");

// prints [default, detail, list]

System.out.println(fp.getGroups());

// refreshes fields in any of default+detail+list

pm.refresh(anInstance);

fp.clearGroups();

// prints []

System.out.println(fp.getGroups());

pm.refresh(anInstance); // doesn’t do anything

fp.addGroup("list");

// prints [list]

System.out.println(fp.getGroups());

// refreshes fields in list only

pm.refresh(anInstance);
 JDO 2.0 126 February 28, 2006

Java Data Objects 2.0
When an instance is loaded using getObjectById , a Query is executed, or an Extent
is iterated, the implementation may choose to use the active fetch groups to prefetch data.
If an instance being loaded does not have a fetch group with the same name as any of the
active groups, and the semantics of the method allow returning a hollow instance, then it
may be loaded as hollow. If it has more than one of the active groups then the union of
fields in all active groups is used.

Instances loaded through field navigation behave in the same way as for getObjectById
except that an additional fetch group may be specified for the field in the metadata using
the new "load-fetch-group" attribute. If present the load-fetch-group is considered ac-
tive just for the loading of the field. This can be used to load several fields together when
one of them is touched. The field touched is loaded even if it is not in the load-fetch-group.

For the refresh and retrieve methods, the implementation must ensure that only the
graph specified by the active fetch groups is refreshed or retrieved; i.e. these operations
will recursively refresh or retrieve the instances and fields in the graph covered by the ac-
tive fetch groups. The refreshed or retrieved graph must not contain extra instances but
extra fields may be refreshed for an instance in the graph.

12.7.6 Defining fetch groups

Fetch groups are only defined in the metadata for a class or interface.

<!ELEMENT fetch-group (extension*,(fetch-group|field|property)*,
extension*)>

<!ATTLIST fetch-group name CDATA #REQUIRED>

<!ATTLIST fetch-group post-load (true|false) #IMPLIED>

<!ATTLIST field recursion-depth CDATA #IMPLIED>

<!ATTLIST property recursion-depth CDATA #IMPLIED>

The post-load attribute on the fetch-group element indicates whether the jdoPost-
Load callback will be made when the fetch group is loaded. It defaults to false, for all
fetch groups except the default fetch group, on which it defaults to true. The callback will
be called if any field of an instance is loaded when any fetch group is active that contains
the post-load attribute set to true.

The name attribute on a field element contained within a fetch-group element is the
name of field in the enclosing class, or a dot-separated expression identifying a field reach-
able from the class by navigating a reference, a collection, or a map. For maps of persis-
tence-capable classes "#key" or "#value" may be appended to the name of the map field to
navigate the key or value respectively (e.g. to include a field of the key class or value class
in the fetch group).

For collection and arrays of persistence-capable classes, "#element" may be appended to
the name of the field to navigate the element. This is optional; if omitted for collections and
arrays, #element is assumed.

Recursive fetch group references are controlled by the recursion-depth attribute on a
contained field or property element of a fetch-group. A recursion-depth of 0 will fetch
the whole graph of instances reachable from this field. The default is 1, meaning that only
the instance directly reachable from this field is fetched.

A contained fetch-group element indicates that the named group is to be included in
the group being defined. Nested fetch group elements are limited to only the name at-
tribute and no contained elements. That is, it is not permitted to nest entire fetch group
 JDO 2.0 127 February 28, 2006

Java Data Objects 2.0
definitions. If there are two definitions for a reference, collection or map field (due to fetch
groups including other fetch groups) then the union of the fetch groups involved is used.
If one or more depths have been specified then the largest depth is used unless one of the
depths has not been specified (unlimited overrides other depth specifications).

public class Person {

 private String name;

 private Address address;

 private Set children;

}

public class Address {

 private String street;

 private String city;

 private Country country;

}

public class Country {

 private String code;

 private String name;

}

<class name="Person" ...>

...

 <!-- name + address + country code -->

 <fetch-group name="detail">

 <fetch-group name="default"/>

 <field name="address"/>

 <field name="address.country.code"/>

 </fetch-group>

 <!-- name + address + country code + same for children -->

 <fetch-group name="detail+children">

 <fetch-group name="detail"/>

 <field name="children"/>

 </fetch-group>

 <!-- name + address + country code + names of children -->

 <fetch-group name="detail+children-names">

 <fetch-group name="detail"/>
 JDO 2.0 128 February 28, 2006

Java Data Objects 2.0
 <field name="children#element.name"/>

 </fetch-group>

 <!-- name + address + country code + list fg of children -->

 <fetch-group name="detail+children-list">

 <fetch-group name="detail"/>

 <field name="children" fetch-group="list"/>

 </fetch-group>

</class>

Here is a map example:

public class Node {

 private String name;

 private Map edges; // Node -> EdgeWeight

}

public class EdgeWeight {

 private int weight;

}

<class name="Node" ...>

 ...

 <fetch-group name="neighbour-weights">

 <field name="edges#key.name"/>

 <field name="edges#value"/>

 </fetch-group>

 <fetch-group name="neighbours">

 <field name="edges"/>

 </fetch-group>

 <fetch-group name="whole-graph">

 <field name="edges" fetch-depth=”0”/>

 </fetch-group>

</class>

12.8 Flushing instances

void flush();
 JDO 2.0 129 February 28, 2006

Java Data Objects 2.0
This method flushes all dirty, new, and deleted instances to the datastore. It has no effect
if a transaction is not active.

If a datastore transaction is active, this method synchronizes the cache with the datastore
and reports any exceptions.

If an optimistic transaction is active, this method obtains a datastore connection and syn-
chronizes the cache with the datastore using this connection. The connection obtained by
this method is held until the end of the transaction.

void checkConsistency();

This method validates the cache with the datastore. It has no effect if a transaction is not
active.

If a datastore transaction is active, this method verifies the consistency of instances in the
cache against the datastore. An implementation might flush instances as if) were called,
but it is not required to do so.

If an optimistic transaction is active, this method obtains a datastore connection and veri-
fies the consistency of the instances in the cache against the datastore. If any inconsisten-
cies are detected, a JDOOptimisticVerificationException is thrown. This
exception contains a nested JDOOptimisticVerificationException for each object
that failed the consistency check. No datastore resources acquired during the execution of
this method are held beyond the scope of this method.

12.9 Transaction completion

Transaction completion management is delegated to the associated Transaction in-
stance .

12.10 Multithreaded Synchronization

The application might require the PersistenceManager to synchronize internally to
avoid corruption of data structures due to multiple application threads. This synchroniza-
tion is not required when the flag Multithreaded is set to false.

void setMultithreaded (boolean flag);

boolean getMultithreaded();

NOTE: When the Multithreaded flag is set to true, there is a synchronization issue
with jdoFlags values READ_OK and READ_WRITE_OK. Due to out-of-order memory
writes, there is a chance that a value for a field in the default fetch group might be incorrect
(stale) when accessed by a thread that has not synchronized with the thread that set the
jdoFlags value. Therefore, it is recommended that a JDO implementation not use
READ_OK or READ_WRITE_OK for jdoFlags if Multithreaded is set to true.

The application may choose to perform its own synchronization, and indicate this to the
implementation by setting the Multithreaded flag to false. In this case, the JDO im-
plementation is not required to implement any additional synchronizations, although it is
permitted to do so.
 JDO 2.0 130 February 28, 2006

Java Data Objects 2.0
12.11 User associated objects

The application might manage PersistenceManager instances by using an associated
object for bookkeeping purposes. These methods allow the user to manage the associated
object.

void setUserObject (Object o);

Object getUserObject ();

The parameter is not inspected or used in any way by the JDO implementation.For appli-
cations where multiple users need to access their own user objects, the following methods
allow user objects to be stored and retrieved by key. The values are not examined by the
PersistenceManager.

There are no restrictions on values. Keys must not be null. For proper behavior, the keys
must be immutable (e.g. java.lang.String, java.lang.Integer, etc.) or the keys’
identity (to the extent that it modifies the behavior of equals and hashCode methods) must
not change while a user object is associated with the key. This behavior is not enforced by
the PersistenceManager.

Object putUserObject(Object key, Object value);

This method models the put method of Map. The current value associated with the key is
returned and replaced by the parameter value. If the parameter value is null, the imple-
mentation may remove the entry from the table of managed key/value pairs.

Object removeUserObject(Object key);

This method models the remove method of Map. The current value associated with the
key is returned and removed.

Object getUserObject(Object key);

This method models the get method of Map. The current value associated with the key is
returned. If the key is not found in the table, null is returned.

12.12 PersistenceManagerFactory

The application might need to get the PersistenceManagerFactory that created this
PersistenceManager. If the PersistenceManager was created using a construc-
tor, then this call returns null.

PersistenceManagerFactory getPersistenceManagerFactory();This
methos returns the PersistenceManagerFactory that created this PersistenceM-
anager.

12.13 ObjectId class management

In order for the application to construct instances of the ObjectId class, there is a method
that returns the ObjectId class given the persistence capable class.

Class getObjectIdClass (Class pcClass);

This method returns the class of the object id for the given class. This method returns the
class specified by the application for persistence capable classes that use application (pri-
mary key) JDO identity. It returns the implementation-defined class for persistence-capa-
ble classes that use datastore identity. If the parameter class is not persistence-capable, or
 JDO 2.0 131 February 28, 2006

Java Data Objects 2.0
the parameter is null, null is returned. If the object-id class defined in the metadata for
the parameter class is abstract then null is returned.

If the implementation does not support application identity, and the class is defined in the
jdo metadata to use application identity, then null is returned.

Object newObjectIdInstance (Class pcClass, Object key);

This method returns an object id instance corresponding to the pcClass and key argu-
ments. A String argument might have been the result of executing toString on an ob-
ject id instance. The key argument is the value of the key field for single field identity.

This method is portable for datastore identity and application identity.

12.14 Sequence

The JDO metadata defines named sequence value object generators, or simply, sequences.
A sequence implements the javax.jdo.datastore.Sequence interface.

The behavior of the sequence with regard to transactions and rolling over maximum val-
ues is specified in the metadata.

Note that there is no portable way for a user-defined sequence to implement the Se-
quence interface. In particular, the getName method might not return the name of the se-
quence, and the transactional behavior of the sequence as specified by the user in metadata
might not be implemented. A future version of the specification might add a sequence fac-
tory spi to enable portable user-defined sequences.

The PersistenceManager provides a method to retrieve a Sequence by name.

Sequence getSequence(String name);

If the named sequence does not exist, JDOUserException is thrown.

The name is the scoped name of the sequence , which uses the standard Java package nam-
ing. For example, a sequence might be named “com.acme.hr.EmployeeSequence”.

package javax.jdo.datastore;

public interface Sequence {

String getName();

This method returns the fully qualified name of the Sequence.

Object next();

This method returns the next sequence value object. The sequence might be protected by
transactional semantics, in which case the sequence value object will be reused if the trans-
action in which the sequence value object was obtained rolls back.

void allocate(int additional);

This method is a hint to the implementation that the application needs the additional num-
ber of sequence value objects in short order. There is no externally visible behavior of this
method. It is used to potentially improve the efficiency of the algorithm of obtaining addi-
tional sequence value objects.

Object current();

This method returns the current sequence value object if it is available. It is intended to re-
turn a sequence value object previously used The implementation might choose to return
null for all cases or for any cases where a current sequence value object is not available.

long nextValue();
 JDO 2.0 132 February 28, 2006

Java Data Objects 2.0
This method returns the next sequence value as a long if it is available and able to be con-
verted to a number. It is equivalent to ((Long)next()).longValue().

long currentValue();

This method returns the current sequence value as a long if it is available and able to be
converted to a number. It is equivalent to ((Long)current()).longValue().

}

12.15 Life-cycle callbacks

In order to minimize the impact on domain classes, the instance callbacks can be defined
to use a life-cycle listener pattern instead of having the domain class implement the call-
back interface(s).

package javax.jdo.listener;

public interface InstanceLifecycleListener {

}

public interface CreateLifecycleListener

extends InstanceLifecycleListener {

void postCreate(InstanceLifecycleEvent event);

}

This method is called whenever a persistent instance is created, during makePersis-
tent. It is called after the instance transitions to persistent-new.

package javax.jdo.listener;

public interface LoadLifecycleListener

extends InstanceLifecycleListener {

void postLoad(InstanceLifecycleEvent event);

}

This method is called whenever a persistent instance is loaded. It is called after the
jdoPostLoad method is invoked on the instance.

package javax.jdo.listener;

public interface StoreLifecycleListener

extends InstanceLifecycleListener {

void preStore(InstanceLifecycleEvent event);

}

This method is called whenever a persistent instance is stored, for example during flush or
commit. It is called before the jdoPreStore method is invoked on the instance. An object
identity for a persistent-new instance might not have been assigned to the instance when
this callback is invoked.

void postStore(InstanceLifecycleEvent event);

}

This method is called whenever a persistent instance is stored, for example during flush or
commit. It is called after the jdoPreStore method is invoked on the instance. An object
identity for a persistent-new instance must have been assigned to the instance when this
callback is invoked.
 JDO 2.0 133 February 28, 2006

Java Data Objects 2.0
package javax.jdo.listener;

public interface ClearLifecycleListener

extends InstanceLifecycleListener {

void preClear(InstanceLifecycleEvent event);

}

This method is called whenever a persistent instance is cleared, for example during af-
terCompletion. It is called before the jdoPreClear method is invoked on the instance.

void postClear(InstanceLifecycleEvent event);

This method is called whenever a persistent instance is cleared, for example during af-
terCompletion. It is called after the jdoPreClear method is invoked on the instance
and the fields have been cleared by the JDO implementation.

package javax.jdo.listener;

public interface DeleteLifecycleListener

extends InstanceLifecycleListener {

void preDelete(InstanceLifecycleEvent event);

This method is called whenever a persistent instance is deleted, during deletePersis-
tent. It is called before the state transition and before the jdoPreDelete method is in-
voked on the instance.

void postDelete(InstanceLifecycleEvent event);

}

This method is called whenever a persistent instance is deleted, during deletePersis-
tent. It is called after the jdoPreDelete method is invoked on the instance and after the
state transition.

package javax.jdo.listener;

public interface DirtyLifecycleListener

extends InstanceLifecycleListener {

void preDirty(InstanceLifecycleEvent event);

}

This method is called whenever a persistent clean instance is first made dirty, during an
operation that modifies the value of a persistent or transactional field. It is called before the
field value is changed. During this method, the instance responds false to isDirty.
During this method, fields in the source instance and others might be changed, but this
method will only be invoked once until the instance is no longer dirty.

void postDirty(InstanceLifecycleEvent event);

}

This method is called whenever a persistent clean instance is first made dirty, during an
operation that modifies the value of a persistent or transactional field. It is called after the
field value was changed. During this method, the instance responds true to isDirty.
During this method, fields in the source instance and others might be changed, but this
method will only be invoked once until the instance is no longer dirty.

package javax.jdo.listener;

public interface DetachLifecycleListener

extends InstanceLifecycleListener {
 JDO 2.0 134 February 28, 2006

Java Data Objects 2.0
void preDetach(InstanceLifecycleEvent event);

}

This method is called before a persistent instance is copied for detachment. It is called be-
fore the jdoPreDetach callback.

void postDetach(InstanceLifecycleEvent event);

}

This method is called whenever a persistent instance is copied for detachment. The source
instance is the detached copy; the target instance is the persistent instance. It is called after
the jdoPostDetach callback on the detached copy.

package javax.jdo.listener;

public interface AttachLifecycleListener

extends InstanceLifecycleListener {

void preAttach(InstanceLifecycleEvent event);

}

This method is called before a detached instance is attached, via the makePersistent
method. The source instance is the detached instance. This method is called before the cor-
responding jdoPreAttach on the detached instance.

void postAttach(InstanceLifecycleEvent event);

}

This method is called after a detached instance is attached. The source instance is the cor-
responding persistent instance in the cache; the target instance is the detached instance.
This method is called after the corresponding jdoPostAttach on the persistent instance.

InstanceLifecycleEvent

This class is provided as part of the javax.jdo.listener package.

Note that although InstanceLifecycleEvent inherits Serializable interface from
EventObject, it is not intended to be Serializable. Appropriate serialization meth-
ods are implemented to throw NotSerializableException.

package javax.jdo.listener;

public class InstanceLifecycleEvent

extends java.util.EventObject {

static final int CREATE = 0;

static final int LOAD = 1;

static final int STORE = 2;

static final int CLEAR = 3;

static final int DELETE = 4;

static final int DIRTY = 5;

static final int DETACH = 6;

static final int ATTACH = 7;

int getEventType();

This method returns the event type that triggered the event.

InstanceLifecycleEvent(int type, Object source);
 JDO 2.0 135 February 28, 2006

Java Data Objects 2.0
This constructor creates an instance with the type, and source object.

InstanceLifecycleEvent(int type, Object source, Object target);

This constructor creates an instance with the type, source, and target objects.

Object getSource();

This method returns the object for which the event was triggered. This method is inherited
from the EventObject class.

Object getTarget();

This method returns the “other” object associated with the event. Specifically, the target
object is the detached instance in the case of postAttach, and the persistent instance in
the case of postDetach. The target must be null for all other cases.

Object getPersistentInstance();

This method returns the persistent instance for which the event was triggered. This meth-
od is a convenience method that returns the source or target depending on the event.

Object getDetachedInstance();

This method returns the detached instance for which the event was triggered. This method
is a convenience method that returns the source or target depending on the event.

}

void addInstanceLifecycleListener (InstanceLifecycleListener lis-
tener, Class[] classes);

This PersistenceManager method adds the listener to the list of lifecycle event listen-
ers. The classes parameter identifies all of the classes of interest. If the classes parameter is
specified as null, events for all persistent classes and interfaces are generated. If the class-
es specified have persistence-capable subclasses, all such subclasses are registered implic-
itly.

The listener will be called for each event for which it implements the corresponding listen-
er interface.

void removeInstanceLifecycleListener (InstanceLifecycleListener
listener);

This PersistenceManager method removes the listener from the list of event listeners.

12.16 Access to internal datastore connection

In order for the application to perform some datastore-specific functions, such as to exe-
cute a query that is not directly supported by JDO, applications might need access to the
datastore connection used by the JDO implementation. This method returns a wrapped
connection that can be cast to the appropriate datastore connection and used by the appli-
cation.

The capability to get the datastore connection is indicated by the optional feature string
javax.jdo.option.GetDataStoreConnection.

package javax.jdo.datastore;

public interface JDOConnection {

Object getNativeConnection();

void close();

}

 JDO 2.0 136 February 28, 2006

Java Data Objects 2.0
JDOConnection getDataStoreConnection();

If this method is called while a datastore transaction is active, the object returned will be
enlisted in the current transaction. If called in an optimistic transaction before flush has
been called, or outside an active transaction, the object returned will not be enlisted in any
transaction.

The object must be returned to the JDO implementation prior to calling any JDO method
or performing any action on any persistent instance that might require the JDO implemen-
tation to use a connection. If the object has not been returned and the JDO implementation
needs a connection, a JDOUserException is thrown. The object is returned to the JDO
implementation by calling the standard method on the object.

For JDOR implementations

• the JDOConnection obtained by getDataStoreConnection implements
java.sql.Connection.

• The application returns a JDBC Connection to the JDO implementation by calling
its close() method.

SQL Portability

For portability, a JDBC-based JDO implementation will return an instance that imple-
ments java.sql.Connection. The instance will throw an exception for any of the fol-
lowing method calls: commit, getMetaData, releaseSavepoint, rollback, setAutoCommit,
setCatalog, setHoldability, setReadOnly, setSavepoint, setTransactionIsolation, and set-
TypeMap.
 JDO 2.0 137 February 28, 2006

Java Data Objects 2.0
13 Transactions and Connections

This chapter describes the interactions among JDO instances, JDO Persistence Managers,
datastore transactions, and datastore connections.

13.1 Overview

Operations on persistent JDO instances at the user’s choice might be performed in the con-
text of a transaction. That is, the view of data in the datastore is transactionally consistent,
according to the standard definition of ACID transactions:

• atomic --within a transaction, changes to values in JDO instances are all executed
or none is executed

• consistent -- changes to values in JDO instances are consistent with changes to
other values in the same JDO instance

• isolated -- changes to values in JDO instances are isolated from changes to the
same JDO instances in different transactions

• durable -- changes to values in JDO instances survive the end of the VM in which
the changes were made

13.2 Goals

The JDO transaction and connection contracts have the following goals.

• JDO implementations might span a range of small, embedded systems to large,
enterprise systems

• Transaction management might be entirely hidden from class developers and
application components, or might be explicitly exposed to class and application
component developers.

13.3 Architecture: PersistenceManager, Transactions, and Connections

An instance of an object supporting the PersistenceManager interface represents a
single user’s view of persistent data, including cached persistent instances across multiple
serial datastore transactions.

There is a one-to-one relationship between the PersistenceManager and the Trans-
action. The Transaction interface is isolated because of separation of concerns. The
methods could have been added to the PersistenceManager interface.

The javax.jdo.Transaction interface provides for management of transaction op-
tions and, in the non-managed environment, for transaction completion. It is similar in
functionality to javax.transaction.UserTransaction. That is, it contains begin,
commit, and rollback methods used to delimit transactions.
 JDO 2.0 138 February 28, 2006

Java Data Objects 2.0
Connection Management Scenarios

• single connection: In the simplest case, the PersistenceManager directly connects
to the datastore and manages transactional data. In this case, there is no reason to
expose any Connection properties other than those needed to identify the user and
the data source. During transaction processing, the Connection will be used to
satisfy data read, write, and transaction completion requests from the
PersistenceManager.

• connection pooling: In a slightly more complex situation, the
PersistenceManagerFactory creates multiple PersistenceManager
instances which use connection pooling to reduce resource consumption. The
PersistenceManagers are used in single datastore transactions. In this case, a
pooling connection manager is a separate component used by the
PersistenceManager instances to effect the pooling of connections. The
PersistenceManagerFactory will include a reference to the connection
pooling component, either as a JNDI name or as an object reference. The
connection pooling component is separately configured, and the
PersistenceManagerFactory simply needs to be configured to use it.

• distributed transactions: An even more complex case is where the
PersistenceManager instances need to use connections that are involved in
distributed transactions. This case requires coordination with a Transaction
Manager, and exposure of the XAResource from the datastore Connection. JDO
does not specify how the application coordinates transactions among the
PersistenceManager and the Transaction Manager.

• managed connections: The last case to consider is the managed environment,
where the PersistenceManagerFactory uses a datastore Connection whose
transaction completion is managed by the application server. This case requires
the datastore Connection to implement the J2EE Connector Architecture and the
PersistenceManager to use the architected interfaces to obtain a reference to a
Connection.

The interface between the JDO implementation and the Connection component is not
specified by JDO. In the non-managed environment, transaction completion is handled by
the Connection managed internally by the Transaction. In the managed environment,
transaction completion is handled by the XAResource associated with the Connection.
In both cases, the PersistenceManager implementation is responsible for setting up
the appropriate interface to the Connection infrastructure.

Native Connection Management

If the JDO implementation supplies its own resource adapter implementation, this is
termed native connection management. For use in a managed environment, the associa-
tion between Transaction and Connection must be established using the J2EE Connec-
tor Architecture [see Appendix A reference 4]. This is done by the JDO implementation
implementing the javax.resource.ManagedConnectionFactory interface.

When used in a non-managed environment, with non-distributed transaction manage-
ment (local transactions) the application can use the PersistenceManagerFactory.
But if distributed transaction management is required, the application needs to supply an
implementation of javax.resource.ManagedConnectionFactory interface. This
interface provides the infrastructure to enlist the XAResource with the Transaction Man-
ager used in the application.
 JDO 2.0 139 February 28, 2006

Java Data Objects 2.0
Non-native Connection Management

If the JDO implementation uses a third party Connection interface, then it can be used in
a managed environment only if the third party Connection supports the J2EE Connector
Architecture. In this case, the PersistenceManagerFactory property Connec-
tionFactory is used to allow the application server to manage connections.

In the non-managed case, non-distributed transaction management can use the Persis-
tenceManagerFactory, as above. But if distributed transaction management is re-
quired, the application needs to supply an implementation of
javax.resource.ConnectionManager interface to be used with the application’s
implementation of the Connection management.

Optimistic Transactions

There are two types of transaction management strategies supported by JDO: “datastore
transaction management”; and “optimistic transaction management”.

With datastore transaction management, all operations performed by the application on
persistent data are done using a datastore transaction. This means that between the first
data access until the commit, there is an active datastore transaction.

With optimistic transaction management, operations performed by the application on per-
sistent data outside a transaction or before commit are done using a short local datastore
transaction. During flush, a datastore transaction is used for the update operations, veri-
fying that the proposed changes do not conflict with a parallel update by a different trans-
action.

Optimistic transaction management is specified by the Optimistic setting on Trans-
action.

Figure 16.0 Transactions and Connections

JDO PersistenceManager

JDO PersistenceManager

Application
Transaction

Connection

Connection

XAResource

XAResource

JDO instance
JDO instance

JDO instance
JDO instance

JDO instance
JDO instance

JDO instance
JDO instance

Manager

Transaction

Transaction

Transaction Option

Transaction
Completion

Methods

Methods
 JDO 2.0 140 February 28, 2006

Java Data Objects 2.0
13.4 Interface Transaction

package javax.jdo;

public interface Transaction {

13.4.1 PersistenceManager

PersistenceManager getPersistenceManager ();

This method returns the PersistenceManager associated with this Transaction in-
stance.

boolean isActive ();

This method tells whether there is an active transaction. The transaction might be either a
local transaction or a distributed transaction. If the transaction is local, then a return value
of true means that the begin method was executed and neither commit nor rollback
has been executed. If the transaction is managed by XAResource with a Transaction-
Manager, then this method indicates whether there is a distributed transaction active.

This method returns true after the transaction has been started, until before the after-
Completion synchronization method is called. The method returns false during af-
terCompletion.

13.4.2 Transaction options

Transaction options are valid for both managed and non-managed environments. Flags
are durable until changed explicitly by set methods. They are not changed by transaction
demarcation methods.

If any of the set methods is called during commit or rollback processing (within the be-
foreCompletion synchronization method), a JDOUserException is thrown. These
methods can be called during afterCompletion processing.

If an implementation does not support the option, then an attempt to set the flag to an un-
supported value will throw JDOUnsupportedOptionException.

Nontransactional access to persistent values

boolean getNontransactionalRead ();

void setNontransactionalRead (boolean flag);

These methods access the flag that allows persistent instances to be read outside a transac-
tion. If this flag is set to true, then queries and read access (including navigation) are al-
lowed without an active transaction. If this flag is set to false, then queries and non-
primary key field read access (including navigation) outside an active transaction throw a
JDOUserException.

boolean getNontransactionalWrite ();

void setNontransactionalWrite (boolean flag);

These methods access the flag that allows non-transactional instances to be written in the
cache. If this flag is set to true, then updates to non-transactional instances are allowed
without an active transaction. If this flag is set to false, then updates to non-transactional
instances outside an active transaction throw a JDOUserException.

Optimistic concurrency control

If this flag is set to true, then optimistic concurrency is used for managing transactions.
 JDO 2.0 141 February 28, 2006

Java Data Objects 2.0
boolean getOptimistic ();

The optimistic setting currently active is returned.

void setOptimistic (boolean flag);

The optimistic setting passed replaces the optimistic setting currently active.

Retain values at transaction commit

If this flag is set to true, then eviction of transactional persistent instances does not take
place at transaction commit. If this flag is set to false, then eviction of transactional per-
sistent instances takes place at transaction commit.

This flag is only used if the PersistenceManager DetachAllOnCommit flag is false.

boolean getRetainValues ();

The retainValues setting currently active is returned.

void setRetainValues (boolean flag);

The retainValues setting passed replaces the retainValues setting currently active.

Restore values at transaction rollback

If this flag is set to true, then restoration of transactional persistent instances takes place
at transaction rollback. If this flag is set to false, then eviction of transactional persistent
instances takes place at transaction rollback.

boolean getRestoreValues ();

The restoreValues setting currently active is returned.

void setRestoreValues (boolean flag);

The restoreValues setting passed replaces the restoreValues setting currently ac-
tive.

13.4.3 Synchronization

The Transaction instance participates in synchronization in two ways: as a supplier of
synchronization callbacks, and as a consumer of callbacks. As a supplier of callbacks, a
user can register with the Transaction instance to be notified at transaction completion.
As a consumer of callbacks, the Transaction implementation will use the proprietary
interfaces of the managed environment to be notified of externally-initiated transaction
completion events. In a managed environment, this notification is used to cause flushing
of changes to the datastore as part of transaction completion.

For this latter purpose, the JDO implementation class might implement javax.trans-
action.Synchronization or might use a delegate to be notified.

Synchronization is supported for both managed and non-managed environments. A Syn-
chronization instance registered with the Transaction remains registered until
changed explicitly by another setSynchronization.

Only one Synchronization instance can be registered with the Transaction. If the
application requires more than one instance to receive synchronization callbacks, then the
application instance is responsible for managing them, and forwarding callbacks to them.

void setSynchronization (javax.transaction.Synchronization
sync);

The Synchronization instance is registered with the Transaction for transaction
completion notifications. Any Synchronization instance already registered will be re-
 JDO 2.0 142 February 28, 2006

Java Data Objects 2.0
placed. If the parameter is null, then no instance will be notified. If this method is called
during commit processing (within the user’s beforeCompletion or afterComple-
tion method), a JDOUserException is thrown.

The two Synchronization methods allow the application control over the environ-
ment in which the transaction completion executes (for example, validate the state of the
cache before completion) and to control the cache disposition once the transaction com-
pletes (for example, to change persistent instances to persistent-nontransactional state).

The beforeCompletion method will be called during the behavior specified for the
transaction completion method commit. The beforeCompletion method will not be
called before rollback.

During transaction completion, the environment calls the jdo implementation’s before-
Completion method, which in turn calls the user’s beforeCompletion method reg-
istered by the setSynchronization method.

During the user’s beforeCompletion method, fields in persistent and transactional in-
stances might be changed, persistent instances might be deleted, and instances might be
made persistent. These changes will be reflected in the current transaction.

After the user’s beforeCompletion method completes, the jdo implementation flushes
the cache to the datastore. During flush, life cycle methods declared in the persistence-ca-
pable classes are called back, as well as methods on instances registered with the Persis-
tenceManager via addInstanceLifecycleListener.

After transaction completion, the environment calls the jdo implementation’s afterCom-
pletion method, which performs state transitions of the instances in the cache. During
these state transitions, life cycle methods declared in the persistence-capable classes are
called back, as well as methods on instances registered with the PersistenceManager
via addInstanceLifecycleListener. Subsequently, the jdo implementation calls the
user’s afterCompletion method registered by the setSynchronization method.
The parameter for the afterCompletion(int status) method will be either jav-
ax.transaction.Status.STATUS_COMMITTED or javax.transaction.Sta-
tus.STATUS_ROLLEDBACK.

javax.transaction.Synchronization getSynchronization ();

This method returns the Synchronization currently registered.

13.4.4 Transaction demarcation

If multiple parallel transactions are required, then multiple PersistenceManager in-
stances must be used. If distributed transactions are required, then the Connector Archi-
tecture is used to coordinate transactions among the JDO PersistenceManagers.

Non-managed environment

In a non-managed environment, with a single JDO PersistenceManager per applica-
tion, there is a Transaction instance representing a local transaction associated with the
PersistenceManager instance.

void begin();

void commit();

void rollback();

The begin, commit, and rollback methods can be used only in a non-managed envi-
ronment, or in a managed environment with Bean Managed Transactions. If one of these
 JDO 2.0 143 February 28, 2006

Java Data Objects 2.0
methods is executed in a managed environment with Container Managed Transactions, a
JDOUserException is thrown.

If commit or rollback is called when a transaction is not active, JDOUserException is
thrown. If begin is called when a transction is active, JDOUserException is thrown.

The commit method performs the following operations:

• calls the beforeCompletion method of the Synchronization instance
registered with the Transaction;

• flushes dirty persistent instances;

• notifies the underlying datastore to commit the transaction;

• transitions persistent instances according to the life cycle specification;

• calls the afterCompletion method of the Synchronization instance
registered with the Transaction with the results of the datastore commit
operation.

The rollback method performs the following operations:

• rolls back changes made in this transaction from the datastore;

• transitions persistent instances according to the life cycle specification;

• calls the afterCompletion method of the Synchronization instance
registered with the Transaction.

Managed environment

In a managed environment, there is either a user transaction or a local transaction associ-
ated with the PersistenceManager instance when executing method calls on JDO in-
stances or on the PersistenceManager. Which of the two types of transactions is
active is a policy issue for the managed environment.

If datastore transaction management is being used with the PersistenceManager in-
stance, and a Connection to the datastore is required during execution of the Persis-
tenceManager or JDO instance method, then the PersistenceManager will
dynamically acquire a Connection. The call to acquire the Connection will be made with
the calling thread in the appropriate transactional context, and the Connection acquired
will be in the proper datastore transaction.

If optimistic transaction management is being used with the PersistenceManager in-
stance, and a Connection to the datastore is required during execution of an instance meth-
od or a non-completion PersistenceManager method, then the
PersistenceManager will use a local transaction Connection.

13.4.5 RollbackOnly

At times, a component needs to mark a transaction as failed even though that component
is not authorized to complete the transaction. In order to mark the transaction as unsuc-
cessful, and to determine if a transaction has been so marked, two methods are used:

void setRollbackOnly();

boolean getRollbackOnly();

Either the user application or the JDO implementation may call setRollbackOnly.
There is no way for the application to determine explicitly which component called the
method.
 JDO 2.0 144 February 28, 2006

Java Data Objects 2.0
Once a transaction has been marked for rollback via setRollbackOnly, the commit
method will always fail with JDOFatalDataStoreException. The JDO implementa-
tion must not try to make any changes to the database during commit when the transaction
has been marked for rollback.

When a transaction is not active, and after a transaction is begun, getRollbackOnly
will return false. Once setRollbackOnly has been called, it will return true until
commit or rollback is called.

13.5 Optimistic transaction management

Optimistic transactions are an optional feature of a JDO implementation. They are useful
when there are long-running transactions that rarely affect the same instances, and there-
fore the datastore will exhibit better performance by deferring datastore exclusion on
modified instances until commit.

In the following discussion, “transactional datastore context” refers to the transaction con-
text of the underlying datastore, while “transaction”, “datastore transaction”, and “opti-
mistic transaction” refer to the JDO transaction concepts.

With datastore transactions, persistent instances accessed within the scope of an active
transaction are guaranteed to be associated with the transactional datastore context. With
optimistic transactions, persistent instances accessed within the scope of an active transac-
tion are not associated with the transactional datastore context; the only time any instances
are associated with the transactional datastore context is during commit.

With optimistic transactions, instances queried or read from the datastore will not be
transactional unless they are modified, deleted, or marked by the application as transac-
tional. At commit time, the JDO implementation:

• establishes a transactional datastore context in which verification, insert, delete,
and updates will take place.

• calls the beforeCompletion method of the Synchronization instance
registered with the Transaction;

• verifies unmodified instances that have been made transactional, to ensure that the
state in the datastore is the same as the instance used in the transaction [this is done
using a JDO implementation-specific algorithm];

• verifies modified and deleted instances during flushing to the datastore, to ensure
that the state in the datastore is the same as the before image of the instance that
was modified or deleted by the transaction [this is done using a JDO
implementation-specific algorithm]

• If any instance fails the verification, a
JDOOptimisticVerificationException is thrown which contains an
array of JDOOptimisticVerificationException, one for each instance
that failed the verification. The optimistic transaction is failed, and the transaction
is rolled back. The definition of “changed instance” is a JDO implementation
choice, but it is required that a field that has been changed to different values in
different transactions results in one of the transactions failing.

• if verification succeeds, notifies the underlying datastore to commit the
transaction;
 JDO 2.0 145 February 28, 2006

Java Data Objects 2.0
• transitions persistent instances according to the life cycle specification, based on
whether the transaction succeeds and the setting of the RetainValues and
RestoreValues flags;

• calls the afterCompletion method of the Synchronization instance
registered with the Transaction with the results of the commit operation.

Details of the state transitions of persistent instances in optimistic transactions may be
found in section 5.8.
 JDO 2.0 146 February 28, 2006

Java Data Objects 2.0
14 Query

This chapter specifies the query contract between an application component and the JDO
PersistenceManager.

The query facility consists of two parts: the query API, and the query language. This chap-
ter specifies the query language “JDOQL”, and includes conventions for the use of “SQL”
as the language for JDO implementations using a relational store.

14.1 Overview

An application component requires access to JDO instances so it can invoke specific behav-
ior on those instances. From a JDO instance, it might navigate to other associated instances,
thereby operating on an application-specific closure of instances.

However, getting to the first JDO instance is a bootstrap issue. There are three ways to get
an instance from JDO. First, if the users have or can construct a valid ObjectId, then they
can get an instance via the persistence manager’s getObjectById method. Second, us-
ers can iterate a class extent by calling getExtent. Third, the JDO Query interface pro-
vides the ability to acquire access to JDO instances from a particular JDO persistence
manager based on search criteria specified by the application.

The persistent manager instance is a factory for query instances, and queries are executed
in the context of the persistent manager instance.

The actual query execution might be performed by the JDO PersistenceManager or
might be delegated by the JDO PersistenceManager to its datastore. The actual query
executed thus might be implemented in a very different language from Java, and might be
optimized to take advantage of particular query language implementations.

For this reason, methods in the query filter have semantics possibly different from those
in the Java VM.

14.2 Goals

The JDO Query interface has the following goals:

• Query language neutrality. The underlying query language might be a relational
query language such as SQL; an object database query language such as OQL; or
a specialized API to a hierarchical database or mainframe EIS system.

• Optimization to specific query language. The Query interface must be capable of
optimizations; therefore, the interface must have enough user-specified
information to allow for the JDO implementation to exploit data source specific
query features.

• Accommodation of multi-tier architectures. Queries might be executed entirely in
memory, or might be delegated to a back end query engine. The JDO Query
interface must provide for both types of query execution strategies.
 JDO 2.0 147 February 28, 2006

Java Data Objects 2.0
• Large result set support. Queries might return massive numbers of JDO instances
that match the query. The JDO Query architecture must provide for processing
the results within the resource constraints of the execution environment.

• Compiled query support. Parsing queries may be resource-intensive, and in many
applications can be done during application development or deployment, prior to
execution time. The query interface allows for compiling queries and binding run-
time parameters to the bound queries for execution.

• Deletion by query. Deleting multiple instances in the datastore can be done
efficiently if specified as a query method instead of instantiating all persistent
instances and calling the deletePersistent method on them.

14.3 Architecture: Query

The JDO PersistenceManager instance is a factory for JDO Query instances, which
implement the JDO Query interface. Multiple JDO Query instances might be active si-
multaneously in the same JDO PersistenceManager instance. Multiple queries might
be executed simultaneously by different threads, but the implementation might choose to
execute them serially. In either case, the execution must be thread safe.

There are three required elements in any query:

• the class of the candidate instances. The class is used to scope the names in the
query filter. All of the candidate instances are of this class or a subclass of this class.
If the class is not explicitly passed to the query, it is obtained from the Extent.

• the collection of candidate JDO instances. The collection of candidate instances is
either a java.util.Collection, or an Extent of instances in the datastore.
Instances that are not of the required class or subclass will be silently ignored. The
Collection might be a previous query result, allowing for subqueries. If the
collection is not explicitly passed to the query, then it is obtained from the class.

• the query filter. The query filter is a Java boolean expression that tells whether
instances in the candidate collection are to be returned in the result. If not
specified, the filter defaults to true.

Other elements in queries include:

• parameter declarations. The parameter declaration is a String containing one or
more query parameter declarations separated with commas. It follows the syntax
for formal parameters in the Java language. Each parameter named in the
parameter declaration must be bound to a value when the query is executed.

• parameter values to bind to parameters. Values are specified as Java Objects,
and might include simple wrapper types or more complex object types. The values
are passed to the execute methods and are not preserved after a query executes.

• variable declarations: Variables might be used in the filter, and these variables
must be declared with their type. The variable declaration is a String containing
one or more variable declarations. Each declaration consists of a type and a
variable name, with declarations separated by a semicolon if there are two or more
declarations. It is similar to the syntax for local variables in the Java language.
 JDO 2.0 148 February 28, 2006

Java Data Objects 2.0
• import statements: Parameters and variables might come from a different class
from the candidate class, and the names might need to be declared in an import
statement to eliminate ambiguity. Import statements are specified as a String
with semicolon-separated statements. The syntax is the same as in the Java
language import statement.

• ordering specification. The ordering specification includes a list of expressions
with the ascending/descending indicator. To be portable, the expression’s type
must be one of:

• primitive types except boolean;
• wrapper types except Boolean;
• BigDecimal;
• BigInteger;
• String;
• Date.

• result specification. The application might want to get results from a query that are
not instances of the candidate class. The results might be fields of persistent
instances, instances of classes other than the candidate class, or aggregates of
fields.

• grouping specification. Aggregates are most useful when the application can
specify the result field by which to group the results.

• uniqueness. The application can specify that the result of a query is unique, and
therefore a single value instead of a Collection should be returned from the
query.

• result class. The application may have a user-defined class that best represents the
results of a query. In this case, the application can specify that instances of this
class should be returned.

• limiting the size of the results. The application might want to limit the number of
instances returned by the query, and might want to skip over some number of
instances that might have been returned previously.

The class implementing the Query interface must be serializable. The serialized fields in-
clude the candidate class, the filter, parameter declarations, variable declarations, imports,
ordering specification, uniqueness, result specification, grouping specification, and result
class. The candidate collection, limits on size, and number of skipped instances are not se-
rialized. If a serialized instance is restored, it loses its association with its former Persis-
tenceManager.

14.4 Namespaces in queries

The query namespace is modeled after methods in Java:

• setClass corresponds to the class definition

• declareParameters corresponds to formal parameters of a method

• declareVariables corresponds to local variables of a method

• setFilter, setGrouping, setOrdering, and setResult correspond to
the method body and do not introduce names to the namespace

There are two namespaces in queries. Type names have their own namespace that is sep-
arate from the namespace for fields, variables and parameters.
 JDO 2.0 149 February 28, 2006

Java Data Objects 2.0
Keywords

Keywords must not be used as package names, class names, parameter names, or variable
names in queries. Keywords are permitted as field names only if they are on the right side
of the “.” in field access expressions as defined in the Java Language Specification second
edition, section 15.11. Keywords include the Java language keywords and the JDOQL key-
words. Java keywords are as defined in the Java language specification section 3.9, plus the
boolean literals true and false, and the null literal. JDOQL keywords are the following:

select, SELECT, unique, UNIQUE, distinct, DISTINCT, avg, AVG, min, MIN, max, MAX,
count, COUNT, sum, SUM, as, AS, into, INTO, from, FROM, exclude, EXCLUDE, sub-
classes, SUBCLASSES, where, WHERE, order, ORDER, by, BY, ascending, ASCENDING,
asc, ASC, descending, DESCENDING, desc, DESC, group, GROUP, having, HAVING, pa-
rameters, PARAMETERS, variables, VARIABLES, range, RANGE.

The method setClass introduces the name of the candidate class in the type namespace.
The method declareImports introduces the names of the imported class or interface
types in the type namespace. When used (e.g. in a parameter declaration, cast expression,
etc.) a type name must be the name of the candidate class, the name of a class or interface
imported by the parameter to declareImports, denote a class or interface from the
same package as the candidate class, or must be declared by exactly one type-import-on-
demand declaration (“import <package>.*;“). It is valid to specify the same import
multiple times.

The names of the public types declared in the packages java.lang and javax.jdo are
automatically imported as if the declaration “import java.lang.*; import jav-
ax.jdo.*;” appeared in declareImports. It is a JDOQL-compile time error (report-
ed during compile or execute methods) if a used type name is declared by more than
one type-import-on-demand declaration.

The method setClass also introduces the names of the candidate class fields.

The method declareParameters introduces the names of the parameters. A name in
the filter preceded by “:” has the same effect. A parameter name hides the name of a can-
didate class field if equal. Parameter names must be unique.

The method declareVariables introduces the names of variables. A name introduced
by declareVariables hides the name of a candidate class field if equal. Variable
names must be unique and must not conflict with parameter names. A name in the filter
that is not a parameter name or a field name is implicitly a variable name.

A hidden field may be accessed using the this qualifier: this.fieldName.

14.5 Query Factory in PersistenceManager interface

The PersistenceManager interface contains Query factory methods.

Query newQuery();

Construct a new empty query instance.

Query newQuery (Object query);

Construct a new query instance from another query instance. JDO implementations must
support a serialized/restored Query instance from the same JDO vendor but a different
execution environment, a query instance currently bound to the same PersistenceM-
anager, and a query instance currently bound to a PersistenceManager from the
same JDO vendor. Any of the elements Class, QueryString, IgnoreCache flag, Result, Re-
sultClass, Import declarations, Variable declarations, Parameter declarations, Grouping,
 JDO 2.0 150 February 28, 2006

Java Data Objects 2.0
and Ordering from the parameter Query are copied to the new Query instance, but a can-
didate Collection or Extent element is discarded.

Query newQuery (String queryString);

Construct a new query instance using the specified String as the single-string repre-
sentation of the query [see section 14.6.13].

Query newQuery (String language, Object query);

Construct a new query instance using the specified language and the specified query. The
query instance will be of a class defined by the query language. The language parameter
for the JDO Query language as herein documented is “javax.jdo.query.JDOQL”. In
this case, the parameter is a String representing the single-string version of the query
[see section 14.6.13].

For use with SQL, the language parameter is “javax.jdo.query.SQL” and the query
parameter is a String containing the SQL query [see section 14.7]. Other languages’ pa-
rameter is not specified.

Query newQuery (Class cls);

Construct a new query instance with the candidate class specified.

Query newQuery (Extent cln);

Construct a new query instance with the candidate Extent specified; the candidate class
is taken from the Extent.

Query newQuery (Class cls, Collection cln);

Construct a new query instance with the candidate class and candidate Collection
specified.

Query newQuery (Class cls, String queryString);

Construct a new query instance with the candidate class and query string specified.The
query string parameter might be the filter or the single string representing the query [see
section 14.6.13].

Query newQuery (Class cls, Collection cln, String queryString);

Construct a query instance with the candidate class, the candidate Collection, and que-
ry string specified.The query string parameter might be the filter or the single string rep-
resenting the query [see section 14.6.13].

Query newQuery (Extent cln, String queryString);

Construct a new query instance with the candidate Extent and query string specified; the
candidate class is taken from the Extent.The query string parameter might be the filter
or the single string representing the query [see section 14.6.13].

Query newNamedQuery (Class cls, String queryName);

Construct a new query instance with the given candidate class from a named query. The
query name given must be the name of a query defined in metadata. The metadata is
searched for the specified name. The extent, including subclasses, is the default for the can-
didate collection.

If the named query is not found in already-loaded metadata, the query is searched for us-
ing an algorithm. Files containing metadata are examined in turn until the query is found.
The order is based on the metadata search order for class metadata, but includes files
named based on the class name.
 JDO 2.0 151 February 28, 2006

Java Data Objects 2.0
The file search order for a query scoped to class com.sun.nb.Bar is: META-INF/pack-
age.jdo, WEB-INF/package.jdo, package.jdo, com/package.jdo, com/sun/package.jdo,
com/sun/nb/package.jdo, com/sun/nb/Bar.jdo. Once metadata for the class is found,
no more .jdo files will be examined for the class.

If the metadata is not found in the above, and there is a property in the PersistenceMan-
agerFactory javax.jdo.option.Mapping=mySQL, then the folowing files are searched:
META-INF/package-mySQL.orm, WEB-INF/package-mySQL.orm, package-
mySQL.orm, com/package-mySQL.orm, com/sun/package-mySQL.orm, com/sun/nb/
package-mySQL.orm, com/sun/nb/Bar-mySQL.orm. Once mapping metadata for the
class is found, no more .orm files will be examined for the class.

If metadata is not found in the above, then the following files are searched: META-INF/
package.jdoquery, WEB-INF/package.jdoquery, package.jdoquery, com/pack-
age.jdoquery, com/sun/package.jdoquery, com/sun/nb/package.jdoquery, com/sun/
nb/Bar.jdoquery. Once the query metadata is found, no more .jdoquery files will be exam-
ined for the query.

If the metadata for the named query is not found in the above, a JDOUserException is
thrown.

NOTE: If no class is provided as a parameter, the metadata must be in one of the top level
locations or must have already been processed during loading of metadata for a class or
interface whose metadata has been loaded.

This resource name is loaded by one of the three class loaders used to resolve resource
names (see Section 12.5). The loaded resource must contain the metadata definition of the
query name. The schema for the loaded resource is the same as for the .jdo file.

If the unmodifiable attribute is specified as or defaults to “false”, then the Query in-
stance returned from this method can be modified by the application, just like any other
Query instance.

Named queries must be compilable. Attempts to get a named query that cannot be com-
piled result in JDOUserException.

14.6 Query Interface

package javax.jdo;

public interface Query extends Serializable {

String JDOQL = “javax.jdo.query.JDOQL”;

String SQL = “javax.jdo.query.SQL”;

Persistence Manager

PersistenceManager getPersistenceManager();

Return the associated PersistenceManager instance. If this Query instance was re-
stored from a serialized form, then null is returned.

Fetch Plan

FetchPlan getFetchPlan();

This method retrieves the fetch plan associated with the Query. It always returns the iden-
tical instance for the same Query instance. Any change made to the fetch plan affects sub-
sequent query execution. Fetch plan is described in Section 12.7.
 JDO 2.0 152 February 28, 2006

Java Data Objects 2.0
Query element binding

The Query interface provides methods to bind required and other elements prior to exe-
cution.

All of these methods replace the previously set query element, by the parameter. [The
methods are not additive.] For example, if multiple variables are needed in the query, all
of them must be specified in the same call to declareVariables.

void setClass (Class candidateClass);

Bind the candidate class to the query instance.

void setCandidates (Collection candidateCollection);

Bind the candidate Collection to the query instance. If the user adds or removes ele-
ments from the Collection after this call, it is not determined whether the added/re-
moved elements take part in the Query, or whether a NoSuchElementException is
thrown during execution of the Query.

For portability, the elements in the collection must be persistent instances associated with
the same PersistenceManager as the Query instance. An implementation might sup-
port transient instances in the collection. If persistent instances associated with another
PersistenceManager are in the collection, JDOUserException is thrown during
execute().

If the candidates are not specified explicitly by newQuery, setCandidates(Collec-
tion), or setCandidates(Extent), then the candidate extent is the extent of instances
of the candidate class in the datastore including subclasses. That is, the candidates are the
result of getPersistenceManager().getExtent(candidateClass, true).

void setCandidates (Extent candidateExtent);

Bind the candidate Extent to the query instance.

void setFilter (String filter);

Bind the query filter to the query instance.

void declareImports (String imports);

Bind the import statements to the query instance. All imports must be declared in the same
method call, and the imports must be separated by semicolons.

void declareVariables (String variables);

Bind the variable types and names to the query instance. This method defines the types
and names of variables that will be used in the filter but not provided as values by the ex-
ecute method.

void declareParameters (String parameters);

Bind the parameter statements to the query instance. This method defines the parameter
types and names that will be used by a subsequent execute method.

void setOrdering (String ordering);

Bind the ordering statements to the query instance.

void setResult (String result);

Specify the results of the query if not instances of the candidate class.

void setGrouping (String grouping);

Specify the grouping of results for aggregates.

void setUnique (boolean unique);
 JDO 2.0 153 February 28, 2006

Java Data Objects 2.0
Specify that there is a single result of the query.

void setResultClass (Class resultClass);

Specify the class to be used to return result instances.

setRange (long fromIncl, long toExcl);

setRange (String fromIncltoExcl);

Specify the number of instances to skip over and the maximum number of result instances
to return.

Query options

void setIgnoreCache (boolean flag);

boolean getIgnoreCache ();

The IgnoreCache option, when set to true, is a hint to the query engine that the user
expects queries be optimized to return approximate results by ignoring changed values in
the cache. This option is useful only for optimistic transactions and allows the datastore to
return results that do not take modified cached instances into account. An implementation
may choose to ignore the setting of this flag, and always return exact results reflecting cur-
rent cached values, as if the value of the flag were false.

Query modification

void setUnmodifiable();

boolean isUnmodifiable();

The Unmodifiable option, when set, disallows further modification of the query, except
for specifying the range, result class, and ignoreCache option.

Query evaluation

This discussion covers queries constructed by one of these methods: newQuery(String
singleStringQuery); newNamedQuery(Class candidateClass, String
namedQueryName); or newQuery(“javax.jdo.query.JDOQL”, Object sin-
gleStringQuery).

• the candidate class cannot be overridden via setClass except where there is
either an exact match of the name in the JDOQL query and the setClass
parameter, or where the FROM clause is missing from the query string in the
newQuery method.

• the single string query is first parsed to yield the result, result class, filter, variable
list, parameter list, import list, grouping, ordering, and range.

• then, the values specified in APIs setResult, setResultClass,
setFilter, declareVariables, declareParamters,
declareImports, setGrouping, setOrdering, and setRange override
the corresponding settings from the single string query.

Evaluation of implicit parameters and variable declarations is done after applying over-
rides from APIs.

Query compilation

The Query interface provides a method to compile queries for subsequent execution.

void compile();
 JDO 2.0 154 February 28, 2006

Java Data Objects 2.0
This method requires the Query instance to validate any elements bound to the query in-
stance and report any inconsistencies by throwing a JDOUserException. It is a hint to
the Query instance to prepare and optimize an execution plan for the query.

14.6.1 Query execution

The Query interface provides methods that execute the query based on the parameters
given. By default, they return an unmodifiable List which the user can iterate to get re-
sults. The user can specify the class of the result of executing a query. Executing any oper-
ation on the List that might change it throws UnsupportedOperationException.
The signature of the execute methods specifies that they return an Object that must be
cast to the proper type by the user.

Any parameters passed to the execute methods are used only for this execution, and are
not remembered for future execution.

For portability, parameters of persistence-capable types must be persistent or transaction-
al instances. Parameters that are persistent or transactional instances must be associated
with the same PersistenceManager as the Query instance. An implementation might
support transient instances of persistence-capable types as parameters, but this behavior
is not portable. If a persistent instance associated with another PersistenceManager
is passed as a parameter, JDOUserException is thrown during execute().

Queries may be constructed at any time before the PersistenceManager is closed, but
may be executed only at certain times. If the PersistenceManager that constructed the
Query is closed, then the execute methods throw JDOFatalUserException. If the
NontransactionalRead property is false, and a transaction is not active, then the
execute methods throw JDOUserException.

Object execute ();

Object execute (Object p1);

Object execute (Object p1, Object p2);

Object execute (Object p1, Object p2, Object p3);

The execute methods execute the query using the parameters and return the result,
which by default is an unmodifiable List of instances that satisfy the boolean filter. The
result may be a large List, which should be iterated or possibly passed to another Query.
The size() method returns Integer.MAX_VALUE if the actual size of the result is not
known (for example, the List represents a cursored result); if the size of the result equals
or exceeds Integer.MAX_VALUE; or if the range equals or exceeds Inte-
ger.MAX_VALUE.

When using an Extent to define candidate instances, the contents of the extent are subject
to the setting of the ignoreCache flag. With ignoreCache set to false:

• if instances were made persistent in the current transaction, the instances will be
considered part of the candidate instances.

• if instances were deleted in the current transaction, the instances will not be
considered part of the candidate instances.

• modified instances will be evaluated using their current transactional values.

With ignoreCache set to true:

• if instances were made persistent in the current transaction, the new instances
might not be considered part of the candidate instances.
 JDO 2.0 155 February 28, 2006

Java Data Objects 2.0
• if instances were deleted in the current transaction, the instances might or might
not be considered part of the candidate instances.

• modified instances might be evaluated using their current transactional values or
the values as they exist in the datastore, which might not reflect the current
transactional values.

Each parameter of the execute method(s) is an Object that is either the value of the cor-
responding parameter or the wrapped value of a primitive parameter. The parameters as-
sociate in order with the parameter declarations in the Query instance.

Object executeWithMap (Map parameters);

The executeWithMap method is similar to the execute method, but takes its parame-
ters from a Map instance. The Map contains key/value pairs, in which the key is the de-
clared parameter name, and the value is the value to use in the query for that parameter.
Unlike execute, there is no limit on the number of parameters.If implicit parameters are
used, the keys in the map do not include the leading “:”.

Object executeWithArray (Object[] parameters);

The executeWithArray method is similar to the execute method, but takes its pa-
rameters from an array instance. The array contains Objects, in which the positional Ob-
ject is the value to use in the query for that parameter. Unlike execute, there is no limit
on the number of parameters.

14.6.2 Filter specification

The filter specification is a String containing a boolean expression that is to be evaluated
for each of the instances in the candidate collection. If the filter is not specified, then it de-
faults to "true", and the input Collection is filtered only for class type.

An element of the candidate collection is returned in the result if:

• it is assignment compatible to the candidate Class of the Query; and

• for all variables there exists a value for which the filter expression evaluates to
true. The user may denote uniqueness in the filter expression by explicitly
declaring an expression (for example, e1 != e2). For example, a filter for a
Department where there exists an Employee with more than one dependent
and an Employee making more than 30,000 might be:
"(emps.contains(e1) & e1.dependents > 1) &
(emps.contains(e2) & e2.salary > 30000)". The same Employee
might satisfy both conditions. But if the query required that there be two different
Employees satisfying the two conditions, an additional expression could be
added: "(emps.contains(e1) & e1.dependents > 1) &
(emps.contains(e2) & (e2.salary > 30000 & e1 != e2))".

Rules for constructing valid expressions follow the Java language, except for these differ-
ences:

• Equality and ordering comparisons between primitives and instances of wrapper
classes are valid.

• Equality and ordering comparisons of Date fields and Date parameters are valid.

• Equality and ordering comparisons of String fields and String parameters are
valid. The comparison is done according to an ordering not specified by JDO. This
allows an implementation to order according to a datastore-specified ordering,
which might be locale-specific.
 JDO 2.0 156 February 28, 2006

Java Data Objects 2.0
• White space (non-printing characters space, tab, carriage return, and line feed) is a
separator and is otherwise ignored.

• The assignment operators =, +=, etc. and pre- and post-increment and -decrement
are not supported.

• Methods, including object construction, are not supported, except for
Collection, String, and Map methods documented below. Implementations
might choose to support non-mutating method calls as non-standard extensions.

• Navigation through a null-valued field, which would throw
NullPointerException, is treated as if the subexpression returned false.
Similarly, a failed cast operation, which would throw ClassCastException, is
treated as if the subexpression returned false. Other subexpressions or other
values for variables might still qualify the candidate instance for inclusion in the
result set.

• Navigation through multi-valued fields (Collection types) is specified using a
variable declaration and the Collection.contains(Object o) method.

• The following literals are supported, as described in the Java Language
Specification: IntegerLiteral, FloatingPointLiteral,
BooleanLiteral, CharacterLiteral, StringLiteral, and
NullLiteral.

• There is no distinction made between char literals and String literals. Single-
character String literals can be used wherever char literals are permitted. Char
literals will be widened if used in numerical expressions; or treated as single-
character String literals if used in String expressions.

• String literals are allowed to be delimited by single quote marks or double quote
marks. This allows String literal filters to use single quote marks instead of escaped
double quote marks.

Note that comparisons between floating point values are by nature inexact. Therefore,
equality comparisons (== and !=) with floating point values should be used with caution.

Identifiers in the expression are considered to be in the name space of the specified class,
with the addition of declared imports, parameters and variables. As in the Java language,
this is a reserved word, and it refers to the element of the collection being evaluated.

Identifiers that are persistent field names or public final static field names are required to
be supported by JDO implementations. Other identifiers might be supported but are not
required. Thus, portable queries must not use fields other than persistent or public final
static field names in filter expressions.

Navigation through single-valued fields is specified by the Java language syntax of
field_name.field_name.....field_name.

A JDO implementation is allowed to reorder the filter expression for optimization purpos-
es.

The following are minimum capabilities of the expressions that every implementation
must support:
 JDO 2.0 157 February 28, 2006

Java Data Objects 2.0
• operators applied to all types where they are defined in the Java language:

• exceptions to the above:

• String concatenation is supported only for String + String, not String +
<primitive>;

• parentheses to explicitly mark operator precedence

• cast operator (class)

• promotion of numeric operands for comparisons and arithmetic operations. The
rules for promotion follow the Java rules (see chapter 5.6 Numeric Promotions of
the Java language spec) extended by BigDecimal, BigInteger and numeric
wrapper classes:

• if either operand is of type BigDecimal, the other is converted to
BigDecimal.

Table 4: Query Operators

Operator Description

== equal

!= not equal

> greater than

< less than

>= greater than or equal

<= less than or equal

& boolean logical AND (not bitwise)

&& conditional AND

| boolean logical OR (not bitwise)

|| conditional OR

~ integral unary bitwise complement

+ binary addition, unary plus, or String concatena-
tion

- binary subtraction or unary numeric sign inver-
sion

* times

/ divide by

! logical complement

% modulo operator

instanceof instanceof operator
 JDO 2.0 158 February 28, 2006

Java Data Objects 2.0
• otherwise, if either operand is of type BigInteger, and the other type is a
floating point type (float, double) or one of its wrapper classes (Float,
Double) both operands are converted to BigDecimal.

• otherwise, if either operand is of type BigInteger, the other is converted to
BigInteger.

• otherwise, if either operand is of type double, the other is converted to double.
• otherwise, if either operand is of type float, the other is converted to float.
• otherwise, if either operand is of type long, the other is converted to long.
• otherwise, both operands are converted to type int.
• operands of numeric wrapper classes are treated as their corresponding primitive

types. If one of the operands is of a numeric wrapper class and the other operand
is of a primitive numeric type, the rules above apply and the result is of the
corresponding numeric wrapper class.

• equality comparison among persistent instances of persistence-capable types use
the JDO Identity comparison of the references; this includes containment methods
applied to Collection and Map types. Thus, two objects will compare equal if
they have the same JDO Identity.

• comparisons between persistent and non-persistent instances return not equal.

• equality comparison of instances of non-persistence-capable reference types uses
the equals method of the type; this includes containment methods applied to
Collection and Map types.

• String methods startsWith and endsWith support wild card queries but
not in a portable way. JDO does not define any special semantic to the argument
passed to the method; in particular, it does not define any wild card characters. To
achieve portable behavior, applications should use matches(String).

Null-valued fields of Collection types are treated as if they were empty if a method
is called on them. In particular, they return true to isEmpty and return false to all
contains methods. For datastores that support null values for Collection types, it
is valid to compare the field to null. Datastores that do not support null values for
Collection types, will return false if the query compares the field to null. Datas-
tores that support null values for Collection types should include the option "jav-
ax.jdo.option.NullCollection" in their list of supported options
(PersistenceManagerFactory.supportedOptions()).Methods

The following methods are supported for their specific types, with semantics as defined
by the Java language:

Table 5: Query Methods

Method Description

contains(Object) applies to Collection types

get(Object) applies to Map types

containsKey(Object) applies to Map types

containsValue(Object) applies to Map types

isEmpty() applies to Map and Collection types

size() applies to Map and Collection types
 JDO 2.0 159 February 28, 2006

Java Data Objects 2.0
14.6.3 Parameter declaration

The parameter declaration is a String containing one or more parameter type declara-
tions separated by commas. This follows the Java syntax for method signatures.

Parameter types for primitive values can be specified as either the primitive types or the
corresponding wrapper types. If a parameter type is specified as a primitive, the parame-
ter value passed to execute() must not be null or a JDOUserException is thrown.

Parameters must all be declared explicitly via declareParameters or all be declared
implicitly in the filter. Parameters implicitly declared (in the result, filter, ordering, group-
ing, or range) are identified by prepending a ":" to the parameter everywhere it appears.
All parameter types can be determined by one of the following techniques:

• the parameter is used as the right hand side or left hand side of a boolean operator
(<, <=, ==, >=, or >) and the other side is strongly typed, or

• the parameter is used in a method from Table 5 on page 159 directly as either a
parameter or the object on which the method is called, and the type can be
determined from the context of the method, or

• the parameter is explicitly cast using the cast operator and the cast is identical
everywhere the parameter appears.

toLowerCase() applies to String type

toUpperCase() applies to String type

indexOf(String) applies to String type; 0-indexing is used

indexOf(String, int) applies to String type; 0-indexing is used

matches(String) applies to String type; only the following regular expression
patterns are required to be supported and are portable: glo-
bal “(?i)” for case-insensitive matches; and “.” and “.*” for
wild card matches. The pattern passed to matches must be a
literal or parameter.

substring(int) applies to String type

substring(int, int) applies to String type

startsWith(String) applies to String type

endsWith(String) applies to String type

Math.abs(numeric) static method in java.lang.Math, applies to types of float,
double, int, and long

Math.sqrt(numeric) static method in java.lang.Math, applies to double type

JDOHelper.getObjec-
tId(Object)

static method in JDOHelper, allows using the object identity
of an instance directly in a query.

Table 5: Query Methods

Method Description
 JDO 2.0 160 February 28, 2006

Java Data Objects 2.0
Implicit parameter declaration

When parameters are declared implicitly, if the query is string-based, parameters are rec-
ognized in the order that they appear in the query string. If the query is API-based, param-
eters are recognized as if declared explicitly, with the order of their first appearance in the
result, filter, grouping, ordering, and range. This is significant if a positional form of exe-
cute is used.

14.6.4 Import statements

The import statements follow the Java syntax for import statements. Import statements are
separated by semicolons. Import on demand is supported. Classes in java.lang and
javax.jdo are automatically imported.

14.6.5 Variable declaration

The type declarations follow the Java syntax for local variable declarations. Variable dec-
larations are separated by semicolons.

A variable that is not constrained with an explicit contains clause is constrained by the ex-
tent of the persistence capable class (including subclasses). If the class does not manage an
Extent, then no results will satisfy the query.

If the query result uses a variable, the variable must not be constrained by an extent. Fur-
ther, each side of an "OR" expression must constrain the variable using a contains clause.

A portable query will constrain all variables with a contains clause in each side of an
“OR” expression of the filter where the variable is used. Further, each variable must either
be used in the query result or its contains clause must be the left expression of an
“AND” expression where the variable is used in the right expression. That is, for each oc-
currence of an expression in the filter using the variable, there is a contains clause
“ANDed” with the expression that constrains the possible values by the elements of a col-
lection.

The semantics of contains is “exists”, where the contains clause is used to filter instances.
The meaning of the expression “emps.contains(e) && e.salary < param” is “there exists an
e in the emps collection such that e.salary is less than param”. This is the natural meaning
of contains in the Java language, except where the expression is negated. If the variable is
used in the result, then it need not be constrained.

If the expression is negated, then “!(emps.contains(e) && e.salary < param)” means “there
does not exist an employee e in the collection emps such that e.salary is less than param”.
Another way of expressing this is “for each employee e in the collection emps, e.salary is
greater than or equal to param”. If a variable is used in the result, then it must not be used
in a negated contains clause.

Implicit variable declaration

The variable declaration is unnecessary if all variables are implicitly declared. All variables
must be explicitly declared, or all variables must be implicitly declared.

Names in the filter are treated as parameters if they are explicitly declared via de-
clareParameters or if they begin with “:”.

Names are treated as variable names if they are explicitly declared via declareVari-
ables.

Names are treated as field or property names if they are fields or properties of the candi-
date class.
 JDO 2.0 161 February 28, 2006

Java Data Objects 2.0
Names are treated as class names if they exist in the package of the candidate class, have
been imported, or if they are in the java.lang package. e.g. Integer.

Otherwise, names are treated as implicitly defined variable names.

Variables must be typed. Implicitly defined variables are typed according to the following:

• if the variable is the parameter of a contains method, the type is the element type
of the collection; or

• if the variable is the parameter of a containsKey method, the type is the key type
of the map; or

• if the variable is the parameter of a containsValue method, the type is the value
type of the map; or

• if the variable is not constrained by a contains, containsKey, or
containsValue method, the variable must be typed by an explicit cast the first
time the variable appears in the filter.

14.6.6 Ordering statement

The ordering statement is a String containing one or more ordering declarations sepa-
rated by commas. Each ordering declaration is a Java expression of an orderable type:

• primitives (boolean is non-portable);

• wrappers (Boolean is non-portable);

• BigDecimal;

• BigInteger;

• String;

• Date

followed by one of the following words: “ascending”, “descending”,“asc”, or
“desc”.

Ordering might be specified including navigation. The name of the field to be used in or-
dering via navigation through single-valued fields is specified by the Java language syntax
of field_name.field_name....field_name.

The result of the first (leftmost) expression is used to order the results. If the leftmost ex-
pression evaluates the same for two or more elements, then the second expression is used
for ordering those elements. If the second expression evaluates the same, then the third ex-
pression is used, and so on until the last expression is evaluated. If all of the ordering ex-
pressions evaluate the same, then the ordering of those elements is unspecified.

The ordering of instances containing null-valued fields specified by the ordering is not
specified. Different JDO implementations might order the instances containing null-val-
ued fields either before or after instances whose fields contain non-null values.

Ordering of boolean fields, if supported by the implementation, is false before true, un-
less descending is specified. Ordering of null-valued Boolean fields is as above.

14.6.7 Closing Query results

When the application has finished with the query results, it might optionally close the re-
sults, allowing the JDO implementation to release resources that might be engaged, such
as database cursors or iterators. The following methods allow early release of these re-
sources.

void close (Object queryResult);
 JDO 2.0 162 February 28, 2006

Java Data Objects 2.0
This method closes the result of one execute(...) method, and releases resources as-
sociated with it. After this method completes, the query result can no longer be used, for
example to iterate the returned elements. Any elements returned previously by iteration
of the results remain in their current state. Any iterators acquired from the queryResult
will return false to hasNext() and will throw NoSuchElementException to
next().

void closeAll ();

This method closes all results of execute(...) methods on this Query instance, as
above. The Query instance is still valid and can still be used.

14.6.8 Limiting the Cardinality of the Query Result

The application may want to skip some number of results that may have been previously
returned, and additionally may want to limit the number of instances returned from a que-
ry. The parameters are modeled after String.getChars and are 0-origin. The parame-
ters are not saved if the query is serialized. The default range for query execution if this
method is not called are (0, Long.MAX_VALUE).

setRange(long fromIncl, long toExcl);

The fromIncl parameter is the number of instances of the query result to skip over before
returning the List to the user. If specified as 0 (the default), no instances are skipped.

The toExcl parameter is the last instance of the query result (before skipping) to return
to the user.

The expression (toExcl - fromIncl) is the maximum number of instances in the que-
ry result to be returned to the user. If fewer instances are available, then fewer instances
will be returned. If ((toExcl - fromIncl)<= 0) evaluates to true ,

• if the result of the query execution is a List, the returned List contains no
instances, and an Iterator obtained from the List returns false to
hasNext().

• if the result of the query execution is a single instance (setUnique(true)), it will
have a value of null.

setRange(String range);

When using the string form of setRange both parameter values are specified either as
numbers or as parameters. The fromIncl and toExcl values are comma separated and
evaluated as either long values or as parameter names (beginning with “:”). For example,
setRange(“:fromRange, :toRange”) or setRange(“100, 130”).

14.6.9 Specifying the Result of a Query (Projections, Aggregates)

The application might want to get results from a query that are not instances of the candi-
date class. The results might be single-valued fields of persistent instances, instances of
classes other than the candidate class, or aggregates of single-valued fields. Note that this
means that fields of Collection and Map types are not allowed in the projection.

void setResult(String result);

The result parameter consists of the optional keyword distinct followed by a comma-
separated list of named result expressions or a constructor expression.

A constructor expression consists of the keyword new followed by the name of a result
class and a comma-separated parenthesis-enclosed list of named result expressions. See
14.6.12 for a detailed description of the constructor expression.
 JDO 2.0 163 February 28, 2006

Java Data Objects 2.0
Distinct results

If distinct is specified, the query result does not include any duplicates. If the result pa-
rameter specifies more than one result expression, duplicates are those with matching val-
ues for each result expression.

Queries against an extent always consider only distinct candidate instances, regardless of
whether distinct is specified. Queries against a collection might contain duplicate can-
didate instances; the distinct keyword removes duplicates from the candidate collec-
tion in this case.

Result expressions begin with either an instance of the candidate class (with an explicit or
implicit "this") or an instance of a variable (using the variable name). The candidate tuples
are the cartesian product of the candidate class and all variables used in the result. The re-
sult tuples are the tuples of the candidate class and all variables used in the result that sat-
isfy the filter. The result is the collection of result expressions projected from the result
tuples. If variables are not used in the result expression, then the filter is evaluated for all
possible values for each such variable, and if the filter evaluates to true for any combina-
tion of such variables, then the candidate tuple becomes a result tuple.

The distinct specification requires removing duplicates from projected expressions.

If any result is a navigational expression, and a non-terminal field or variable has a null
value for a particular set of conditions (the result calculation would throw NullPoint-
erException), then the result is null for that result expression. This is known in relation-
al algebra as “outer join semantics”. For example, to exclude results of
“this.department.category.name” where either department or category is null, the user
must explicitly add a clause to the filter: “this.department != null && this.department.cat-
egory != null”.

The result expressions include:

• “this”: indicates that the candidate instance is returned

• <field>: this indicates that a field is returned as a value; the field might be in the
candidate class or in a class referenced by a variable

• <variable>: this indicates that a variable’s value is returned as a persistent instance

• <aggregate>: this indicates that an aggregate of multiple values is returned; if
null values are aggregated, they do not participate in the aggregate result; if all
of the expressions to be aggregated evaluate to null, the result is the same as if
there were no instances that match the filter.

• count(<expression>): the count of the number of instances of the expression is
returned; the expression is preceded by an optional “distinct” and can be “this”,
a navigational expression that terminates in a single-valued field, or a variable
name

• sum(<numeric field expression>): the sum of field expressions is returned; the
expression is preceded by an optional "distinct"

• min(<orderable field expression>): the minimum value of the field expression is
returned

• max(<orderable field expression>): the maximum value of the field expression is
returned

• avg(<numeric field expression>): the average value of all field expressions is
returned; the expression is preceded by an optional "distinct"

• <field expression>: the value of an expression using any of the operators allowed
in queries applied to fields is returned
 JDO 2.0 164 February 28, 2006

Java Data Objects 2.0
• <navigational expression>: this indicates a navigational path through single-
valued fields or variables as specified by the Java language syntax; the
navigational path starts with the keyword “this”, a variable, a parameter, or a field
name followed by field names separated by dots.

• <parameter>: one of the parameters provided to the query.

The result expression can be explicitly cast using the (cast) operator.

Named Result Expressions

<result expression> as <name>: identify the <result expression> (any of the result expres-
sions specified above) as a named element for the purpose of matching a method or field
name in the result class.

If the name is not specified explicitly, the default for name is the expression itself.

Aggregate Types

Count returns Long.

Sum returns Long for integral types and the field’s type for other Number types (BigDec-
imal, BigInteger, Float, and Double). Sum and avg are invalid if applied to non-
Number types.

Avg, min, and max return the type of the expression.

If there are no instances that match the filter,

• count returns 0;

• avg, sum, min, and max return null.

If null values are aggregated, they do not participate in the aggregate result. If all of the
expressions to be aggregated evaluate to null, the result is the same as if there were no
instances that match the filter.

Primitive Types

If a result expression has a primitive type, its value is returned as an instance of the corre-
sponding java wrapper class.

Null Results

If the returned value from a query specifying a result is null, this indicates that the ex-
pression specified as the result was null. Note that the semantics of this result are differ-
ent from the returned value where no instances satisfied the filter.

Default Result

If not specified, the result defaults to “distinct this as C” where C is the unqualified
name of the candidate class. For example, the default result specification for a query where
the candidate class is com.acme.hr.Employee is “distinct this as Employee”.

14.6.10 Grouping Aggregate Results

Aggregates are most useful if they can be grouped based on an element of the result.
Grouping is required if there are aggregate expressions in the result.

void setGrouping(String grouping);

The grouping parameter consists of one or more expressions separated by commas fol-
lowed by an optional “having” followed by one Boolean expression.

When grouping is specified, each result expression must be one of:
 JDO 2.0 165 February 28, 2006

Java Data Objects 2.0
• an expression contained in the grouping expression; or,

• an aggregate expression evaluated once per group.

When grouping is specified with ordering, each ordering expression must be one of:

• an expression contained in the grouping expression; or,

• an aggregate expression evaluated once per group.

The query groups all elements where all expressions specified in setGrouping have the
same values. The query result consists of one element per group.

When “having” is specified, the “having” expression consists of arithmetic and boolean
expressions containing expressions that are either aggregate expressions or contained in a
grouping expression.

14.6.11 Specifying Uniqueness of the Query Result

If the application knows that there can be exactly zero or one instance returned from a que-
ry, the result of the query is most conveniently returned as an instance (possibly null) in-
stead of a List.

void setUnique(boolean unique);

When the value of the Unique flag is true, then the result of a query is a single value, with
null used to indicate that none of the instances in the candidates satisfied the filter. If
more than one instance satisfies the filter, and the range is not limited to one result, then
execute throws a JDOUserException.

Default Unique setting

The default Unique setting is true for aggregate results without a grouping expression,
and false otherwise.

14.6.12 Specifying the Class of the Result

The application may have a user-defined class that best represents the results of a query.
In this case, the application can specify that instances of this class should be returned.

void setResultClass(Class resultClass);

The default result class is the candidate class if the parameter to setResult is null or
not specified. When the result is specified and not null, the default result class is the type
of the expression if the result consists of one expression, or Object[] if the result consists
of more than one expression.

Result Class Requirements

• The result class may be one of the java.lang classes Character, Boolean,
Byte, Short, Integer, Long, Float, Double, String, or Object[]; or one of
the java.math classes BigInteger or BigDecimal; or the java.util class
Date; or the java.util interface Map; or one of the java.sql classes Date,
Time, or Timestamp; or a user-defined class.

• If there are multiple result expressions, the result class must be able to hold all
elements of the result specification or a JDOUserException is thrown.

• If there is only one result expression, the result class must be assignable from the
type of the result expression or must be able to hold all elements of the result
specification. A single value must be able to be coerced into the specified result
 JDO 2.0 166 February 28, 2006

Java Data Objects 2.0
class (treating wrapper classes as equivalent to their unwrapped primitive types)
or by matching. If the result class does not satisfy these conditions, a
JDOUserException is thrown.

• A constructor of a result class specified in the constructor expression of the
setResult method or in the setResultClass method will be used if the results
specification matches the parameters of the constructor by position and type. If
more than one constructor satisfies the requirements, the JDO implementation
chooses one of them. If no constructor satisfies the results requirements, the
following requirements apply:

• A user-defined result class must have a no-args constructor and one or more
public “set” or “put” methods or fields.

• Each result expression must match one of:
• a public field that matches the name of the result expression and is of the type

(treating wrapper types the same as primitive types) of the result expression;

• or if no public field matches the name and type, a public “set” method that returns
void and matches the name of the result expression and takes a single parameter
which is the exact type of the result expression;

• or if neither of the above applies,a public method must be found with the signature
void put(Object, Object) in which the first argument is the name of the result
expression and the second argument is the value from the query result.

• Portable result classes do not invoke any persistence behavior during their no-args
constructor or “set” methods.

14.6.13 Single-string Query element binding

The String version of Query represents all query elements using a single string. The string
contains the following structure:

select [unique] [<result>] [into <result-class-name>]

[from <candidate-class-name> [exclude subclasses]]

[where <filter>]

[variables <variables-clause>]

Table 6: Shape of Result (C is the candidate class)

setResult setResultClass setUnique shape of result

null, or “distinct this as C” null false List<C>

null, or “distinct this as C” null true C

not null, one result expression of type T null false List<T>

not null, one result expression of type T null true T

not null, more than one result expression null false List<Object[]>

not null, more than one result expression null true Object[]

null or not null UserResult.class false List<UserResult>

null or not null UserResult.class true UserResult
 JDO 2.0 167 February 28, 2006

Java Data Objects 2.0
[parameters <parameters-clause>]

[<imports-clause>]

[group by <grouping-clause>]

[order by <ordering-clause>]

[range <from-range> ,<to-range>]

Keywords, identified above in bold, are either all upper-case or all lower-case. Keywords
cannot be mixed case.

The select clause must be the first clause in the query.

The order of the other clauses must be as described above.

If implicit parameters are used, their order of appearance in the query determines their or-
der for binding to positional parameters for execution.

<result> is the result as in 14.6.9.

<result-class-name> is the name of the result class as in 14.6.12.

<filter> is the filter as in 14.6.2.

<variables-clause> is the variable declaration as in 14.6.5. As in Java, variables in the clause
are separated by semicolons.

<parameters-clause> is the parameter declaration as in 14.6.3. As in Java, parameters in the
clause are separated by commas.

<imports-clause> is the imports declaration as in 14.6.4. As in Java, imports in the clause
are separated by semicolons.

<grouping-clause> is the grouping specification as in 14.6.10.

<ordering-clause> is the ordering specification as in 14.6.6.

<from-range> and <to-range> are as in 14.6.8.

14.7 SQL Queries

If the developer knows that the underlying datasource supports SQL, and knows the map-
ping from the JDO domain model to the SQL schema, it might be convenient in some cases
to execute SQL instead of expressing the query as JDOQL. In this case, the factory method
that takes the language string and Object is used: newQuery (String language, Ob-
ject query). The language parameter is “javax.jdo.query.SQL” and the query parame-
ter is the SQL query string.

The SQL query string must be well-formed. The JDO implementation must not make any
changes to the query string. The tokens “?” must be used to identify parameters in the SQL
query string.

When this factory method is used, the behavior of the Query instance changes significant-
ly. The only methods that can be used are setClass to establish the candidate class, se-
tUnique to declare that there is only one result row, and setResultClass to establish
the result class.

• there is no filter, and the setFilter method throws JDOUserException.

• there is no ordering specification, and the setOrdering method throws
JDOUserException.
 JDO 2.0 168 February 28, 2006

Java Data Objects 2.0
• there are no variables, and the declareVariables method throws
JDOUserException.

• the parameters are untyped, and the declareParameters method throws
JDOUserException.

• there is no grouping specification, and the setGrouping method throws
JDOUserException.

• the candidate collection can only be the Extent of instances of the candidate class,
including subclasses, and the setCandidates method throws
JDOUserException.

• parameters are bound by position. If the parameter list is an Object[] then the
first element in the array is bound to the first “?” in the SQL statement, and so
forth. If the parameter list is a Map, then the keys of the Map must be instances of
Integer whose intValue is 1..n. The value in the Map corresponding to the key
whose intValue is 1 is bound to the first “?” in the SQL statement, and so forth.

• there are no imports, and the declareImports method throws
JDOUserException.

• for queries in which the candidate class is specified, the columns selected in the
SQL statement must at least contain the primary key columns of the mapped
candidate class, and additionally the discriminator column if defined and the
version column(s) if defined.

• results are taken from the SELECT clause of the query, and the setResult
method throws JDOUserException.

• the cardinality of the result is determined by the SQL query itself, and the
setRange method throws JDOUserException.

SQL queries can be defined without a candidate class. These queries can be found by name
using the factory method newNamedQuery, specifying the class as null, or can be con-
structed without a candidate class.

Table 7: Shape of Result of SQL Query

Candidate
class

Selected columns setResultClass setUnique shape of result

C must include primary
key columns

null false List<C>

C must include primary
key columns

null true C

null single column of type T null false List<T>

null single column of type T null true T

null more than one result
column

null false List<Object[]>

null more than one result
column

null true Object[]
 JDO 2.0 169 February 28, 2006

Java Data Objects 2.0
14.7.1 Mapping Columns of SQL Queries to User-specified Result Classes

There are two specified means by which columns of SQL queries can be mapped to user-
specified result classes: by name and by position.

Each labeled column in the result set is mapped according to the mapping defined in Sec-
tion 14.6.12, using the result set column name as the public field or property name of the
result class. Since SQL is generally case-insensitive, matching of labels to field and proper-
ty names is not case-sensitive. Labels that differ only in case cause a JDOUserException
to be thrown when the query is executed.

A result set column is considered labeled if:

• the return value from java.sql.ResultSetMetaData.getColumnLabel
(int oneBasedColumnIndex) is non-null and of non-zero length; or,

• if getColumnLabel is null or of zero length,
java.sql.ResultSetMetaData.getColumnName (int
oneBasedColumnIndex) is non-null and of non-zero length.

Other determinations of whether a column is considered labeled are unspecified and not
portable. Each character in a column label that is not a valid character in a Java field or
method identifier is converted to an underscore character for the purposes of mapping;
other name conversion strategies are not specified and not portable.

Each unlabeled column in the result set is mapped positionally. As required by Section
14.6.12, the result class must expose a public method with the signature void put(Ob-
ject, Object) for data that do not have a public field or set method; it is this method
that is used by the implementation to map columns positionally, using the integral posi-
tion of the column, as an Integer, as the first argument, and the column's value as the sec-
ond. Positional indexes passed to the result class's void put(Object, Object)
method are zero-based; that is, the value of the Integer given is one less than the SQL col-
umn index, as SQL column indexes are one-based.

14.8 Deletion by Query

An application may want to delete a number of instances in the datastore without instan-
tiating them in memory. The instances to be deleted can be described by a query.

long deletePersistentAll(Object[] parameters);

long deletePersistentAll(Map parameters);

long deletePersistentAll();

These methods delete the instances of affected classes that pass the filter, and all depen-
dent instances. Affected classes are the candidate class and its persistence-capable sub-
classes. The number of instances of affected classes that were deleted is returned.
Embedded instances and dependent instances are not counted in the return value.

null or not null UserResult.class false List<UserResult>

null or not null UserResult.class true UserResult

Table 7: Shape of Result of SQL Query

Candidate
class

Selected columns setResultClass setUnique shape of result
 JDO 2.0 170 February 28, 2006

Java Data Objects 2.0
Query elements filter, parameters, imports, variables, and unique are valid in
queries used for delete. Elements result, result class, range, grouping, and or-
dering are invalid. If any of these elements is set to its non-default value when one of the
deletePersistentAll methods is called, a JDOUserException is thrown and no in-
stances are deleted.

When the value of the Unique flag is true, then at most one instance will be deleted. If
more than one instance satisfies the filter, then deletePersistentAll throws a
JDOUserException.

Dirty instances of affected classes are first flushed to the datastore. Instances already in the
cache when deleted via these methods or brought into the cache as a result of these meth-
ods undergo the life cycle transitions as if deletePersistent had been called on them.

That is, if an affected class implements the DeleteCallback interface, the instances of
that class to be deleted are instantiated in memory and the jdoPreDelete method is
called prior to deleting the instance in the datastore. If any LifecycleListener instanc-
es are registered with affected classes, these listeners are called for each deleted instance.

Before returning control to the application, instances of affected classes in the cache are re-
freshed by the implementation so their status in the cache reflects whether they were de-
leted from the datastore.

14.9 Extensions

Some JDO vendors provide extensions to the query, and these extensions must be set in
the query instance prior to execution.

void setExtensions(Map extensions);

This method replaces all current extensions with the extensions contained as entries in the
parameter Map. A parameter value of null means to remove all extensions. The keys are
immediately evaluated; entries where the key refers to a different vendor are ignored; en-
tries where the key prefix matches this vendor but where the full key is unrecognized
cause a JDOUserException to be thrown. The extensions become part of the state of the
Query instance that is serialized. The parameter Map is not used after the method returns.

void addExtension(String key, Object value);

This method adds one extension to the Query instance. This extension will remain until
the next setExtensions method is called, or addExtension with an equal key. Key
recognition behavior is identical to setExtensions.

14.10 Examples:

The following class definitions for persistence capable classes are used in the examples:

package com.xyz.hr;

class Employee {

String name;

float salary;

Department dept;

Employee boss;

}

package com.xyz.hr;
 JDO 2.0 171 February 28, 2006

Java Data Objects 2.0
class Department {

String name;

Collection emps;

}

14.10.1 Basic query.

This query selects all Employee instances from the candidate collection where the salary
is greater than the constant 30000.

Note that the float value for salary is unwrapped for the comparison with the literal
int value, which is promoted to float using numeric promotion. If the value for the
salary field in a candidate instance is null, then it cannot be unwrapped for the com-
parison, and the candidate instance is rejected.

Query q = pm.newQuery (Employee.class, “salary > 30000”);

Collection emps = (Collection) q.execute ();

<query name=”basic”>

[!CDATA[

select where salary > 30000

]]

</query>

14.10.2 Basic query with ordering.

This query selects all Employee instances from the candidate collection where the salary
is greater than the constant 30000, and returns a Collection ordered based on employee
salary.

Query q = pm.newQuery (Employee.class, “salary > 30000”);

q.setOrdering (“salary ascending”);

Collection emps = (Collection) q.execute ();

<query name=”ordering”>

[!CDATA[

select where salary > 30000

order by salary ascending

]]

</query>

14.10.3 Parameter passing.

This query selects all Employee instances from the candidate collection where the salary
is greater than the value passed as a parameter and the name starts with the value passed
as a second parameter.

If the value for the salary field in a candidate instance is null, then it cannot be un-
wrapped for the comparison, and the candidate instance is rejected.

Query q = pm.newQuery (Employee.class,

“salary > sal && name.startsWith(begin”);

q.declareParameters (“Float sal, String begin”);
 JDO 2.0 172 February 28, 2006

Java Data Objects 2.0
Collection emps = (Collection) q.execute (new Float (30000.));

<query name=”parameter”>

[!CDATA[

select where salary > :sal && name.startsWith(:begin)

]]

</query>

14.10.4 Navigation through single-valued field.

This query selects all Employee instances from the candidate collection where the value of
the name field in the Department instance associated with the Employee instance is equal
to the value passed as a parameter.

If the value for the dept field in a candidate instance is null, then it cannot be navigated
for the comparison, and the candidate instance is rejected.

Query q = pm.newQuery (Employee.class, “dept.name == dep”);

q.declareParameters (“String dep”);

String rnd = “R&D”;

Collection emps = (Collection) q.execute (rnd);

<query name=”navigate”>

[!CDATA[

select where dept.name == :dep

]]

</query>

14.10.5 Navigation through multi-valued field.

This query selects all Department instances from the candidate collection where the col-
lection of Employee instances contains at least one Employee instance having a salary
greater than the value passed as a parameter.

String filter = “emps.contains (emp) & emp.salary > sal”;

Query q = pm.newQuery (Department.class, filter);

q.declareParameters (“float sal”);

q.declareVariables (“Employee emp”);

Collection deps = (Collection) q.execute (new Float (30000.));

<query name=”multivalue”>

[!CDATA[

select where emps.contains(e)

&& e.salary > :sal

]]

</query>

14.10.6 Membership in a collection

This query selects all Department instances where the name field is contained in a pa-
rameter collection, which in this example consists of three department names.
 JDO 2.0 173 February 28, 2006

Java Data Objects 2.0
String filter = “depts.contains(name)”;

Query q = pm.newQuery (Department.class, filter);

List depts =

Arrays.asList(new String [] {“R&D”, “Sales”, “Marketing”});

q.declareParameters (“Collection depts”);

Collection deps = (Collection) q.execute (depts);

<query name=”collection”>

[!CDATA[

select where :depts.contains(name)

]]

</query>

14.10.7 Projection of a Single Field

This query selects names of all Employees who work in the parameter department.

Query q = pm.newQuery (Employee.class, “dept.name == deptName”);

q.declareParameters (“String deptName”);

q.setResult(“name”);

Collection names = (Collection) q.execute(“R&D”);

Iterator it = names.iterator();

while (it.hasNext()) {

String name = (String) it.next();

...

}

<query name=”project”>

[!CDATA[

select name where dept.name == :deptName

]]

</query>

14.10.8 Projection of Multiple Fields and Expressions

This query selects names, salaries, and bosses of Employees who work in the parameter
department.

class Info {

public String name;

public Float salary;

public Employee reportsTo;

}

Query q = pm.newQuery (Employee.class, “dept.name == deptName”);

q.declareParameters (“String deptName”);

q.setResult(“name, salary, boss as reportsTo”);
 JDO 2.0 174 February 28, 2006

Java Data Objects 2.0
q.setResultClass(Info.class);

Collection names = (Collection) q.execute(“R&D”);

Iterator it = names.iterator();

while (it.hasNext()) {

Info info = (Info) it.next();

String name = info.name;

Employee boss = info.reportsTo;

...

}

<query name=”resultclass”>

[!CDATA[

select name, salary, boss as reportsTo into Info

where dept.name == :deptName

]]

</query>

14.10.9 Projection of Multiple Fields and Expressions into a Constructed instance

This query selects names, salaries, and bosses of Employees who work in the parameter
department, and uses the constructor for the result class.

class Info {

public String name;

public Float salary;

public Employee reportsTo;

public Info (String name, Float salary, Employee reportsTo) {

this.name = name;

this.salary = salary;

this.reportsTo = reportsTo;

}

}

Query q = pm.newQuery (Employee.class, “dept.name == deptName”);

q.declareParameters (“String deptName”);

q.setResult(“new Info(name, salary, boss)”);

q.setResultClass(Info.class);

Collection names = (Collection) q.execute(“R&D”);

Iterator it = names.iterator();

while (it.hasNext()) {

Info info = (Info) it.next();

String name = info.name;

Employee boss = info.reportsTo;
 JDO 2.0 175 February 28, 2006

Java Data Objects 2.0
...

}

<query name=”construct”>

[!CDATA[

select new Info (name, salary, boss)

where dept.name == :deptName

]]

</query>

14.10.10 Aggregation of a single Field

This query averages the salaries of Employees who work in the parameter department
and returns a single value.

Query q = pm.newQuery (Employee.class, “dept.name == deptName”);

q.declareParameters (“String deptName”);

q.setResult(“avg(salary)”);

Float avgSalary = (Float) q.execute(“R&D”);

<query name=”aggregate”>

[!CDATA[

select avg(salary)

where dept.name == :deptName

]]

</query>

14.10.11 Aggregation of Multiple Fields and Expressions

This query averages and sums the salaries of Employees who work in the parameter de-
partment.

Query q = pm.newQuery (Employee.class, “dept.name == deptName”);

q.declareParameters (“String deptName”);

q.setResult(“avg(salary), sum(salary)”);

Object[] avgSum = Object[] q.execute(“R&D”);

Float average = (Float)avgSum[0];

Float sum = (Float)avgSum[1];

<query name=”multiple”>

[!CDATA[

select avg(salary), sum(salary)

where dept.name == :deptName

]]

</query>
 JDO 2.0 176 February 28, 2006

Java Data Objects 2.0
14.10.12 Aggregation of Multiple fields with Grouping

This query averages and sums the salaries of Employees who work in all departments
having more than one employee and aggregates by department name.

Query q = pm.newQuery (Employee.class);

q.setResult(“avg(salary), sum(salary), dept.name”);

q.setGrouping(“dept.name having count(dept.name) > 1”);

Collection results = (Collection)q.execute();

Iterator it = results.iterator();

while (it.hasNext()) {

Object[] info = (Object[]) it.next();

Float average = (Float)info[0];

Float sum = (Float)info[1];

String deptName = (String)info[2];

...

}

<query name=”group”>

[!CDATA[

select avg(salary), sum(salary), dept.name from com.xyz.hr.Em-
ployee where dept.name == :deptName group by dept.name having
count(dept.name) > 1

]]

</query>

14.10.13 Selection of a Single Instance

This query returns a single instance of Employee.

Query q = pm.newQuery (Employee.class, “name == empName”);

q.declareParameters (“String empName”);

q.setUnique(true);

Employee emp = (Employee) q.execute(“Michael”);

<query name=”unique”>

[!CDATA[

select unique this

where dept.name == :deptName

]]

</query>

14.10.14 Selection of a Single Field

This query returns a single field of a single Employee.

Query q = pm.newQuery (Employee.class, “name == empName”);
 JDO 2.0 177 February 28, 2006

Java Data Objects 2.0
q.declareParameters (“String empName”);

q.setResult(“salary”);

q.setResultClass(Float.class);

q.setUnique(true);

Float salary = (Float) q.execute (“Michael”);

<query name=”single”>

[!CDATA[

select unique new Float(salary)

where dept.name == :deptName

]]

</query>

14.10.15 Projection of “this” to User-defined Result Class with Matching Field

This query selects instances of Employee who make more than the parameter salary and
stores the result in a user-defined class. Since the default is “distinct this as Employee”, the
field must be named Employee and be of type Employee.

class EmpWrapper {

public Employee Employee;

}

Query q = pm.newQuery (Employee.class, “salary > sal”);

q.declareParameters (“Float sal”);

q.setResultClass(EmpWrapper.class);

Collection infos = (Collection) q.execute (new Float (30000.));

Iterator it = infos.iterator();

while (it.hasNext()) {

EmpWrapper info = (EmpWrapper)it.next();

Employee e = info.Employee;

...

}

<query name=”thisfield”>

[!CDATA[

select into EmpWrapper

where salary > sal

]]

</query>

14.10.16 Projection of “this” to User-defined Result Class with Matching Method

This query selects instances of Employee who make more than the parameter salary and
stores the result in a user-defined class.

class EmpInfo {
 JDO 2.0 178 February 28, 2006

Java Data Objects 2.0
private Employee worker;

public Employee getWorker() {return worker;}

public void setEmployee(Employee e) {worker = e;}

}

Query q = pm.newQuery (Employee.class, “salary > sal”);

q.declareParameters (“Float sal”);

q.setResultClass(EmpInfo.class);

Collection infos = (Collection) q.execute (new Float (30000.));

Iterator it = infos.iterator();

while (it.hasNext()) {

EmpInfo info = (EmpInfo)it.next();

Employee e = info.getWorker();

...

}

<query name=”thismethod”>

[!CDATA[

select into EmpInfo

where salary > sal

]]

</query>

14.10.17 Projection of variables

This query returns the names of all Employees of all "Research" departments:

Query q = pm.newQuery(Department.class);

q.declareVariables("Employee e");

q.setFilter("name.startsWith('Research') && emps.contains(e)");

q.setResult(e.name);

Collection names = q.execute();

Iterator it = names.iterator();

while (it.hasNext()) {

String name = (String)it.next();

...

}

<query name=”variables”>

[!CDATA[

select e.name

where name.startsWith('Research')

&& emps.contains((com.xyz.hr.Employee) e)
 JDO 2.0 179 February 28, 2006

Java Data Objects 2.0
]]

</query>

14.10.18 Deleting Multiple Instances

This query deletes all Employees who make more than the parameter salary.

Query q = pm.newQuery (Employee.class, “salary > sal”);

q.declareParameters (“Float sal”);

q.deletePersistentAll(new Float(30000.));
 JDO 2.0 180 February 28, 2006

Java Data Objects 2.0
15 Object-Relational Mapping

JDO is datastore-independent. However, many JDO implementations support storage of
persistent instances in relational databases, and this storage requires that the domain ob-
ject model be mapped to the relational schema. The mapping strategies for simple cases
are for the most part the same from one JDO implementation to another. For example, typ-
ically a class is mapped to one or more tables, and fields are mapped to one or more col-
umns.

The most common mapping paradigms are standardized, which allows users to define
their mapping once and use the mapping for multiple implementations.

Mapping Overview

Mapping between the domain object model and the relational database schema is specified
from the perspective of the object model. Each class is mapped to a primary table and pos-
sibly multiple secondary tables and multiple join tables. Fields in the class are mapped to
columns in either the primary table, secondary tables, or join tables. Simple field types typ-
ically map to single columns. Complex field types (Collections, Maps, and arrays) typ-
ically map to multiple columns.

Secondary tables represent non-normalized tables that contain zero or one row corre-
sponding to each row in the primary table, and contain field values for the persistent class.
These tables might be modeled as one-to-one relationships, but they can be modeled as
containing nullable field values instead.

Secondary tables might be used by a single field mapping or by multiple field mappings.
If used by a single field mapping, the join conditions linking the primary and secondary
table might be specified in the field mapping itself. If used by multiple field mappings, the
join conditions might be specified in each field mapping or specified in the class mapping.

Complex field types are mapped by mapping each of the components individually. Col-
lections map the element and optional order components. Maps map the key and value
components. Arrays map the element and order components.

Mapping Strategies

The specification does not standardize how the mapping files are generated. Most imple-
mentations will support one or more of the following strategies for creating mapping files:

• starting with a relational schema, generate persistence-capable classes and the
mapping to relate them (sometimes referred to as reverse mapping or class
generation);

• starting with persistence-capable classes, generate the relational schema and the
mapping to relate them (sometimes called forward mapping or schema
generation);

• starting with a relational schema and persistence-capable classes, create the
mapping to relate them (sometimes called meet-in-the-middle mapping).

This specification does not standardize how the mapping files are created. Implementa-
tions might support command-line or interactive GUI-based tools to assist in the process.
 JDO 2.0 181 February 28, 2006

Java Data Objects 2.0
There is no portable behavior for incompletely specified mappings. When a portable ap-
plication runs, the mapping is completely specified by the mapping metadata, regardless
of whether the user created the mapping or the mapping was created by a tool. If the map-
ping is incompletely specifed, the JDO implementation might silently use mapping de-
faults or throw an exception.

15.1 Column Elements

Column elements used for simple, non-relationship field value mapping specify at least
the column name. The field value is loaded from the value of the named column.

The column element might contain additional information about the column, for use in
generating schema. This might include the scale and precision for numeric types, the max-
imum length for variable-length field types, the jdbc type of the column, or the sql type of
the column. This information is ignored for runtime use, with the following exception: if
the jdbc type of the column does not match the default jdbc type for the field's class (for
example, a String field is mapped to a CLOB rather than a VARCHAR column), the jdbc
type information is required at runtime.

Column elements that contain only the column name can be omitted, if the column name
is instead contained in the enclosing element. Thus, a field element is defined to allow a
column attribute if only the name is needed, or a column element if more than the name is
needed. If both column attribute and column element are specified for any element, it is a
user error.

15.1.1 Mapping single-valued fields to columns

This example demonstrates mappings between fields and value columns.

package com.xyz;

public class Address {

String street;

String city;

String state;

String zip;

String deliveryInstructions;

}

 JDO 2.0 182 February 28, 2006

Java Data Objects 2.0
CREATE TABLE ADDR (

 STREET VARCHAR(255) PRIMARY KEY,

 CITY VARCHAR(255),

 STATE CHAR(2),

 ZIPCODE VARCHAR(10),

 DELIV_INS CLOB

)

<orm>

 <package name="com.xyz">

 <class name="Address" table="ADDR">

 <field name="street" column="STREET"/>

 <field name="city" column="CITY"/>

 <field name="state" column="STATE"/>

 <field name="zip" column="ZIPCODE"/>

 <field name="deliveryInstructions">

 <column name="DELIV_INS" jdbc-type="CLOB"/>

 </field>

 </class>

 </package>

</orm>

15.2 Join Condition

Secondary tables and join tables are mapped using a join condition that associates a col-
umn or columns in the secondary or join table with a column or columns in the primary
table, typically the primary table’s primary key columns.

Column elements used for relationship mapping or join conditions specify the column
name and optionally the target column name. The target column name is the name of the
column in the associated table corresponding to the named column. The target column
name is optional when the target column is the single primary key column of the associat-
ed table, or when the target column name is identical to the join column name.

NOTE: This usage of column elements is fundamentally different from the usage of column
elements for value mapping. For value mapping, the name attribute names the column
that contains the value to be used. For join conditions, the name attribute names the col-
umn that contains the reference data to be joined to the primary key column of the target.

15.2.1 Secondary Table mapping

This example demonstrates the use of join elements to represent join conditions linking
a class' primary table and secondary tables used by fields.
 JDO 2.0 183 February 28, 2006

Java Data Objects 2.0
package com.xyz;

public class Address {

String street;

String city;

String state;

String zip;

String deliveryInstructions;

boolean signatureRequired;

byte[] mapJPG;

}

CREATE TABLE ADDR (

 STREET VARCHAR(255) PRIMARY KEY,

 CITY VARCHAR(255),

 STATE CHAR(2),

 ZIPCODE VARCHAR(10)

)

CREATE TABLE DELIV (

 ADDR_STREET VARCHAR(255),

 SIG_REQUIRED BIT,

 DELIV_INS CLOB

)

CREATE TABLE MAPQUEST_INFO (

 ADDR_STREET VARCHAR(255),

 MAPQUEST_IMAGE BLOB

)

 JDO 2.0 184 February 28, 2006

Java Data Objects 2.0
<orm>

<package name="com.xyz">

<class name="Address" table="ADDR">

<!-- shared join condition used by fields in DELIV -->

<join table="DELIV" column="ADDR_STREET"/>

<field name="street" column="STREET"/>

<field name="city" column="CITY"/>

<field name="state" column="STATE"/>

<field name="zip" column="ZIPCODE"/>

<field name="signatureRequired" table="DELIV"

column="SIG_REQUIRED"/>

<field name="deliveryInstructions" table="DELIV">

<column name="DELIV_INS" jdbc-type="CLOB"/>

</field>

<field name="mapJPG" table="MAPQUEST_INFO"

column="MAPQUEST_IMAGE">

<!-- join condition defined for this field only -->

<join column="ADDR_STREET"/>

</field>

</class>

</package>

</orm>

15.2.2 Map using join table

This example uses the <join> element to map a Map<Date,String> field to a join table.
Note that in this example, the primary table has a compound primary key, requiring the
use of the target attribute in join conditions.

package com.xyz;

public class Address {
 JDO 2.0 185 February 28, 2006

Java Data Objects 2.0
String street;

String city;

String state;

String zip;

String deliveryInstructions;

boolean signatureRequired;

Map<Date,String> deliveryRecords;

}

CREATE TABLE ADDR (

 STREET VARCHAR(255),

 CITY VARCHAR(255),

 STATE CHAR(2),

 ZIPCODE VARCHAR(10),

 PRIMARY KEY (STREET, ZIPCODE)

)

CREATE TABLE DELIV_RECORDS (

 ADDR_STREET VARCHAR(255),

 ADDR_ZIPCODE VARCHAR(10),

 DELIV_DATE TIMESTAMP,

 SIGNED_BY VARCHAR(255)

)

<orm>

<package name="com.xyz">

<class name="Address" table="ADDR">

<field name="street" column="STREET"/>

<field name="city" column="CITY"/>

<field name="state" column="STATE"/>

<field name="zip" column="ZIPCODE"/>

<!-- field type is Map<Date,String> -->

<field name="deliveryRecords" table="DELIV_RECORDS">

<join>

<column name="ADDR_STREET" target="STREET"/>

<column name="ADDR_ZIPCODE" target="ZIPCODE"/>

</join>

<key column="DELIV_DATE"/>

<value column="SIGNED_BY"/>
 JDO 2.0 186 February 28, 2006

Java Data Objects 2.0
</field>

</class>

</package>

</orm>

15.3 Relationship Mapping

Column elements used for relationship mapping are contained in either the field element
directly in the case of a simple reference, or in one of the collection, map, or array elements
contained in the field element.

In case only the column name is needed for mapping, the column name might be specified
in the field, collection, or array element directly instead of requiring a column element
with only a name.

The field on the other side of the relationship can be mapped simply by identifying the
field on the other side that defines the mapping, using the mapped-by attribute. Changes
to the field mapped via “mapped-by” are not reflected in the datastore. There is no further
relationship implied by having both sides of the relationship map to the same database col-
umn(s). In particular, making a change to one side of the relationship does not imply any
runtime behavior by the JDO implementation to change the other side of the relationship
in memory, although the column(s) will be changed during commit and will therefore be
visible by both sides in the next transaction.

If two relationships (one on each side of an association) are mapped to the same column,
the field on only one side of the association needs to be explicitly mapped.

The field on the other side of the relationship can be mapped by using the mapped-by at-
tribute identifying the field on the side that defines the mapping. Regardless of which side
changes the relationship, flush (whether done as part of commit or explicitly by the user)
will modify the datastore to reflect the change and will update the memory model for con-
sistency. There is no further behavior implied by having both sides of the relationship map
to the same database column(s). In particular, making a change to one side of the relation-
ship does not imply any runtime behavior by the JDO implementation to change the other
side of the relationship in memory prior to flush, and there is no requirement to load fields
affected by the change if they are not already loaded. This implies that if the RetainVal-
ues flag or DetachAllOnCommit is set to true, and the relationship field is loaded, then
the implementation will change the field on the other side so it is visible after transaction
completion.

Conflicting changes to relationships cause a JDOUserException to be thrown at flush
time. Conflicting changes include:

• adding a related instance with a single-valued mapped-by relationship field to
more than one one-to-many collection relationship

• setting both sides of a one-to-one relationship such that they do not refer to each
other

Mapping Strategies

For single-valued relationships, there are three basic ways to map references from one per-
sistence-capable class (the referring class) to a related class:

• serialized: The entire related instance is serialized into a single column in the
primary or secondary table of the referring class.
 JDO 2.0 187 February 28, 2006

Java Data Objects 2.0
• embedded: The related instance is mapped, field by field, to columns in the
primary or secondary table of the referring class.

• by reference: The related instance is in a different table, and the column in the
primary or secondary table of the referring class contains a reference (often, a
foreign key) to the primary table of the related class.

For multi-valued relationships, there are five basic ways to map references from one per-
sistence-capable class (the referring class) to a related class:

• serialized: The entire collection, array, or map is serialized into a single column in
the primary or secondary table of the referring class.

• serialized in a join table: A join table is used to associate multiple rows in the join
table with a single row in the primary or secondary table of the referring class, and
the related instances are serialized, one per row, into a single column in the join
table.

• embedded in a join table: A join table is used to associate multiple rows in the join
table with a single row in the primary or secondary table of the referring class, and
each related instance is mapped, one per row, field by field, into multiple columns
in the join table.

• by reference to the primary table of the related class: The related class has a
reference (often, a foreign key) to the primary table of the referring class.

• by reference in a join table: A join table is used to associate multiple rows in the
join table with a single row in the primary or secondary table of the referring class,
and a column in the join table contains a reference (often, a foreign key) to the
primary table of the related class.

15.3.1 Many-to-One using foreign key

A many-one mapping (Employee has a reference to Department).

package com.xyz;

public class Department {

String name;

}

public class Employee {
 JDO 2.0 188 February 28, 2006

Java Data Objects 2.0
String ssn;

Department department;

}

CREATE TABLE EMP (

 SSN CHAR(10) PRIMARY KEY,

 DEP_NAME VARCHAR(255)

)

CREATE TABLE DEP (

 NAME VARCHAR(255) PRIMARY KEY

)

<orm>

<package name="com.xyz">

<class name="Employee" table="EMP">

<field name="ssn" column="SSN"/>

<!-- field type is Department -->

<field name="department" column="DEP_NAME"/>

</class>

<class name="Department" table="DEP">

<field name="name" column="NAME"/>

</class>

</package>

</orm>

15.3.2 One-to-Many using foreign key

A one-many mapping (Department has a collection of Employees). This example uses the
same schema as Example 4.
 JDO 2.0 189 February 28, 2006

Java Data Objects 2.0
package com.xyz;

public class Department {

String name;

Collection<Employee> employees;

}

public class Employee {

String ssn;

}

<orm>

<package name="com.xyz">

<class name="Department" table="DEP">

 <field name="name" column="NAME"/>

<!-- field type is Collection<Employee> -->

<field name="employees">

<element column="DEP_NAME"/>

</field>

</class>

<class name="Employee" table="EMP">

<field name="ssn" column="SSN"/>

</class>

</package>

</orm>

15.3.3 Many-to-One and One-to-Many using mapped-by

If both the Employee.department and Department.employees fields exist, only one needs
to be mapped explicitly; one side is specified to be “mapped-by” the other side. The De-
partment side is marked as using the same mapping as a field on the Employee side. This
example uses the same schema as Examples 4 and 5.
 JDO 2.0 190 February 28, 2006

Java Data Objects 2.0
package com.xyz;

public class Department {

String name;

Collection<Employee> employees;

}

public class Employee {

String ssn;

Department department;

}

<orm>

<package name="com.xyz">

<class name="Employee" table="EMP">

<field name="ssn" column="SSN"/>

<field name="department" column="DEP_NAME"/>

</class>

<class name="Department" table="DEP">

 <field name="name" column="NAME"/>

<field name="employees" mapped-by="department"/>

</class>

</package>

</orm>

15.3.4 Many-to-One and One-to-Many using compound foreign key

This example mirrors Example 6, but now Department has a compound primary key.

package com.xyz;

public class Department {
 JDO 2.0 191 February 28, 2006

Java Data Objects 2.0
String name;

Collection<Employee> employees;

long id;

}

public class Employee {

String ssn;

Department department;

}

CREATE TABLE EMP (

 SSN CHAR(10) PRIMARY KEY,

 DEP_NAME VARCHAR(255),

 DEP_ID BIGINT

)

CREATE TABLE DEP (

 NAME VARCHAR(255),

 ID BIGINT,

 PRIMARY KEY (NAME, DEP_ID)

)

<orm>

<package name="com.xyz">

<class name="Employee" table="EMP">

<field name="ssn" column="SSN"/>

<field name="department">

<column name="DEP_NAME" target="NAME"/>

<column name="DEP_ID" target="ID"/>

</field>

</class>

<class name="Department" table="DEP">

<field name="name" column="NAME"/>

<field name="id" column="ID"/>

<field name="employees" mapped-by="department"/>

</class>

</package>

</orm>
 JDO 2.0 192 February 28, 2006

Java Data Objects 2.0
15.3.5 Many-to-One and One-to-Many using Map<Department, String>

Employee has a Map<Department, String> mapping each department the employee
is a member of to her position within that department. Department still has a compound
primary key.

The Map uses a join table that contains one row for each entry in the Map. The columns in
the join table refer to the Employee, the Department, and the position.

package com.xyz;

public class Department {

String name;

long id;

}

public class Employee {

String ssn;

Map<Department,String> positions;

}

CREATE TABLE EMP (

 SSN CHAR(10) PRIMARY KEY

)

CREATE TABLE DEP (

 NAME VARCHAR(255),

 ID BIGINT,

 PRIMARY KEY (NAME, ID)

)

CREATE TABLE EMP_POS (

 EMP_SSN CHAR(10),
 JDO 2.0 193 February 28, 2006

Java Data Objects 2.0
 DEP_NAME VARCHAR(255)

 DEP_ID BIGINT,

 POS VARCHAR(255)

)

<orm>

<package name="com.xyz">

<class name="Employee" table="EMP">

<field name="ssn" column="SSN"/>

<!-- field type is Map<Department, String> -->

<field name="positions" table="EMP_POS">

<join column="EMP_SSN"/>

<key>

<column name="DEP_NAME" target="NAME"/>

<column name="DEP_ID" target="ID"/>

</key>

<value column="POS"/>

</field>

</class>

<class name="Department" table="DEP">

<field name="name" column="NAME"/>

<field name="id" column="ID"/>

</class>

</package>

</orm>

15.3.6 Many-to-One and One-to-Many using Map<String, Employee>

Department has a Map<String, Employee> mapping the role in the department to the
employee. Department still has a compound primary key.

The Map uses the employee’s table that contains the role as well as other employee infor-
mation. The mapping on the Department side uses the mapped-by attribute naming the
field in the Employee that refers to Department. The key uses the mapped-by attribute
naming the field in Employee that contains the key for the map.

package com.xyz;

public class Department {

String name;

long id;

Map<String, Employee> roles;

}

public class Employee {
 JDO 2.0 194 February 28, 2006

Java Data Objects 2.0
String ssn;

Department dept;

String role;

}

CREATE TABLE EMP (

SSN CHAR(10) PRIMARY KEY,

DEPT BIGINT,

ROLE VARCHAR

)

CREATE TABLE DEP (

 NAME VARCHAR(255),

 ID BIGINT,

 PRIMARY KEY (NAME, ID)

)

<orm>

<package name="com.xyz">

<class name="Employee" table="EMP">

<field name="ssn" column="SSN"/>

<field name="dept" column="DEP"/>

<field name="role" column="ROLE"/>

</class>

<class name="Department" table="DEP">

<field name="name" column="NAME"/>

<field name="id" column="ID"/>

<!-- field type is Map<String, Employee> -->

<field name="roles" mapped-by="dept">

<key mapped-by="role"/>

</field>

</class>

</package>

</orm>

15.4 Embedding

Some of the columns in a table might be mapped as a separate Java class to better match
the object model. Embedding works to arbitrary depth.
 JDO 2.0 195 February 28, 2006

Java Data Objects 2.0
15.4.1 Mapping relationships using embedded, referenced, and join table

Employee has a reference to a business address, which is a standard many-one. Employee
also has a primary Address, whose data is embedded within the Employee record. Finally,
Employee has a List<Address> of secondary Address references, whose data is embedded
in the join table.

package com.xyz;

public class Address {

String street;

String city;

String state;

String zip;

}

public class Employee {

String ssn;

Address businessAddress;

Address primaryAddress;

List<Address> secondaryAddresses;

}

CREATE TABLE ADDR (

 STREET VARCHAR(255) PRIMARY KEY,

 CITY VARCHAR(255),

 STATE CHAR(2),

 ZIPCODE VARCHAR(10)

)

CREATE TABLE EMP (

 SSN CHAR(10) PRIMARY KEY,
 JDO 2.0 196 February 28, 2006

Java Data Objects 2.0
 BUSADDR_STREET VARCHAR(255),

 PADDR_STREET VARCHAR(255),

 PADDR_CITY VARCHAR(255),

 PADDR_STATE CHAR(2),

 PADDR_ZIPCODE VARCHAR(10)

)

CREATE TABLE EMP_ADDRS (

 EMP_SSN CHAR(10),

 IDX INTEGER,

 SADDR_STREET VARCHAR(255),

 SADDR_CITY VARCHAR(255),

 SADDR_STATE CHAR(2),

 SADDR_ZIPCODE VARCHAR(10)

)

<orm>

<package name="com.xyz">

<class name="Employee" table="EMP">

<field name="ssn" column="SSN"/>

<!-- field type is Address -->

<field name="businessAddress" column="BUSADDR_STREET"/>

<!-- field type is Address -->

<field name="primaryAddress">

<embedded null-indicator-column="PADDR_STREET">

<field name="street" column="PADDR_STREET"/>

<field name="city" column="PADDR_CITY"/>

<field name="state" column="PADDR_STATE"/>

<field name="zip" column="PADDR_ZIPCODE"/>

</embedded>

</field>

<!-- field type is List<Address> -->

<field name="secondaryAddresses" table="EMP_ADDRS">

<join column="EMP_SSN"/>

<element>

<embedded>

<field name="street" column="SADDR_STREET"/>

<field name="city" column="SADDR_CITY"/>

<field name="state" column="SADDR_STATE"/>
 JDO 2.0 197 February 28, 2006

Java Data Objects 2.0
<field name="zip" column="SADDR_ZIPCODE"/>

</embedded>

</element>

<order column="IDX"/>

</field>

</class>

</package>

</orm>

15.5 Foreign Key Constraints

Foreign keys in metadata serve two quite different purposes. First, when generating sche-
ma, the foreign key element identifies foreign keys to be generated. Second, when using
the database, foreign key elements identify foreign keys that are assumed to exist in the
database. This is important for the runtime to properly order insert, update, and delete
statements to avoid constraint violations. Foreign keys are part of ORM metadata and are
probably meaningless in non-relational implementations.

Foreign key constraints can be generated in three ways:

• Most elements that can include nested column elements can define delete-
action or update-action attributes.

• Most elements that can contain nested column elements can define a nested
foreign-key element. This element has the following attributes:

• name: the name of the generated constraint
• deferred: boolean attribute describing whether the constraint evaluation is

deferred until datastore commit
• delete-action: the foreign key delete action; see below. In this case, the "none"

value is not allowed.
• update-action: the foreign key update action; see below.

• The class element can define foreign-key elements. A class-level foreign-
key element has the name, deferred, delete-action, and update-action
attributes as above.

Note that regardless of which side of a relationship in the object model is mapped, the
meaning of delete action and update action refer to the columns in the datastore, not to the
fields in the object model.

Delete Action, Update Action

The delete-action and update-action attributes have the following permitted values:

• “none”: no foreign key is generated and none is assumed to exist; no special action
is required of the implementation

• “restrict” (the default): a foreign key with the “restrict” delete action is generated
or is assumed to exist; the implementation will require update and delete
statements to be executed in proper sequence

• “cascade”: a foreign key with the “cascade” delete action is generated or is
assumed to exist; the database will automatically delete all rows that refer to the
row being deleted
 JDO 2.0 198 February 28, 2006

Java Data Objects 2.0
• “null”: a foreign key with the “null” delete action is generated or is assumed to
exist; a referring key will be nullified if the target key is updated or deleted

• “default”: a foreign key with the “default” delete action is generated or is assumed
to exist

15.5.1 Many-to-One with foreign key constraint

A many-one relation from Employee to Department, represented by a standard restrict-ac-
tion database foreign key.

package com.xyz;

public class Department {

String name;

long id;

}

public class Employee {

String ssn;

Department department;

}

CREATE TABLE EMP (

 SSN CHAR(10) PRIMARY KEY,

 DEP_NAME VARCHAR(255),

 DEP_ID BIGINT,

 FOREIGN KEY EMP_DEP_FK (DEP_NAME, DEP_ID) REFERENCES DEP (NAME,
ID)

)

CREATE TABLE DEP (

 NAME VARCHAR(255),

 ID BIGINT,
 JDO 2.0 199 February 28, 2006

Java Data Objects 2.0
 PRIMARY KEY (NAME, DEP_ID)

)

<orm>

<package name="com.xyz">

<class name="Employee" table="EMP">

<field name="ssn" column="SSN"/>

<field name="department">

<column name="DEP_NAME" target="NAME"/>

<column name="DEP_ID" target="ID"/>

<foreign-key name="EMP_DEP_FK"/>

</field>

</class>

<class name="Department" table="DEP">

<field name="name" column="NAME"/>

<field name="id" column="ID"/>

</class>

</package>

</orm>

15.6 Indexes

Index definitions are used for schema generation and are not used at runtime. In relational
implementations, they are part of the ORM metadata because their names and extensions
might differ for each database. In non-relational implementations, indexes are part of the
JDO metadata.

Indexes can be defined in three ways:

• Most elements that can include nested column elements can define an indexed
attribute. This attribute has three possible values:

• true: generate a standard index on the datastore representation of the element
• false: do not generate an index on the element
• unique: generate a unique index on the element

• Most elements that can contain nested column elements can define a nested
index element. The element does not contain any elements (aside from possible
extensions). The index is generated on the datastore representation of the parent
element. This element has the following attributes:

• name: the name of the generated index
• unique: boolean attribute describing whether to generate a unique index

• The class element can define nested index elements. A class-level index
element has the attributes outlined above. It can contain column and/or field
elements, each of which is limited to a name attribute referencing a column or field
 JDO 2.0 200 February 28, 2006

Java Data Objects 2.0
defined elsewhere. Field names can use <superclass-name>.<field-name>
syntax to reference superclass fields, <field-name>.<embedded-field-
name> to reference embedded relation fields, and the #key, #value, and
#element suffixes defined for fetch groups to reference parts of a field.

Unique Constraints

Unique constraints are used during schema generation, and may be used at runtime to or-
der datastore operations. Like indexes, they are part of ORM metadata in relational imple-
mentations, and part of JDO metadata in non-relational implementations.

Unique constraints can be defined in the same three general ways as indexes:

• Most elements that can include nested column elements can define an unique
attribute. Possible values are true and false.

• Most elements that can contain nested column elements can define a nested
unique element. This element has the following attributes:

• name: the name of the generated constraint
• deferred: boolean attribute describing whether the constraint evaluation is

deferred until datastore commit
• The class element can contain unique elements. A class-level unique element

has the attributes outlined above. It contains the same possible elements as a class-
level index.

15.6.1 Single-field and Compound Indexes

This example demonstrates single-field and compound indexes.

package com.xyz;

public class Address {

String street;

String city;

String state;

String zip;

}

CREATE TABLE ADDR (

 STREET VARCHAR(255) PRIMARY KEY,
 JDO 2.0 201 February 28, 2006

Java Data Objects 2.0
 CITY VARCHAR(255),

 STATE CHAR(2),

 ZIPCODE VARCHAR(10)

)

<orm>

<package name="com.xyz">

<class name="Address" table="ADDR">

<index name="ADDR_CITYSTATE_IDX">

<column name="CITY"/>

<column name="STATE"/>

</index>

<field name="street" column="STREET"/>

<field name="city" column="CITY"/>

<field name="state" column="STATE"/>

<field name="zip" column="ZIPCODE">

<index name="ADDR_ZIP_IDX"/>

</field>

</class>

</package>

</orm>

15.7 Inheritance

Each class can declare an inheritance strategy. Three strategies are supported by standard
metadata: new-table, superclass-table, and subclass-table.

• new-table creates a new table for the fields of the class.

• superclass-table maps the fields of the class into the superclass table.

• subclass-table forces subclasses to map the fields of the class to their own table.

Using these strategies, standard metadata directly supports several common inheritance
patterns, as well as combinations of these patterns within a single inheritance hierarchy.

One common pattern uses one table for an entire inheritance hierarchy. A column called
the discriminator column is used to determine to which class each row belongs. This pat-
tern is achieved by a strategy of new-table for the base class, and superclass-table for all
subclasses. These are the default strategies for base classes and subclasses when no explic-
it strategy is given.

Another pattern uses multiple tables joined by their primary keys. In this pattern, the ex-
istence of a row in a table determines the class of the row. A discriminator column is not
required, but may be used to increase the efficiency of certain operations. This pattern is
achieved by a strategy of new-table for the base class, and new-table for all subclasses. In
this case, the join element specifies the columns to be used for associating the columns in
the table mapped by the subclass(es) and the table mapped by the superclass.
 JDO 2.0 202 February 28, 2006

Java Data Objects 2.0
A third pattern maps fields of superclasses and subclasses into subclass tables. This pat-
tern is achieved by a strategy of subclass-table for the base class, and new-table for direct
subclasses.

15.8 Versioning

Three common strategies for versioning instances are supported by standard metadata.
These include state-comparison, timestamp, and version-number.

State-comparison involves comparing the values in specific columns to determine if the
database row was changed.

Timestamp involves comparing the value in a date-time column in the table. The first time
in a transaction the row is updated, the timestamp value is updated to the current time.

Version-number involves comparing the value in a numeric column in the table. The first
time in a transaction the row is updated, the version-number column value is incremented.

15.8.1 Inheritance with superclass-table and version

Mapping a subclass to the base class table, and using version-number optimistic version-
ing. Note that in this example, the inheritance strategy attribute is not needed, because this
is the default inheritance pattern. The version strategy attribute is also using the default
value, and could have been omitted. These attributes are included for clarity.

package com.xyz;

public class Employee {

String ssn;

}

public class PartTimeEmployee extends Employee {

double hourlyWage;

}

public class FullTimeEmployee extends Employee {

double salary;

}

CREATE TABLE EMP (
 JDO 2.0 203 February 28, 2006

Java Data Objects 2.0
 SSN CHAR(10) PRIMARY KEY,

 TYPE CHAR(1),

 WAGE FLOAT,

 SALARY FLOAT,

 VERS INTEGER

)

<orm>

<package name="com.xyz">

<class name="Employee" table="EMP">

<inheritance strategy="new-table">

<discriminator value="E" column="TYPE"/>

</inheritance>

<version strategy="version-number" column="VERS"/>

<field name="ssn" column="SSN"/>

</class>

<class name="PartTimeEmployee">

<inheritance strategy="superclass-table">

<discriminator value="P"/>

</inheritance>

<field name="hourlyWage" column="WAGE"/>

</class>

<class name="FullTimeEmployee">

<inheritance strategy="superclass-table">

<discriminator value="F"/>

</inheritance>

<field name="salary" column="SALARY"/>

</class>

</package>

</orm>

15.8.2 Inheritance with new-table and version

Mapping each class to its own table, and using state-image versioning. Though a discrim-
inator is not required for this inheritance pattern, this mapping chooses to use one to make
some actions more efficient. It stores the full Java class name in each row of the base table.
 JDO 2.0 204 February 28, 2006

Java Data Objects 2.0
CREATE TABLE EMP (

 SSN CHAR(10) PRIMARY KEY,

 JAVA_CLS VARCHAR(255)

)

CREATE TABLE PART_EMP (

 EMP_SSN CHAR(10) PRIMARY KEY,

 WAGE FLOAT

)

CREATE TABLE FULL_EMP (

 EMP_SSN CHAR(10) PRIMARY KEY,

 SALARY FLOAT

)

<orm>

<package name="com.xyz">

<class name="Employee" table="EMP">

<inheritance strategy="new-table">

<discriminator strategy="class-name" column="JAVA_CLS"/>

</inheritance>

<version strategy="state-comparison"/>

<field name="ssn" column="SSN"/>

</class>

<class name="PartTimeEmployee" table="PART_EMP">

<inheritance strategy="new-table">

<join column="EMP_SSN"/>

</inheritance>

<field name="hourlyWage" column="WAGE"/>
 JDO 2.0 205 February 28, 2006

Java Data Objects 2.0
</class>

<class name="FullTimeEmployee" table="FULL_EMP">

<inheritance strategy="new-table">

<join column="EMP_SSN"/>

</inheritance>

<field name="salary" column="SALARY"/>

</class>

</package>

</orm>

15.8.3 Inheritance with subclass-table

This example maps superclass fields to each subclass table.

CREATE TABLE PART_EMP (

 EMP_SSN CHAR(10) PRIMARY KEY,

 WAGE FLOAT

)

CREATE TABLE FULL_EMP (

 EMP_SSN CHAR(10) PRIMARY KEY,

 SALARY FLOAT

)

<orm>

<package name="com.xyz">

<class name="Employee">

<inheritance strategy="subclass-table"/>

</class>

<class name="PartTimeEmployee" table="PART_EMP">

<inheritance strategy="new-table"/>

<field name="Employee.ssn" column="EMP_SSN"/>
 JDO 2.0 206 February 28, 2006

Java Data Objects 2.0
<field name="hourlyWage" column="WAGE"/>

</class>

<class name="FullTimeEmployee" table="FULL_EMP">

<inheritance strategy="new-table"/>

<field name="Employee.ssn" column="EMP_SSN"/>

<field name="salary" column="SALARY"/>

</class>

</package>

</orm>
 JDO 2.0 207 February 28, 2006

Java Data Objects 2.0
16 Enterprise Java Beans

Enterprise Java Beans (EJB) is a component architecture for development and deployment
of distributed business applications. Java Data Objects is a suitable component for integra-
tion with EJB in these scenarios:

• Session Beans with JDO persistence-capable classes used to implement dependent
objects;

• Entity Beans with JDO persistence-capable classes used as delegates for both Bean
Managed Persistence and Container Managed Persistence.

16.1 Session Beans

A session bean should be associated with an instance of PersistenceManagerFacto-
ry that is established during a session life cycle event, and each business method should
use an instance of PersistenceManager obtained from the PersistenceManager-
Factory. The timing of when the PersistenceManager is obtained will vary based
on the type of bean.

The bean class should contain instance variables that hold the associated Persistence-
Manager and PersistenceManagerFactory.

During activation of the bean, the PersistenceManagerFactory should be found via
JNDI lookup. The PersistenceManagerFactory should be the same instance for all
beans sharing the same datastore resource. This allows for the PersistenceManager-
Factory to manage an association between the distributed transaction and the Persis-
tenceManager.

When appropriate during the bean life cycle, the PersistenceManager should be ac-
quired by a call to the PersistenceManagerFactory. The PersistenceManager-
Factory should look up the transaction association of the caller, and return a
PersistenceManager with the same transaction association. If there is no Persis-
tenceManager currently enlisted in the caller’s transaction, a new PersistenceMan-
ager should be created and associated with the transaction. The
PersistenceManager should be registered for synchronization callbacks with the
TransactionManager. This provides for transaction completion callbacks asynchro-
nous to the bean life cycle.

The instance variables for a session bean of any type include:

• a reference to the PersistenceManagerFactory, which should be initialized
by the method setSessionContext. This method looks up the
PersistenceManagerFactory by JNDI access to the named object
"java:comp/env/jdo/<persistence manager factory name>".

• a reference to the PersistenceManager, which should be acquired by each
business method, and closed at the end of the business method; and
 JDO 2.0 208 February 28, 2006

Java Data Objects 2.0
• a reference to the SessionContext, which should be initialized by the method
setSessionContext.

16.1.1 Stateless Session Bean with Container Managed Transactions

Stateless session beans are service objects that have no state between business methods.
They are created as needed by the container and are not associated with any one user. A
business method invocation on a remote reference to a stateless session bean might be dis-
patched by the container to any of the available beans in the ready pool.

Each business method must acquire its own PersistenceManager instance from the
PersistenceManagerFactory. This is done via the method getPersistenceM-
anager on the PersistenceManagerFactory instance. This method must be imple-
mented by the JDO vendor to find a PersistenceManager associated with the instance
of javax.transaction.Transaction of the executing thread.

At the end of the business method, the PersistenceManager instance must be closed.
This allows the transaction completion code in the PersistenceManager to free the in-
stance and return it to the available pool in the PersistenceManagerFactory.

16.1.2 Stateful Session Bean with Container Managed Transactions

Stateful session beans are service objects that are created for a particular user, and may
have state between business methods. A business method invocation on a remote refer-
ence to a stateful session bean will be dispatched to the specific instance created by the us-
er.

The behavior of stateful session beans with container managed transactions is otherwise
the same as for stateless session beans. All business methods in the remote interface must
acquire a PersistenceManager at the beginning of the method, and close it at the end,
since the transaction context is managed by the container.

16.1.3 Stateless Session Bean with Bean Managed Transactions

Bean managed transactions offer additional flexibility to the session bean developer, with
additional complexity. Transaction boundaries are established by the bean developer, but
the state (including the PersistenceManager) cannot be retained across business
method boundaries. Therefore, the PersistenceManager must be acquired and closed
by each business method.

The alternative techniques for transaction boundary demarcation are:

• javax.transaction.UserTransaction

If the bean developer directly uses UserTransaction, then the PersistenceManager must be
acquired from the PersistenceManagerFactory only after establishing the correct
transaction context of UserTransaction. During the getPersistenceManager
method, the PersistenceManager will be enlisted in the UserTransaction. How to
test?(JDO must know JTA..) For example, if non-transactional access is required, a Persis-
tenceManager must be acquired when there is no UserTransaction active. After be-
ginning a UserTransaction, a different PersistenceManager must be acquired for
transactional access. The user must keep track of which PersistenceManager is being
used for which transaction.

• javax.jdo.Transaction

If the bean developer chooses to use the same PersistenceManager for multiple trans-
actions, then transaction completion must be done entirely by using the jav-
 JDO 2.0 209 February 28, 2006

Java Data Objects 2.0
ax.jdo.Transaction instance associated with the PersistenceManager. In this
case, acquiring a PersistenceManager without beginning a UserTransaction re-
sults in the PersistenceManager being able to manage transaction boundaries via
begin, commit, and rollback methods on javax.jdo.Transaction. The Per-
sistenceManager will automatically begin the UserTransaction during jav-
ax.jdo.Transaction.begin How to test? and automatically commit the
UserTransaction during javax.jdo.Transaction.commit. How to test?

16.1.4 Stateful Session Bean with Bean Managed Transactions

Stateful session beans allow the bean developer to manage the transaction context as part
of the conversational state of the bean. Thus, it is no longer required to acquire a Persis-
tenceManager in each business method. Instead, the PersistenceManager can be
managed over a longer period of time, and it might be stored as an instance variable of the
bean.

The behavior of stateful session beans is otherwise the same as for stateless session beans.
The user has the choice of using javax.transaction.UserTransaction or jav-
ax.jdo.Transaction for transaction completion.

16.2 Entity Beans

While it is possible for container-managed persistence entity beans to be implemented by
the container using JDO, the implementation details are beyond the scope of this docu-
ment.

It is possible for users to implement bean-managed persistence entity beans using JDO, but
implementation details are container-specific and no recommendations for the general
case are given.
 JDO 2.0 210 February 28, 2006

Java Data Objects 2.0
17 JDO Exceptions

The exception philosophy of JDO is to treat all exceptions as runtime exceptions. This pre-
serves the transparency of the interface to the degree possible, allowing the user to choose
to catch specific exceptions only when required by the application.

JDO implementations will often be built as layers on an underlying datastore interface,
which itself might use a layered protocol to another tier. Therefore, there are many oppor-
tunities for components to fail that are not under the control of the application.

Exceptions thus fall into several broad categories, each of which is treated separately:

• user errors that can be corrected and retried;

• user errors that cannot be corrected because the state of underlying components
has been changed and cannot be undone;

• internal logic errors that should be reported to the JDO vendor’s technical support;

• errors in the underlying datastore that can be corrected and retried;

• errors in the underlying datastore that cannot be corrected due to a failure of the
datastore or communication path to the datastore;

Exceptions that are documented in interfaces that are used by JDO, such as the Collec-
tion interfaces, are used without modification by JDO. JDO exceptions that reflect under-
lying datastore exceptions will wrap the underlying datastore exceptions. JDO exceptions
that are caused by user errors will contain the reason for the exception.

JDO Exceptions must be serializable.

17.1 JDOException

This is the base class for all JDO exceptions. It is a subclass of RuntimeException, and
need not be declared or caught. It includes a descriptive String, an optional nested Excep-
tion array, and an optional failed Object.

Methods are provided to retrieve the nested exception array and failed object. If there are
multiple nested exceptions, then each might contain one failed object. This will be the case
where an operation requires multiple instances, such as commit, makePersistentAll, etc.

If the JDO PersistenceManager is internationalized, then the descriptive string
should be internationalized.

public Throwable[] getNestedExceptions();

This method returns an array of Throwable or null if there are no nested exceptions.

public Object getFailedObject();

This method returns the failed object or null if there is no failed object for this exception.

public Throwable getCause();

This method returns the first nested Throwable or null if there are no nested exceptions.
 JDO 2.0 211 February 28, 2006

Java Data Objects 2.0
17.1.1 JDOFatalException

This is the base class for errors that cannot be retried. It is a derived class of JDOExcep-
tion. This exception generally means that the transaction associated with the Persis-
tenceManager has been rolled back, and the transaction should be abandoned.

17.1.2 JDOCanRetryException

This is the base class for errors that can be retried. It is a derived class of JDOException.

17.1.3 JDOUnsupportedOptionException

This class is a derived class of JDOUserException. This exception is thrown by an im-
plementation to indicate that it does not implement a JDO optional feature.

17.1.4 JDOUserException

This is the base class for user errors that can be retried. It is a derived class of JDOCanRe-
tryException. Some of the reasons for this exception include:

• Object not persistence-capable. This exception is thrown when a method requires
an instance of PersistenceCapable and the instance passed to the method
does not implement PersistenceCapable. The failed Object has the failed
instance.

• Extent not managed. This exception is thrown when getExtent is called with a
class that does not have a managed extent.

• Object exists. This exception is thrown during flush of a new instance or an
instance whose primary key changed where the primary key of the instance
already exists in the datastore. It might also be thrown during makePersistent
if an instance with the same primary key is already in the
PersistenceManager cache. The failed Object is the failed instance.

• Object owned by another PersistenceManager. This exception is thrown
when calling makePersistent, makeTransactional, makeTransient,
evict, refresh, or getObjectId where the instance is already persistent or
transactional in a different PersistenceManager. The failed Object has the
failed instance.

• Non-unique ObjectId not valid after transaction completion. This exception is
thrown when calling getObjectId on an object after transaction completion
where the ObjectId is not managed by the application or datastore.

• Unbound query parameter. This exception is thrown during query compilation or
execution if there is an unbound query parameter.

• Query filter cannot be parsed. This exception is thrown during query compilation
or execution if the filter cannot be parsed.

• Transaction is not active. This exception is thrown if the transaction is not active
and makePersistent, deletePersistent, commit, or rollback is called.

• Object deleted. This exception is thrown if an attempt is made to access any fields
of an instance that was deleted in this transaction (except to read key fields). This
is not the exception thrown if the instance does not exist in the datastore (see
JDOObjectNotFoundException).

• Primary key contains null values. This exception is thrown if the application
identity parameter to getObjectById contains any key field whose value is null.
 JDO 2.0 212 February 28, 2006

Java Data Objects 2.0
17.1.5 JDOFatalUserException

This is the base class for user errors that cannot be retried. It is a derived class of JDOFa-
talException.

• PersistenceManager was closed. This exception is thrown after close()
was called, when any method except isClosed() is executed on the
PersistenceManager instance, or any method is called on the Transaction
instance, or any Query instance, Extent instance, or Iterator instance created
by the PersistenceManager.

• Metadata unavailable. This exception is thrown if a request is made to the
JDOImplHelper for metadata for a class, when the class has not been registered
with the helper.

17.1.6 JDOFatalInternalException

This is the base class for JDO implementation failures. It is a derived class of JDOFatal-
Exception. This exception should be reported to the vendor for corrective action. There
is no user action to recover.

17.1.7 JDODataStoreException

This is the base class for datastore errors that can be retried. It is a derived class of
JDOCanRetryException.

17.1.8 JDOFatalDataStoreException

This is the base class for fatal datastore errors. It is a derived class of JDOFatalExcep-
tion. When this exception is thrown, the transaction has been rolled back.

• Transaction rolled back. This exception is thrown when the datastore rolls back a
transaction without the user asking for it. The cause may be a connection timeout,
an unrecoverable media error, an unrecoverable concurrency conflict, or other
cause outside the user’s control.

17.1.9 JDOObjectNotFoundException

This exception is to notify the application that an object does not exist in the datastore. It
is a derived class of JDODataStoreException. When this exception is thrown during
a transaction, there has been no change in the status of the transaction in progress. If this
exception is a nested exception thrown during commit, then the transaction is rolled back.
This exception is never the result of executing a query. The failedObject contains a ref-
erence to the failed instance. The failed instance is in the hollow state, and has an identity
which can be obtained by calling getObjectId with the instance as a parameter. This
might be used to determine the identity of the instance that cannot be found.

This exception is thrown when a hollow instance is being fetched and the object does not
exist in the datastore. This exception might result from the user executing getObjectBy-
Id with the validate parameter set to true, or from navigating to an object that no long-
er exists in the datastore.

17.1.10 JDOOptimisticVerificationException

This exception is the result of a user commit operation in an optimistic transaction where
the verification of new, modified, or deleted instances fails the verification. It is a derived
class of JDOFatalDataStoreException. This exception contains an array of nested ex-
ceptions, each of which contains an instance that failed verification. The user will never see
this exception except as a result of commit.
 JDO 2.0 213 February 28, 2006

Java Data Objects 2.0
17.1.11 JDODetachedFieldAccessException

This exception is the result of a user accessing a field of a detached instance, where the field
was not copied to the detached instance. It is a derived class of JDOUserException.
 JDO 2.0 214 February 28, 2006

Java Data Objects 2.0
18 XML Metadata

This chapter specifies the metadata that describes a persistence-capable class, optionally
including its mapping to a relational database. The metadata is stored in XML format. For
implementations that support binary compatibility, the information must be available
when the class is enhanced, and might be cached by an implementation for use at runtime.
If the metadata is changed between enhancement and runtime, the behavior is unspeci-
fied.

NOTE: J2SE 5 introduced standard elements for defining the types of collections and
maps. Because of these features, programs compiled with suitable type information
might not need a separate file to describe type information.

Metadata annotations for persistence are being developed in JSR 220. When that speci-
fication is final, an update to the JDO specification to specify support for the annota-
tions will be made.

Metadata files must be available via resources loaded by the same class loader as the class.
These rules apply both to enhancement and to runtime. Hereinafter, the term "metadata"
refers to the aggregate of all XML data for all packages, classes, and mappings, regardless
of their physical packaging.

The metadata associated with each persistence capable class must be contained within one
or more files, and its format is defined by the DTD or xsd. If the metadata in a file is for
only one class, then its file name is <class-name>.jdo. If the metadata is for a package, or a
number of packages, then its file name is package.jdo. In this case, the file is located in one
of several directories: “META-INF”; “WEB-INF”; <none>, in which case the metadata file
name is "package.jdo" with no directory; “<package>/.../<package>”, in which case the
metadata directory name is the partial or full package name with “package.jdo” as the file
name.

Metadata for all classes and interfaces found while processing metadata for any class or
interface must be remembered by the implementation.

Metadata for relational mapping might be contained in the same file as the persistence in-
formation, in which case the naming convention above is used. The mapping metadata
might be contained in a separate file, in which case the metadata file name suffix must be
specified in the PersistenceManagerFactory property javax.jdo.option.Map-
ping. This property is used to construct the file names for the mapping.

NOTE: If the javax.jdo.option.Mapping property is set, then mapping metadata
contained in the .jdo file is not used.

The extension .orm refers to “object repository metadata”. If the mapping is to a repository
type other than relational, the document type will be different, but the file naming conven-
tions are the same.

For example, if the value of javax.jdo.option.Mapping is “mySQL”, then the file
name for the metadata is <class-name>-mySQL.orm or package-mySQL.orm. Similar to
package.jdo, the package-mySQL.orm file is located in one of the following directories:
“META-INF”; “WEB-INF”; <none>, in which case the metadata file name is "package-
 JDO 2.0 215 February 28, 2006

Java Data Objects 2.0
mySQL.orm" with no directory; “<package>/.../<package>”, in which case the metadata
directory name is the partial or full package name with “package-mySQL.orm” as the file
name. If mapping metadata is for only one class, the name of the file is <package>/.../
<package>/<class-name>-mySQL.orm.

When metadata information is needed for a class, and the metadata for that class has not
already been loaded, the metadata is searched for as follows: META-INF/package.jdo,
WEB-INF/package.jdo, package.jdo, <package>/.../<package>/package.jdo, and <pack-
age>/<class>.jdo. Once metadata for a class has been loaded, the metadata will not be re-
placed in memory as long as the class is not garbage collected. Therefore, metadata
contained higher in the search order will always be used instead of metadata contained
lower in the search order.

Similarly, when mapping metadata information is needed for a class, and the mapping
metadata for that class has not already been loaded, the mapping metadata is searched for
as follows: META-INF/package-mySQL.orm, WEB-INF/package-mySQL.orm, package-
mySQL.orm, <package>/.../<package>/package-mySQL.orm, and <package>/.../
<package>/<class-name>-mySQL.orm. Once mapping metadata for a class has been load-
ed, it will not be replaced as long as the class is not garbage collected. Therefore, mapping
metadata contained higher in the search order will always be used instead of metadata
contained lower in the search order.

For example, if the persistence-capable class is com.xyz.Wombat, and there is a file "ME-
TA-INF/package.jdo" containing xml for this class, then its definition is used. If there is no
such file, but there is a file "WEB-INF/package.jdo" containing metadata for
com.xyz.Wombat, then it is used. If there is no such file, but there is a file "package.jdo"
containing metadata for com.xyz.Wombat, then it is used. If there is no such file, but there
is a file "com/package.jdo" containing metadata for com.xyz.Wombat, then it is used. If
there is no such file, but there is a file "com/xyz/package.jdo" containing metadata for
com.xyz.Wombat, then it is used. If there is no such file, but there is a file "com/xyz/
Wombat.jdo", then it is used. If there is no such file, then com.xyz.Wombat is not persis-
tence-capable.

Note that this search order is optimized for implementations that cache metadata informa-
tion as soon as it is encountered so as to optimize the number of file accesses needed to
load the metadata. Further, if metadata is not in the natural location, it might override
metadata that is in the natural location. For example, while looking for metadata for class
com.xyz.Wombat, the file com/package.jdo might contain metadata for class org.ac-
me.Grumpy. In this case, subsequent search of metadata for org.acme.Grumpy will find
the cached metadata and none of the usual locations for metadata will be searched.

The metadata must declare all persistence-capable classes. If any field or property decla-
rations are missing from the metadata, then field or property metadata is defaulted for the
missing declarations. The JDO implementation is able to determine based on the metadata
whether a class is persistence-capable or not. Any class not known to be persistence-capa-
ble by the JDO specification (for example, java.lang.Integer) and not explicitly named in
the metadata is not persistence-capable.

Classes and interfaces used in metadata follow the Java rules for naming. If the class or in-
terface name is unqualified, the package name is the name of the enclosing package. Inner
classes are identified by the “$” marker.

For compatibility with installed applications, a JDO implementation might first use the
search order as specified in the JDO 1.0 or 1.0.1 releases. In this case, if metadata is not
found, then the search order as specified in JDO 2.0 must be used. Refer to Chapter 25 for
details.
 JDO 2.0 216 February 28, 2006

Java Data Objects 2.0
For convenience, the metadata allows for the same information to be declared in multiple
places. It is an error if conflicting information is declared in more than one place. For ex-
ample, the name of the column for a field might be declared either in the column attribute
on the field element, or in the name attribute in the column element contained in the field.
If declared in both places, the information must be identical or an error must be reported
by the JDO implementation.

Mapping to Relational Databases

Mapping is done by specifying associations from classes and interfaces to tables, and fields
to columns.

Tables are generally specified by name. Table names can be declared as "<database>.<cat-
alog>.<schema>.<table-name>", where database, catalog, and schema are optional. If not
specified in any metadata, catalog and schema are taken from the PersistenceMan-
agerFactory properties catalog and schema. If not specified in PersistenceMan-
agerFactory, they are defaulted by the JDBC connection.

Catalog and schema attributes apply to jdo, orm, package, class, and interface elements,
and specify the catalog and schema to be used when defining and using schema. If de-
clared at the jdo, orm, package, class or interface level, it specifies the catalog and/or sche-
ma to be used as the default for tables contained therein.

18.1 ELEMENT jdo

This element is the highest level element in the xml document. It is used to allow multiple
packages to be described in the same document. It contains multiple package and query
elements and optional extension elements.

18.2 ELEMENT package

This element includes all classes in a particular package. The complete qualified package
name defaults to the empty package, but it is highly recommended to specify it. It contains
multiple class and interface elements and optional extension elements.

18.3 ELEMENT interface

The interface element declares a persistence-capable interface. Instances of a vendor-
specific type that implement this interface can be created using the newInstance(Class
persistenceCapable) method in PersistenceManager, and these instances may be
made persistent.

The JDO implementation must maintain an extent for persistent instances of persistence-
capable classes that implement this interface.

The requires-extent attribute is optional. If set to “false”, the JDO implementation
does not need to support extents of factory-made persistent instances. It defaults to
“true”.

The attribute name is required, and is the name of the interface.

The attribute table is optional, and is the name of the table to be used to store persistent
instances of this interface.

The detachable attribute specifies whether persistent instances of this interface can be
detached from the persistence context and later attached to the same or a different persis-
tence context. The default is false.
 JDO 2.0 217 February 28, 2006

Java Data Objects 2.0
Persistent fields declared in the interface are defined as those that have both a get and a
set method or both an is and a set method, named according to the JavaBeans naming
conventions, and of a type supported as a persistent type.

The implementing class will provide a suitable implementation for all property access
methods and will throw JDOUserException for all other methods of the interface.

This element might contain property elements to specify the mapping to relational col-
umns.

Interface inheritance is supported.

18.4 ELEMENT column

The column element identifies a column in a mapped table. This element is used for map-
ping fields, collection elements, array elements, keys, values, datastore identity, applica-
tion identity, and properties.

NOTE: Any time an element can contain a column element that is only used to name the
column, a column attribute can be used instead.

The name attribute declares the name of the column in the database. The name might be
fully qualified as <table-name>.<column-name> and <table-name> might be defaulted in
context.

The target attribute declares the name of the primary key column for the referenced ta-
ble. For columns contained in join elements, this is the name of the primary key column in
the primary table. For columns contained in field, element, key, value, or array elements,
the target attribute is the name of the primary key column of the primary table of the
other side of the relationship.

The target-field attribute might be used instead of the target attribute to declare the
name of the field to which the column refers. This is useful in cases where there are differ-
ent mappings of the referenced field in different subclasses.

The jdbc-type attribute is used to determine the type of the column in the database. This
type is defaulted based on the type of the field being mapped. Valid types are all upper-
case or all lower-case CHAR, VARCHAR, LONGVARCHAR, NUMERIC, DECIMAL, BIT,
TINYINT, SMALLINT, INTEGER, BIGINT, REAL, FLOAT, DOUBLE, BINARY, VARBI-
NARY, LONGVARBINARY, DATE, TIME, and TIMESTAMP, and others as may be de-
fined by future versions of the JDBC specification. This attribute is only needed if the
default type is not suitable.

The jdbc-type is also used when mapping element, key, value, and order elements
of collections, arrays, and maps. The java type for the column mapped to an order ele-
ment is assumed to be int.

For example, when mapping a Map<Integer, Employee> to a join table, the jdbc-type
for the column mapped to the key (Integer) will default to INTEGER, whereas there is no
default jdbc-type for the column mapped to the value (Employee).
 JDO 2.0 218 February 28, 2006

Java Data Objects 2.0
Table 8: Default jdbc-type

Java type Default jdbc-type Comments

boolean BIT

java.lang.Boolean BIT

char CHAR

java.lang.Character CHAR

byte TINYINT

java.lang.Byte TINYINT

short SMALLINT

java.lang.Short SMALLINT

int INTEGER

java.lang.Integer INTEGER

long BIGINT

java.lang.Long BIGINT

float FLOAT

java.lang.Float FLOAT

double DOUBLE

java.lang.Double DOUBLE

java.util.Date TIMESTAMP

java.sql.Date DATE

java.sql.Time TIME

java.sql.Timestamp TIMESTAMP

java.lang.Object none

java.lang.String VARCHAR

java.util.Locale VARCHAR

java.util.Currency VARCHAR

java.math.BigInteger NUMERIC

java.math.BigDecimal DECIMAL

interfaces none
 JDO 2.0 219 February 28, 2006

Java Data Objects 2.0
In many cases, the default for the jdbc-type attribute based on the field type is sufficient.
For cases where this information is used to create datastore schema, the jdo implementa-
tion is free to map the column type suitable for the datastore being used based on the spec-
ified jdbc-type , length, and scale.

The sql-type attribute declares the type of the column in the database. This type is da-
tabase-specific and should only be used where the user needs more explicit control over
the mapping. Normally, the combination of jdbc-type. length, and scale are suffi-
cient for the JDO implementation to calculate the sql-type.

The length attribute declares the number of characters in the datastore representation of
numeric, char[], and Character[] types; and the maximum number of characters in
the datastore representation of String types. The default is 256.

The scale attribute declares the scale of the numeric representation in the database. The
default is 0.

The allows-null attribute specifies whether null values are allowed in the column,
and is defaulted based on the type of the field being mapped. The default is “true” for
reference field types and “false” for primitive field types.

The insert-value attribute specifies the value to be inserted into the datastore in case a
column is not mapped to any field in the object model. In this case, the column element
must be directly contained in a class element, and the column must not be mapped to a
field.

The default-value attribute specifies the database-assigned default value for the col-
umn if no value is explicitly assigned to the column on insert. Implementations might use
the value of this attribute to set the appropriate column default when generating schema.

18.5 ELEMENT class

The class element includes field elements declared in a persistence-capable class, and
optional vendor extensions.

The name attribute of the class is required. It specifies the unqualified class name of the
class. The class name is scoped by the name of the package in which the class element is
contained.

The persistence-modifier attribute specifies whether this class is persistence-capa-
ble, persistence-aware, or non-persistent. Persistence-aware and non-persistent classes
must not include any attributes or elements except for the name and persistence-mod-
ifier attributes. Declaring persistence-aware and non-persistent classes might provide a
performance improvement for enhancement and runtime, as the search algorithm for met-
data need not be exhaustive.

The detachable attribute specifies whether instances of this class can be detached from
the persistence context and later attached to the same or a different persistence context. If
a class is declared as detachable, then all its persistence-capable subclasses are also detach-
able. The default is false.

mapped as serialized LONG VARBINARY

persistence-capable types none

Table 8: Default jdbc-type

Java type Default jdbc-type Comments
 JDO 2.0 220 February 28, 2006

Java Data Objects 2.0
The embedded-only attribute declares whether instances of this class are permitted to
exist as first-class instances in the datastore. A value of “true” means that instances can
only be embedded in other first-class instances., and precludes mapping this class to its
own table.

The identity type of the least-derived persistence-capable class defines the identity type for
all persistence-capable classes that extend it.

The identity type of the least-derived persistence-capable class is defaulted to applica-
tion if any field declares the primary-key attribute to be true; and datastore, if not.
If the identity type is application, the object-id class is not specified, and there is one pri-
mary key field that matches the type of a single field identity class, then the object-id class
defaults to that single field identity class.

The requires-extent attribute specifies whether an extent must be managed for this
class. The PersistenceManager.getExtent method can be executed only for class-
es whose metadata attribute requires-extent is specified or defaults to true. If the
PersistenceManager.getExtent method is executed for a class whose metadata
specifies requires-extent as false, a JDOUserException is thrown. If re-
quires-extent is specified or defaults to true for a class, then requires-extent
must not be specified as false for any subclass.

The persistence-capable-superclass attribute is deprecated for this release. The
attribute will be ignored so metadata files from previous releases can be used.A number
of join elements might be contained in the class element. Each join element defines a
table and associated join conditions that can be used by multiple fields in the mapping.

The objectid-class attribute identifies the name of the objectid class. If not specified,
there must be only one primary key field, and the objectid-class defaults to the ap-
propriate simple identity class.

The objectid-class attribute is required only for abstract classes and classes with
multiple key fields. If the objectid-class attribute is defined in any concrete persis-
tence-capable class, then the objectid class itself must be concrete, and no subclass of the
persistence-capable class may include the objectid-class attribute. If the objec-
tid-class attribute is defined for any abstract class, then:

• the objectid class of this class must directly inherit Object or must be a subclass
of the objectid class of the most immediate abstract persistence-capable superclass
that defines an objectid class; and

• if the objectid class is abstract, the objectid class of this class must be a superclass
of the objectid class of the most immediate subclasses that define an objectid class;
and

• if the objectid class is concrete, no subclass of this persistence-capable class may
define an objectid class.

The effect of this is that objectid classes form an inheritance hierarchy corresponding to the
inheritance hierarchy of the persistence-capable classes. Associated with every concrete
persistence-capable class is exactly one objectid class.

The objectid class must declare fields identical in name and type to fields declared in this
class.

The table attribute names the primary table to which fields declared in this class metadata
are mapped.

Foreign keys, indexes, and join tables can be specified at the class level. If they are specified
at this level, column information might only be the names of the columns.
 JDO 2.0 221 February 28, 2006

Java Data Objects 2.0
Column elements can be added to the class element to describe columns that are not
mapped to fields. In this case, the insert-value attribute can be used to specify the value to
insert into the column when a new instance is inserted into the datastore.

18.5.1 ELEMENT datastore-identity

The datastore-identity element declares the strategy for implementing datastore
identity for the class, including the mapping of the identity columns of the relational table.

The strategy attribute identifies the strategy for mapping.

• The value “native” allows the JDO implementation to pick the most suitable
strategy based on the underlying database.

• The value “sequence” specifies that a named database sequence is used to
generate key values for the table. If sequence is used, then the sequence
attribute is required.

• The value “autoassign” specifies that the column identified as the key column
is managed by the database to automatically increment key values.

• The value “identity” specifies that the column identified as the key column is
managed by the database as an identity type.

• The value “increment” specifies a strategy that simply finds the largest key
already in the database and increments the key value for new instances. It can be
used with integral column types when the JDO application is the only database
user inserting new instances.

• The value “uuid-string” specifies a strategy that generates a 128-bit UUID
unique within a network (the IP address of the machine running the application is
part of the id) and represents the result as a 16-character String.

• The value “uuid-hex” specifies a strategy that generates a 128-bit UUID unique
within a network (the IP address of the machine running the application is part of
the id) and represents the result as a 32-character String.

The sequence attribute names the sequence used to generate key values. This must cor-
respond to a named sequence in the JDO metadata. If this attribute is used, the strategy
defaults to “sequence”.

The column elements identify the primary key columns for the table in the database.

18.5.2 ELEMENT version

The version element is contained in the class element, and declares the version strate-
gy and optionally the column(s) used for the version strategy.

The strategy attribute defines the strategy for managing the version of an instance. Four
strategy attribute values are standard:

• none: no version checking is done; changed values overwrite values in the
datastore

• version-number: a rolling number is used as the version number

• state-image: the values of fields are used in aggregate as the version

• date-time: a clock timestamp (date-plus-time) value is used as the version

The column attribute declares the name of the column to hold the version. It is used in-
stead of the contained column element in case only the column name is needed.
 JDO 2.0 222 February 28, 2006

Java Data Objects 2.0
The version element might contain one or more column elements that declare the col-
umns to use to hold the version.

18.6 ELEMENT primary-key

The primary-key element provides the mapping for the primary key constraint for the
table associated with the enclosing element (class, join, or interface). Its primary
use is to specify the name of the primary key constraint in case of Java-to-database map-
ping. In this case, the element is typically specified as:

<primary-key name="EMP_PK"/>

It is also optionally used to specify the column to be used for surrogate primary key with
application identity. In this case, the primary key fields do not provide the primary key of
the database. This mapping is not required to be supported by the JDO implementation.
For example:

<class name="Employee" identity-type="application">

 <primary-key name="EMP_PK" column="SURR_PK"/>

...

</class>

It is also optionally used to specify the constraint name and column names of a primary
key constraint for tables associated with the class, such as join tables or secondary tables.
To specify the primary key constraint for a join table, the primary-key element is con-
tained within the join element. For example:

<field name="projects" table="EMP_PROJ">

<collection element-type="Project"/>

<join>

<primary-key name="EMP_PROJ_PK">

<column name="EMPID"/>

<column name="PROJID"/>

</primary-key>

<column name="EMPID" target="ID"/>

</join>

<element>

<column name="PROJID" target="ID"/>

</element>

</field>

If used to specify the primary key for a subclass using new-table inheritance strategy with
a join to the superclass table, the primary-key element is put at the class level and not in
the join element of the inheritance element.

18.7 ELEMENT join

The join element declares the table to be used in the mapping and the join conditions to
associate rows in the joined table to the primary table.
 JDO 2.0 223 February 28, 2006

Java Data Objects 2.0
The table attribute specifies the name of the table in the case of secondary table mappings
(at least one table in addition to the primary table contain columns mapped to fields). In
this case, the join element is nested in the class element.

For join elements nested inside field elements, the table attribute is not allowed. The
table attribute from the field element specifies the table to which the join applies.

One or more column elements are contained within the join element. The column ele-
ments name the columns used to join to the primary key columns of the primary table. If
there are multiple key columns, then the target attribute is required in each column el-
ement, and each names the corresponding primary key column of the primary table.

The table being joined might not have a row for each row in the referring table; in order to
access rows in this table, an outer join is needed. The outer attribute indicates that an out-
er join is needed. The default is false.

18.8 ELEMENT inheritance

The inheritance element declares the mapping for inheritance.

The strategy attribute declares the strategy for mapping:

• The value “subclass-table” means that this class does not have its own table.
All of its fields are mapped by subclasses.

• The value “new-table” means that this class has its own table into which by
default all of its fields are mapped. There might be a table attribute specified in the
class element. This is the default for the topmost (least derived) class in an
inheritance hierarchy.

• The value “superclass-table” means that this class does not have its own
table. All of its fields by default are mapped into tables of its superclass(es). This is
the default for all classes except for the topmost class in an inheritance hierarchy.

18.9 ELEMENT discriminator

The discriminator element is used when a column is used to identify what class is as-
sociated with the primary key value in a table mapped to a superclass.

In the least-derived class in the hierarchy that uses the discriminator strategy, declare the
discriminator element with a strategy and column. If the strategy is “value-map”, then
for each concrete subclass, define the discriminator element with a value attribute. If the
strategy is “class-name” then subclasses do not need a discriminator element; the name
of the class is stored as the value for the row in the table. If the value attribute is given, then
the strategy defaults to “value-map”.

The strategy “none” declares that there is no discriminator column.

18.10 ELEMENT implements

The implements element declares a persistence-capable interface implemented by the
persistence-capable class that contains this element. An extent of persistence-capable class-
es that implement this interface is managed by the JDO implementation. The extent can be
used for queries or for iteration just like an extent of persistence-capable instances.
 JDO 2.0 224 February 28, 2006

Java Data Objects 2.0
The attribute name is required, and is the name of the interface. The java class naming rules
apply: if the interface name is unqualified, the package is the name of the enclosing pack-
age.

18.11 ELEMENT foreign-key

The foreign-key element specifies characteristics of a foreign key associated with the
containing join, field, key, value, or element.

To specify that there is a foreign key associated with the containing element, without spec-
ifying the name of the foreign key, the foreign-key element can be used with no at-
tributes or contained elements.

If this element is specified at the class level, then column elements contained in the for-
eign-key element might contain only the name attribute.

18.11.1 ATTRIBUTE update-action

The update-action attribute specifies the generated or assumed foreign key constraint
defined in the datastore. The implementation might optimize its behavior based on these
constraints but they do not affect the object model. The permitted values restrict, cas-
cade, default, null, and none correspond to the meaning of these terms in SQL.

18.11.2 ATTRIBUTE delete-action

The delete-action attribute specifies the generated or assumed foreign key constraint
defined in the datastore. The implementation might optimize its behavior based on these
constraints but they do not affect the object model. The permitted values restrict, cas-
cade, default, null, and none correspond to the meaning of these terms in SQL.

18.11.3 ATTRIBUTE deferred

The deferred attribute specifies whether constraint checking on the containing element is
defined in the database as being deferred until commit. This allows an optimization by the
JDO implementation, and might allow certain operations to succeed where they would
normally fail. For example, to exchange unique references between pairs of objects re-
quires that the unique constraint columns temporarily contain duplicate values.

Possible values are “true” and “false”. The default is “false”.

18.11.4 ATTRIBUTE name

The name attribute specifies the name of the foreign key constraint to generate for this
mapping. This attribute is used if the name of the foreign key needs to be specified.

18.12 ELEMENT unique

The unique element specifies characteristics of a unique key associated with the contain-
ing join, field, key, value, or element.

To specify that there is a unique key associated with the containing element, without spec-
ifying the name of the unique key, the unique element can be used with no attributes or
contained elements. Alternatively, the unique attribute can be used.

If this element is specified at the class level, then column elements contained in the
unique element might contain only the name attribute.
 JDO 2.0 225 February 28, 2006

Java Data Objects 2.0
18.13 ELEMENT index

The index element specifies characteristics of an index associated with the containing
join, field, key, value, or element.

To specify that there is an index associated with the containing element, without specify-
ing the name of the index, the index element can be used with no attributes or contained
elements. Alternatively, the indexed attribute can be used.

If this element is specified at the class level, then column elements contained in the for-
eign-key element might contain only the name attribute.

18.14 ELEMENT property

When contained in a class element,

• the property element declares the mapping between a virtual field of an
implemented interface and the corresponding persistent field of the persistence-
capable class.

• the name attribute is required, and declares the name for the property. The naming
conventions for JavaBeans property names is used: the property name is the same
as the corresponding get method for the property with the get or is removed
and the resulting name lower-cased.

• the mapped-by attribute specifies that the field is mapped to the same database
column(s) as the named field in the other class.

• the field-name attribute is required; it associates a persistent field with the
named property.

When contained in an interface element,

• property elements declare the mapping for persistent properties of the interface.

• The name attribute is required and must match the name of a property in the
interface.

• This element might contain column elements to specify the mapping to relational
columns.

• the mapped-by attribute specifies that the field is mapped to the same database
column(s) as the named field in the other class.

• The element might contain collection, map, or array elements to specify the
characteristics of the property.

18.15 ELEMENT field

The field element is optional, and the name attribute is the field name as declared in the
class. If the field declaration is omitted in the xml, then the values of the attributes are de-
faulted.

The persistence-modifier attribute specifies whether this field is persistent, trans-
actional, or none of these. The persistence-modifier attribute can be specified only
for fields declared in the Java class, and not fields inherited from superclasses. There is
special treatment for fields whose persistence-modifier is persistent or
transactional.
 JDO 2.0 226 February 28, 2006

Java Data Objects 2.0
Default persistence-modifier

The default for the persistence-modifier attribute is based on the Java type and
modifiers of the field:

• Fields with modifier static: none. No accessors or mutators will be generated
for these fields during enhancement.

• Fields with modifier transient: none. Accessors and mutators will be
generated for these fields during enhancement, but they will not delegate to the
StateManager.

• Fields with modifier final: none. Accessors will be generated for these fields
during enhancement, but they will not delegate to the StateManager.

• Fields of a type declared to be persistence-capable: persistent.

• Fields of the following types: persistent:

• primitives: boolean, byte, short, int, long, char, float, double;
• java.lang wrappers: Boolean, Byte, Short, Integer, Long, Character,
Float, Double;

• java.lang: String, Number;
• java.math: BigDecimal, BigInteger;
• java.util: Currency, Date, Locale, ArrayList, HashMap, HashSet,
Hashtable, LinkedHashMap, LinkedHashSet, LinkedList, TreeMap,
TreeSet, Vector, Collection, Set, List, and Map;

• Arrays of primitive types, java.util.Date, java.util.Locale,
java.lang and java.math types specified immediately above, and
persistence-capable types.

• Fields of types of user-defined classes and interfaces not mentioned above: none.
No accessors or mutators will be generated for these fields.

The null-value attribute specifies the treatment of null values for persistent fields
during storage in the datastore. The default is "none".

• "none": store null values as null in the datastore, and throw a
JDOUserException if null values cannot be stored by the datastore.

• "exception": always throw a JDOUserException if this field contains a
null value at runtime when the instance must be stored;

• "default": convert the value to the datastore default value if this field contains
a null value at runtime when the instance must be stored.

The default-fetch-group attribute specifies whether this field is managed as a
group with other fields. It defaults to "true" for non-key fields of primitive types, ja-
va.util.Date, and fields of java.lang, java.math types specified above.

The load-fetch-group attribute specifies the name of the fetch group to be used when
this field is loaded due to being referenced when unloaded. It does not apply to queries,
navigation, or getObjectById of instances of the declaring class.

• The load-fetch-group is added to the fetch groups in the
PersistenceManager’s FetchPlan to create the effective fetch groups for
loading the unloaded field. The unloaded field is also added to the fields in the
effective fetch groups in case the unloaded field is not already defined in the
effective fetch groups.
 JDO 2.0 227 February 28, 2006

Java Data Objects 2.0
• The effective fetch groups are used to retrieve unloaded fields into the instance
containing the unloaded field.

• If any relationship fields are included in the effective fetch groups, then the
referred instances are loaded according to the effective fetch groups.

Embedded

The embedded attribute specifies whether the field should be stored as part of the con-
taining instance instead of as its own instance in the datastore. It must be specified or de-
fault to "true" for fields of primitive types, wrappers, java.lang, java.math,
java.util, collection, map, and array types specified above; and “false” for other
types including persistence-capable types, interface types and the Object type. Thus,
specifying this attribute is not usually necessary. While a compliant implementation is per-
mitted to support these types as first class instances in the datastore, the semantics of em-
bedded=”true” imply containment. That is, the embedded instances have no
independent existence in the datastore and have no Extent representation.

For relational mapping, the embedded attribute is not used for collection, map, and array
types, but is only used for persistence-capable types, interface types, and the Object type.
For other datastores, it only applies to the structure of the type, not to the elements, keys,
and values. That is, the collection instance itself is considered separate from its contents.
The contents of these types may separately be specified to be embedded or not, using em-
bedded-element, embedded-key, and embedded-value attributes of the collec-
tion, array, and map elements.

Embedded-element, embedded-key, and embedded-value apply to the storage of the
element, key, and value instances contained in the collection, array, or map. Similar to the
embedded attribute, for relational mapping these are only applicable to persistence-capa-
ble types, interface types, and the Object type. For other datastores, these attributes de-
fault to “true” for elements, keys, and values of wrapper types, java.lang types,
java.math types and for the types explicitly mapped using the embedded element con-
tained in the element, key, and value elements. Like the embedded attribute, usually
embedded-element, embedded-key, and embedded-value will default appropriate-
ly and need not be specified.

The embedded attribute applied to a field of a persistence-capable type specifies that the
implementation will treat the field as a Second Class Object.

The serialized attribute indicates that the field is to be serialized for storage using
writeObject, and cannot be queried.

The attributes serialized=”true” and embedded=”true”are mutually exclusive.

A portable application must not assign instances of mutable classes to multiple embedded
fields, and must not compare values of these fields using Java identity (“f1==f2”).

The embedded element is used to specify the field mappings for embedded persistence-
capable types.

The dependent attribute specifies that the field contains a reference to a referred instance
that is to be deleted from the datastore if the instance in which the field is declared is de-
leted, or if the referring field is nullified.

Dependent defaults to true if either serialized=”true” or embedded=”true” is
specified.

The field-type attribute is used to specify a more restrictive type than the field defini-
tion in the class. This might be required in order to map the field to the datastore. To be
portable, specify the name of a single type that is itself able to be mapped to the datastore
 JDO 2.0 228 February 28, 2006

Java Data Objects 2.0
(e.g. a field of type Object can specify field-type=”Integer”). To specify multiple
types that the field might contain, use a comma-separated list of types, although this can-
not be portably mapped. Rules for type names are as specified in collection element-
type.

Column Mapping

Non-relationship fields are mapped to one or more columns in the primary table, a second-
ary table, or a join table. Relationship fields can additionally be mapped to columns in the
primary or secondary table of the associated class. The table attribute in the field element
identifies one of the three tables. If not specified, the table attribute defaults to the primary
table.

Secondary tables are used for mapping single-valued types (primitive, wrapper, ja-
va.util.Date, String, etc.). There is one row in the secondary table for each row in the
primary table. The column or columns to which the field is mapped refers to a column or
columns in the secondary table.

Join tables can be used for mapping multi-valued types (collection, array, and map types).
There are multiple rows in the join table for each row in the primary table. The column or
columns to which the field is mapped refers to a column or columns in the join table.

A portable mapping for arrays, collections, and maps will include a primary key on the
join table.

A special case involves self-referencing fields, in which the type of a field is the same as its
class (or the element, key, or value type is the same). A column mapped to a self-referenc-
ing field is in the primary table of the class, and contains a reference to the primary key of
the primary table.

If a join element is specified as part of the field mapping, the join column (or columns) pro-
vide the join condition to relate the primary table of the class to the table specified in the
field. In this case the table attribute in the join element is not used.

The following field declarations are mutually exclusive; it is a user error to specify more
than one mutually exclusive declaration:

• default-fetch-group = “true”

• primary-key = “true”

• persistence-modifier = “transactional” or “none”

If default-fetch-group is specified as true, then primary-key is set to false
and persistence-modifier is set to persistent.

If primary-key is specified as true, then default-fetch-group is set to false
and persistence-modifier is set to persistent.

If persistence-modifier is specified as transactional or none, default-
fetch-group is set to false and primary-key is set to false.

The table attribute specifies the name of the table mapped to this field. It defaults to the
table declared in the enclosing class element.

The column elements specify the column(s) mapped to this field. Normally, only one col-
umn is mapped to a field. If multiple columns are mapped, then the behavior is implemen-
tation-specific.

The mapped-by attribute specifies that the field is mapped to the same database col-
umn(s) as the named field in the other class.
 JDO 2.0 229 February 28, 2006

Java Data Objects 2.0
The value-strategy attribute specifies the strategy used to generate values for the field.
This attribute has the same values and meaning as the strategy attribute in datastore-
identity.

If the value-strategy is sequence, the sequence attribute specifies the name of the
sequence to use to automatically generate a value for the field. This value is used only for
persistent-new instances at the time makePersistent is called.

Subclasses might map fields of their superclasses. In this case, the field name is specified
as <superclass>.<superclass-field-name>.

Foreign key

The delete-action, update-action, indexed, and unique attributes specify the
characteristics of a constraint to be generated or assumed to exist in the database, corre-
sponding to the mapped column or columns.

18.15.1 ELEMENT collection

This element specifies the element type of collection typed fields. The default is Collec-
tion typed fields are persistent, and the element type is Object.

The element-type attribute specifies the type of the elements. The type name uses Java
language rules for naming: if no package is included in the name, the package name is as-
sumed to be the same package as the persistence-capable class. Inner classes are identified
by the "$" marker. Classes Boolean, Byte, Character, Double, Float, Integer,
Long, Number, Object, Short, String, and StringBuffer are treated exactly as in the
Java language: they are first checked to see if they are in the package in which they are
used, and if not, assumed to be in the java.lang package. To be portable, specify the
name of a single type that is itself able to be mapped to the datastore (e.g. a field of type
Object can specify field-type=”Integer”). To specify multiple types that the field
might contain, use a comma-separated list of types, although this cannot be portably
mapped.

The embedded-element attribute specifies whether the values of the elements should
be stored as part of the containing instance instead of as their own instances in the datas-
tore. It defaults to "false" for persistence-capable types, the Object type, interface
types and multi-valued types; and "true" for primitive types, wrapper types, and single-
valued Object types including String, Date, and Locale. It also defaults to true if the
element element contains the embedded element specifying the embedded mapping of
the element.

The embedded treatment of the collection instance itself is governed by the embedded at-
tribute of the field element.

The dependent-element attribute indicates that the collection’s element contains a ref-
erence to a referred instance that is to be deleted if the referring instance is deleted, the col-
lection is replaced, or the reference is nullified or removed from the collection.

The element element contained in the field element specifies the mapping of elements
in the collection.

The serialized-element attribute indicates that the array element is to be serialized
for storage using writeObject, and cannot be queried.

The attributes serialized-element=”true” and embedded-element=”true”are
mutually exclusive.
 JDO 2.0 230 February 28, 2006

Java Data Objects 2.0
18.15.2 ELEMENT map

This element specifies the treatment of keys and values of map typed fields. The default is
map typed fields are persistent, and the key and value types are Object.

The key-type and value-type attributes specify the types of the key and value, re-
spectively. They follow the same rules as element-type in element collection.

The embedded-key and embedded-value attributes specify whether the key and val-
ue should be stored as part of the containing instance instead of as their own instances in
the datastore. They default to "false" for persistence-capable types, the Object type,
interface types and multi-valued types; and "true" for primitive types, wrapper types,
and single-valued Object types including String, Date, and Locale. They also default
to "true" if the key or value elements contain the embedded element specifying the
embedded mapping of the key or value.

The serialized-key attribute indicates that the map key is to be serialized for storage
using writeObject, and cannot be queried.

The attributes serialized-key=”true” and embedded-key=”true”are mutually
exclusive.

The embedded treatment of the map instance itself is governed by the embedded attribute
of the field element.

The dependent-key attribute indicates that the collection’s key contains references that
are to be deleted if the referring instance is deleted, the map is replaced, or the key is re-
moved from the map.

The dependent-value attribute indicates that the collection’s value contains references
that are to be deleted if the referring instance is deleted, the map is replaced, or the value
is removed from the map.

The serialized-value attribute indicates that the map value is to be serialized for stor-
age using writeObject, and cannot be queried.

The attributes serialized-value=”true” and embedded-value=”true”are mutu-
ally exclusive.

18.15.3 ELEMENT array

This element specifies the treatment of array typed fields. The default persistence-modifier
for array typed fields is based on the Java type of the component and modifiers of the field,
according to the rules in section 18.10.

The element-type attribute is used to specify a more restrictive type than the field def-
inition in the class. This might be required in order to map the field to the datastore. It fol-
lows the same rules as element-type in element collection.

The embedded-element attribute specifies whether the values of the components
should be stored as part of the containing instance instead of as their own instances in the
datastore. It defaults to "false" for persistence-capable types, the Object type, inter-
face types and multi-valued types; and "true" for primitive types, wrapper types, and
single-valued Object types including String, Date, and Locale. It also defaults to
true if the element element contains the embedded element specifying the embedded
mapping of the element.

The dependent-element attribute indicates that the array element contains a reference
that is to be deleted if the referring instance is deleted, the array is replaced, or the refer-
ence is nullified.
 JDO 2.0 231 February 28, 2006

Java Data Objects 2.0
The serialized-element attribute indicates that the array element is to be serialized
for storage using writeObject, and cannot be queried.

The attributes serialized-element=”true” and embedded-element=”true”are
mutually exclusive.

The embedded treatment of the array instance itself is governed by the embedded at-
tribute of the field element.

18.15.4 ELEMENT embedded

The embedded element specifies the mapping for an embedded type. It contains multiple
field and property elements, one for each field and property in the type.

The null-indicator-column attribute optionally identifies the name of the column
used to indicate whether the embedded instance is null. By default, if the value of this col-
umn is null, then the embedded instance is null. This column might be mapped to a field
or property of the embedded instance but might be a synthetic column for the sole purpose
of indicating a null reference.

The null-indicator-value attribute specifies the value to indicate that the embedded
instance is null. This is only used for non-nullable columns.

If null-indicator-column is omitted, then the embedded instance is assumed always
to exist.

The owner-field attribute specifies the name of the field or property in the embedded
type that should contain a reference to the owning instance. This field or property is auto-
matically instantiated by the implementation, and is not mapped to anything in the data
store.

18.15.5 ELEMENT key

This element specifies the mapping for the key component of a Map field.

If only one column is mapped, and no additional information is needed for the column,
then the column attribute can be used. Otherwise, the column element(s) are used.

If the Map field is mapped using the mapped-by attribute in the field metadata, then the
key can be mapped to a field in the same class. In this case, use the mapped-by attribute
in the key metadata to name the field containing the key data.

The mapped-by attribute specifies that the field is mapped to the same database col-
umn(s) as the named field in the other class.

The delete-action, update-action, indexed, and unique attributes specify the
characteristics of a constraint to be generated.

18.15.6 ELEMENT value

This element specifies the mapping for the value component of a Map field.

If only one column is mapped, and no additional information is needed for the column,
then the column attribute can be used. Otherwise, the column element(s) are used.

If the Map field is mapped using the mapped-by attribute in the field metadata, then the
value can be mapped to a field in the same class. In this case, use the mapped-by attribute
in the value metadata to name the field containing the value data.

The mapped-by attribute specifies that the field is mapped to the same database col-
umn(s) as the named field in the other class.

The delete-action, update-action, indexed, and unique attributes specify the
characteristics of a constraint to be generated.
 JDO 2.0 232 February 28, 2006

Java Data Objects 2.0
18.15.7 ELEMENT element

This element specifies the mapping for the element component of arrays and collections.

If only one column is mapped, and no additional information is needed for the column,
then the column attribute can be used. Otherwise, the column element(s) are used.

The mapped-by attribute specifies that the field is mapped to the same database col-
umn(s) as the named field in the other class.

The delete-action, update-action, indexed, and unique attributes specify the
characteristics of a constraint to be generated.

18.15.8 ELEMENT order

This element specifies the mapping for the ordering component of arrays and lists.

If no additional information is needed for the ordering column except for the name, then
the column attribute can be used. Otherwise, the column element(s) are used.

If the array or list field is mapped using the mapped-by attribute in the field metadata,
then the ordering can be mapped to a field in the same class. In this case, use the mapped-
by attribute in the order metadata to name the field containing the ordering data.

The serialized attribute specifies that the key values are to be serialized into the named
column.

18.16 ELEMENT query

This element specifies the serializable components of a query. Queries defined using meta-
data are used with the newNamedQuery method of PersistenceManager.

The name attribute specifies the name of the query, and is required.

The language attribute specifies the language of the query. The default is “jav-
ax.jdo.query.JDOQL”. To specify SQL, use “javax.jdo.query.SQL”. Names for
languages other than these are not standard.

The unmodifiable attribute specifies whether the query can be modified by the pro-
gram.

The body of the query element specifies the text of the query. This is the single-string que-
ry as defined in section 14.6.13. For convenience, single quotes can be used to delimit
string constants in the filter.

For SQL queries, in which it is not possible to specify uniqueness and the result class in the
query itself, the attributes unique and result-class can be used.

18.17 ELEMENT sequence

The sequence element identifies a sequence number generator that can be used for sev-
eral purposes:

• by the JDO implementation to generate application identity primary key values;

• by the JDO implementation to generate datastore identity primary key values;

• by the JDO implementation to generate non-key field values;

• by an application to generate unique identifiers for application use.

The name attribute specifies the name for the sequence number generator.
 JDO 2.0 233 February 28, 2006

Java Data Objects 2.0
The strategy attribute specifies the strategy for generating sequence numbers. Standard
values are:

• nontransactional: values are obtained outside of the transaction

• transactional: values are obtained in a transaction; if the transaction rolls back,
gaps might occur in the sequence numbers

• contiguous: values are obtained in a transaction; all sequence numbers are
guaranteed to be used. This implies that use of the sequence is serialized by
transactions.

The datastore-sequence attribute names the sequence used to generate key values.
This must correspond to a named sequence in the database schema.

The factory-class attribute names the user-defined class of the factory for the se-
quence. The class must have a static method newInstance() that returns an instance of
Sequence. This method will be invoked once per named sequence per PersistenceM-
anagerFactory and the same instance will be used for every reference to the same
named sequence in the context of that PersistenceManagerFactory.

This element is used in conjunction with the getSequence(String name) method in
PersistenceManager. The name parameter is the fully qualified name of the sequence.

18.18 ELEMENT extension

This element specifies JDO vendor extensions. The vendor-name attribute is required.
The vendor name "JDORI" is reserved for use by the JDO reference implementation. The
key and value attributes are optional, and have vendor-specific meanings. They may be
ignored by any JDO implementation.

18.19 ELEMENT orm

This element specifies mapping information. It is the top-level element in a mapping file
whose extension is .orm. Many of the same elements in the jdo document are valid for orm.

18.20 ELEMENT jdoquery

This element specifies named query information separate from the persitence and map-
ping metadata. It is the top-level element in a file whose extension is .jdoquery. Many of
the same elements in the jdo document are valid for jdoquery.

18.21 The jdo Schema Descriptor

This describes files stored as .jdo files.

Note: The document type descriptors are descriptive, not normative. The xml schema in
the binary distribution is normative.

JDO vendors must support XSD and might support DTD. If using XSD, the declaration of
the jdo element must include the following:

<?xml version="1.0" encoding="UTF-8" ?>

<jdo xmlns="http://java.sun.com/xml/ns/jdo/jdo"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 JDO 2.0 234 February 28, 2006

Java Data Objects 2.0
 xsi:schemaLocation="http://java.sun.com/xml/ns/jdo/jdo

http://java.sun.com/xml/ns/jdo/jdo_2_0.xsd">

The document type descriptor is referred by the xml, and must be identified with a DOC-
TYPE so that the parser can validate the syntax of the metadata file. Either the SYSTEM or
PUBLIC form of DOCTYPE can be used.

• If SYSTEM is used, the URI must be accessible; a jdo implementation might
optimize access for the URI "http://java.sun.com/dtd/jdo_2_0.dtd"

• If PUBLIC is used, the public id should be "-//Sun Microsystems, Inc.//
DTD Java Data Objects Metadata 2.0//EN"; a jdo implementation might
optimize access for this id.

<?xml version="1.0" encoding="UTF-8"?>
<!-- The DOCTYPE should be as follows for metadata documents.
<!DOCTYPE jdo
 PUBLIC "-//Sun Microsystems, Inc.//DTD Java Data Objects Meta-
data 2.0//EN"
 "http://java.sun.com/dtd/jdo_2_0.dtd">
-->
<!ELEMENT jdo (extension*, (package|query)+, extension*)>
<!ATTLIST jdo catalog CDATA #IMPLIED>
<!ATTLIST jdo schema CDATA #IMPLIED>

<!ELEMENT package (extension*, (interface|class|sequence)+, exten-
sion*)>
<!ATTLIST package name CDATA ''>
<!ATTLIST package catalog CDATA #IMPLIED>
<!ATTLIST package schema CDATA #IMPLIED>

<!ELEMENT interface (extension*, datastore-identity?, primary-
key?, inheritance?, version?, join*, foreign-key*, index*, unique*,
property*, query*, fetch-group*, extension*)>
<!ATTLIST interface name CDATA #REQUIRED>
<!ATTLIST interface table CDATA #IMPLIED>
<!ATTLIST interface identity-type (datastore|application|nondura-
ble) #IMPLIED>
<!ATTLIST interface objectid-class CDATA #IMPLIED>
<!ATTLIST interface requires-extent (true|false) 'true'>
<!ATTLIST interface detachable (true|false) 'false'>
<!ATTLIST interface embedded-only (true|false) #IMPLIED>
<!ATTLIST interface catalog CDATA #IMPLIED>
<!ATTLIST interface schema CDATA #IMPLIED>

<!ELEMENT property (extension*, (array|collection|map)?, join?,
embedded?, element?, key?, value?, order?, column*, foreign-key?,
index?, unique?, extension*)>
<!ATTLIST property name CDATA #REQUIRED>
<!ATTLIST property persistence-modifier (persistent|transaction-
al|none) #IMPLIED>
 JDO 2.0 235 February 28, 2006

Java Data Objects 2.0
<!ATTLIST property default-fetch-group (true|false) #IMPLIED>
<!ATTLIST property load-fetch-group CDATA #IMPLIED>
<!ATTLIST property null-value (default|exception|none) 'none'>
<!ATTLIST property dependent (true|false) #IMPLIED>
<!ATTLIST property embedded (true|false) #IMPLIED>
<!ATTLIST property primary-key (true|false) 'false'>
<!ATTLIST property value-strategy CDATA #IMPLIED>
<!ATTLIST property sequence CDATA #IMPLIED>
<!ATTLIST property serialized (true|false) #IMPLIED>
<!ATTLIST property table CDATA #IMPLIED>
<!ATTLIST property column CDATA #IMPLIED>
<!ATTLIST property delete-action (restrict|cascade|null|de-
fault|none) #IMPLIED>
<!ATTLIST property indexed (true|false|unique) #IMPLIED>
<!ATTLIST property unique (true|false) #IMPLIED>
<!ATTLIST property mapped-by CDATA #IMPLIED>
<!ATTLIST property recursion-depth CDATA #IMPLIED>
<!ATTLIST property field-name CDATA #IMPLIED>

<!ELEMENT class (extension*, implements*, datastore-identity?,
primary-key?, inheritance?, version?, join*, foreign-key*, index*,
unique*, column*, field*, property*, query*, fetch-group*, exten-
sion*)>
<!ATTLIST class name CDATA #REQUIRED>
<!ATTLIST class identity-type (application|datastore|nondurable)
#IMPLIED>
<!ATTLIST class objectid-class CDATA #IMPLIED>
<!ATTLIST class table CDATA #IMPLIED>
<!ATTLIST class requires-extent (true|false) 'true'>
<!ATTLIST class persistence-capable-superclass CDATA #IMPLIED>
<!ATTLIST class detachable (true|false) 'false'>
<!ATTLIST class embedded-only (true|false) #IMPLIED>
<!ATTLIST class persistence-modifier (persistence-capable|persis-
tence-aware|non-persistent) #IMPLIED>
<!ATTLIST class catalog CDATA #IMPLIED>
<!ATTLIST class schema CDATA #IMPLIED>

<!ELEMENT primary-key (extension*, column*, extension*)>
<!ATTLIST primary-key name CDATA #IMPLIED>
<!ATTLIST primary-key column CDATA #IMPLIED>

<!ELEMENT join (extension*, primary-key?, column*, foreign-key?,
index?, unique?, extension*)>
<!ATTLIST join table CDATA #IMPLIED>
<!ATTLIST join column CDATA #IMPLIED>
<!ATTLIST join outer (true|false) 'false'>
<!ATTLIST join delete-action (restrict|cascade|null|default|none)
#IMPLIED>
 JDO 2.0 236 February 28, 2006

Java Data Objects 2.0
<!ATTLIST join indexed (true|false|unique) #IMPLIED>
<!ATTLIST join unique (true|false) #IMPLIED>

<!ELEMENT version (extension*, column*, index?, extension*)>
<!ATTLIST version strategy CDATA #IMPLIED>
<!ATTLIST version column CDATA #IMPLIED>
<!ATTLIST version indexed (true|false|unique) #IMPLIED>

<!ELEMENT datastore-identity (extension*, column*, extension*)>
<!ATTLIST datastore-identity column CDATA #IMPLIED>
<!ATTLIST datastore-identity strategy CDATA 'native'>
<!ATTLIST datastore-identity sequence CDATA #IMPLIED>

<!ELEMENT implements (extension*, property*, extension*)>
<!ATTLIST implements name CDATA #REQUIRED>

<!ELEMENT inheritance (extension*, join?, discriminator?, exten-
sion*)>
<!ATTLIST inheritance strategy CDATA #IMPLIED>

<!ELEMENT discriminator (extension*, column*, index?, extension*)>
<!ATTLIST discriminator column CDATA #IMPLIED>
<!ATTLIST discriminator value CDATA #IMPLIED>
<!ATTLIST discriminator strategy CDATA #IMPLIED>
<!ATTLIST discriminator indexed (true|false|unique) #IMPLIED>

<!ELEMENT column (extension*)>
<!ATTLIST column name CDATA #IMPLIED>
<!ATTLIST column target CDATA #IMPLIED>
<!ATTLIST column target-field CDATA #IMPLIED>
<!ATTLIST column jdbc-type CDATA #IMPLIED>
<!ATTLIST column sql-type CDATA #IMPLIED>
<!ATTLIST column length CDATA #IMPLIED>
<!ATTLIST column scale CDATA #IMPLIED>
<!ATTLIST column allows-null (true|false) #IMPLIED>
<!ATTLIST column default-value CDATA #IMPLIED>
<!ATTLIST column insert-value CDATA #IMPLIED>

<!ELEMENT field (extension*, (array|collection|map)?, join?, em-
bedded?, element?, key?, value?, order?, column*, foreign-key?, in-
dex?, unique?, extension*)>
<!ATTLIST field name CDATA #REQUIRED>
<!ATTLIST field persistence-modifier (persistent|transaction-
al|none) #IMPLIED>
<!ATTLIST field field-type CDATA #IMPLIED>
<!ATTLIST field table CDATA #IMPLIED>
<!ATTLIST field column CDATA #IMPLIED>
<!ATTLIST field primary-key (true|false) 'false'>
 JDO 2.0 237 February 28, 2006

Java Data Objects 2.0
<!ATTLIST field null-value (exception|default|none) 'none'>
<!ATTLIST field default-fetch-group (true|false) #IMPLIED>
<!ATTLIST field embedded (true|false) #IMPLIED>
<!ATTLIST field serialized (true|false) #IMPLIED>
<!ATTLIST field dependent (true|false) #IMPLIED>
<!ATTLIST field value-strategy CDATA #IMPLIED>
<!ATTLIST field delete-action (restrict|cascade|null|default|none)
#IMPLIED>
<!ATTLIST field indexed (true|false|unique) #IMPLIED>
<!ATTLIST field unique (true|false) #IMPLIED>
<!ATTLIST field sequence CDATA #IMPLIED>
<!ATTLIST field load-fetch-group CDATA #IMPLIED>
<!ATTLIST field recursion-depth CDATA #IMPLIED>
<!ATTLIST field mapped-by CDATA #IMPLIED>

<!ELEMENT foreign-key (extension*, (column* | field* | property*),
extension*)>
<!ATTLIST foreign-key table CDATA #IMPLIED>
<!ATTLIST foreign-key deferred (true|false) #IMPLIED>
<!ATTLIST foreign-key delete-action (restrict|cascade|null|de-
fault|none) 'restrict'>
<!ATTLIST foreign-key update-action (restrict|cascade|null|de-
fault|none) 'restrict'>
<!ATTLIST foreign-key unique (true|false) #IMPLIED>
<!ATTLIST foreign-key name CDATA #IMPLIED>

<!ELEMENT collection (extension*)>
<!ATTLIST collection element-type CDATA #IMPLIED>
<!ATTLIST collection embedded-element (true|false) #IMPLIED>
<!ATTLIST collection dependent-element (true|false) #IMPLIED>
<!ATTLIST collection serialized-element (true|false) #IMPLIED>

<!ELEMENT map (extension)*>
<!ATTLIST map key-type CDATA #IMPLIED>
<!ATTLIST map embedded-key (true|false) #IMPLIED>
<!ATTLIST map dependent-key (true|false) #IMPLIED>
<!ATTLIST map serialized-key (true|false) #IMPLIED>
<!ATTLIST map value-type CDATA #IMPLIED>
<!ATTLIST map embedded-value (true|false) #IMPLIED>
<!ATTLIST map dependent-value (true|false) #IMPLIED>
<!ATTLIST map serialized-value (true|false) #IMPLIED>

<!ELEMENT key (extension*, embedded?, column*, foreign-key?, in-
dex?, unique?, extension*)>
<!ATTLIST key column CDATA #IMPLIED>
<!ATTLIST key table CDATA #IMPLIED>
<!ATTLIST key delete-action (restrict|cascade|null|default|none)
#IMPLIED>
 JDO 2.0 238 February 28, 2006

Java Data Objects 2.0
<!ATTLIST key update-action (restrict|cascade|null|default|none)
#IMPLIED>
<!ATTLIST key indexed (true|false|unique) #IMPLIED>
<!ATTLIST key unique (true|false) #IMPLIED>
<!ATTLIST key mapped-by CDATA #IMPLIED>

<!ELEMENT value (extension*, embedded?, column*, foreign-key?, in-
dex?, unique?, extension*)>
<!ATTLIST value column CDATA #IMPLIED>
<!ATTLIST value table CDATA #IMPLIED>
<!ATTLIST value delete-action (restrict|cascade|null|default|none)
#IMPLIED>
<!ATTLIST value update-action (restrict|cascade|null|default|none)
#IMPLIED>
<!ATTLIST value indexed (true|false|unique) #IMPLIED>
<!ATTLIST value unique (true|false) #IMPLIED>
<!ATTLIST value mapped-by CDATA #IMPLIED>

<!ELEMENT array (extension*)>
<!ATTLIST array element-type CDATA #IMPLIED>
<!ATTLIST array embedded-element (true|false) #IMPLIED>
<!ATTLIST array dependent-element (true|false) #IMPLIED>
<!ATTLIST array serialized-element (true|false) #IMPLIED>

<!ELEMENT element (extension*, embedded?, column*, foreign-key?,
index?, unique?, extension*)>
<!ATTLIST element column CDATA #IMPLIED>
<!ATTLIST element table CDATA #IMPLIED>
<!ATTLIST element delete-action (restrict|cascade|null|de-
fault|none) #IMPLIED>
<!ATTLIST element update-action (restrict|cascade|null|de-
fault|none) #IMPLIED>
<!ATTLIST element indexed (true|false|unique) #IMPLIED>
<!ATTLIST element unique (true|false) #IMPLIED>
<!ATTLIST element mapped-by CDATA #IMPLIED>

<!ELEMENT order (extension*, column*, index?, extension*)>
<!ATTLIST order column CDATA #IMPLIED>
<!ATTLIST order mapped-by CDATA #IMPLIED>

<!ELEMENT fetch-group (extension*, (fetch-group|field|property)*,
extension*)>
<!ATTLIST fetch-group name CDATA #REQUIRED>
<!ATTLIST fetch-group post-load (true|false) #IMPLIED>

<!ELEMENT embedded (extension*, (field|property)*, extension*)>
<!ATTLIST embedded owner-field CDATA #IMPLIED>
<!ATTLIST embedded null-indicator-column CDATA #IMPLIED>
 JDO 2.0 239 February 28, 2006

Java Data Objects 2.0
<!ATTLIST embedded null-indicator-value CDATA #IMPLIED>

<!ELEMENT sequence (extension*)>
<!ATTLIST sequence name CDATA #REQUIRED>
<!ATTLIST sequence datastore-sequence CDATA #IMPLIED>
<!ATTLIST sequence factory-class CDATA #IMPLIED>
<!ATTLIST sequence strategy (nontransactional|contiguous|noncon-
tiguous) #REQUIRED>

<!ELEMENT index (extension*, (column* | field* | property*), exten-
sion*)>
<!ATTLIST index name CDATA #IMPLIED>
<!ATTLIST index table CDATA #IMPLIED>
<!ATTLIST index unique (true|false) 'false'>

<!ELEMENT query (#PCDATA|extension)*>
<!ATTLIST query name CDATA #REQUIRED>
<!ATTLIST query language CDATA #IMPLIED>
<!ATTLIST query unmodifiable (true|false) 'false'>
<!ATTLIST query unique (true|false) #IMPLIED>
<!ATTLIST query result-class CDATA #IMPLIED>

<!ELEMENT unique (extension*, (column* | field* | property*), ex-
tension*)>
<!ATTLIST unique name CDATA #IMPLIED>
<!ATTLIST unique table CDATA #IMPLIED>
<!ATTLIST unique deferred (true|false) 'false'>

<!ELEMENT extension ANY>
<!ATTLIST extension vendor-name CDATA #REQUIRED>
<!ATTLIST extension key CDATA #IMPLIED>
<!ATTLIST extension value CDATA #IMPLIED>

18.22 The orm Schema Descriptor

This describes files stored as .orm files.

Note: The document type descriptors are descriptive, not normative. The xml schema in
the binary distribution is normative.

JDO vendors must support XSD and might support DTD. If using XSD, the declaration of
the orm element must include the following:

<?xml version="1.0" encoding="UTF-8" ?>

<orm xmlns="http://java.sun.com/xml/ns/jdo/orm"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/jdo/orm

http://java.sun.com/xml/ns/jdo/orm_2_0.xsd">
 JDO 2.0 240 February 28, 2006

Java Data Objects 2.0
The document type descriptor is referred by the xml, and must be identified with a DOC-
TYPE so that the parser can validate the syntax of the metadata file. Either the SYSTEM or
PUBLIC form of DOCTYPE can be used.

• If SYSTEM is used, the URI must be accessible; a jdo implementation might
optimize access for the URI "http://java.sun.com/dtd/orm_2_0.dtd"

• If PUBLIC is used, the public id should be "-//Sun Microsystems, Inc.//
DTD Java Data Objects Mapping Metadata 2.0//EN"; a jdo
implementation might optimize access for this id.

<?xml version="1.0" encoding="UTF-8"?>
<!-- The DOCTYPE should be as follows for metadata documents.
<!DOCTYPE orm
 PUBLIC "-//Sun Microsystems, Inc.//DTD Java Data Objects Mapping
Metadata 2.0//EN"
 "http://java.sun.com/dtd/orm_2_0.dtd">
-->
<!ELEMENT orm (extension*, (package|query)+, extension*)>
<!ATTLIST orm catalog CDATA #IMPLIED>
<!ATTLIST orm schema CDATA #IMPLIED>

<!ELEMENT package (extension*, (interface|class|sequence)+, exten-
sion*)>
<!ATTLIST package name CDATA ''>
<!ATTLIST package catalog CDATA #IMPLIED>
<!ATTLIST package schema CDATA #IMPLIED>

<!ELEMENT interface (extension*, datastore-identity?, primary-
key?, inheritance?, version?, join*, foreign-key*, index*, unique*,
property*, query*, extension*)>
<!ATTLIST interface name CDATA #REQUIRED>
<!ATTLIST interface table CDATA #IMPLIED>
<!ATTLIST interface catalog CDATA #IMPLIED>
<!ATTLIST interface schema CDATA #IMPLIED>

<!ELEMENT property (extension*, join?, embedded?, element?, key?,
value?, order?, column*, foreign-key?, index?, unique?, exten-
sion*)>
<!ATTLIST property name CDATA #REQUIRED>
<!ATTLIST property value-strategy CDATA #IMPLIED>
<!ATTLIST property sequence CDATA #IMPLIED>
<!ATTLIST property table CDATA #IMPLIED>
<!ATTLIST property column CDATA #IMPLIED>
<!ATTLIST property delete-action (restrict|cascade|null|de-
fault|none) #IMPLIED>
<!ATTLIST property indexed (true|false|unique) #IMPLIED>
<!ATTLIST property unique (true|false) #IMPLIED>
<!ATTLIST property mapped-by CDATA #IMPLIED>
 JDO 2.0 241 February 28, 2006

Java Data Objects 2.0
<!ELEMENT class (extension*, datastore-identity?, primary-key?,
inheritance?, version?, join*, foreign-key*, index*, unique*, col-
umn*, field*, property*, query*, extension*)>
<!ATTLIST class name CDATA #REQUIRED>
<!ATTLIST class table CDATA #IMPLIED>
<!ATTLIST class catalog CDATA #IMPLIED>
<!ATTLIST class schema CDATA #IMPLIED>

<!ELEMENT primary-key (extension*, column*, extension*)>
<!ATTLIST primary-key name CDATA #IMPLIED>
<!ATTLIST primary-key column CDATA #IMPLIED>

<!ELEMENT join (extension*, primary-key?, column*, foreign-key?,
index?, unique?, extension*)>
<!ATTLIST join table CDATA #IMPLIED>
<!ATTLIST join column CDATA #IMPLIED>
<!ATTLIST join outer (true|false) 'false'>
<!ATTLIST join delete-action (restrict|cascade|null|default|none)
#IMPLIED>
<!ATTLIST join indexed (true|false|unique) #IMPLIED>
<!ATTLIST join unique (true|false) #IMPLIED>

<!ELEMENT version (extension*, column*, index?, extension*)>
<!ATTLIST version strategy CDATA #IMPLIED>
<!ATTLIST version column CDATA #IMPLIED>
<!ATTLIST version indexed (true|false|unique) #IMPLIED>

<!ELEMENT datastore-identity (extension*, column*, extension*)>
<!ATTLIST datastore-identity column CDATA #IMPLIED>
<!ATTLIST datastore-identity strategy CDATA 'native'>
<!ATTLIST datastore-identity sequence CDATA #IMPLIED>

<!ELEMENT implements (extension*, property*, extension*)>
<!ATTLIST implements name CDATA #REQUIRED>

<!ELEMENT inheritance (extension*, join?, discriminator?, exten-
sion*)>
<!ATTLIST inheritance strategy CDATA #IMPLIED>

<!ELEMENT discriminator (extension*, column*, index?, extension*)>
<!ATTLIST discriminator column CDATA #IMPLIED>
<!ATTLIST discriminator value CDATA #IMPLIED>
<!ATTLIST discriminator strategy CDATA #IMPLIED>
<!ATTLIST discriminator indexed (true|false|unique) #IMPLIED>

<!ELEMENT column (extension*)>
<!ATTLIST column name CDATA #IMPLIED>
<!ATTLIST column target CDATA #IMPLIED>
 JDO 2.0 242 February 28, 2006

Java Data Objects 2.0
<!ATTLIST column target-field CDATA #IMPLIED>
<!ATTLIST column jdbc-type CDATA #IMPLIED>
<!ATTLIST column sql-type CDATA #IMPLIED>
<!ATTLIST column length CDATA #IMPLIED>
<!ATTLIST column scale CDATA #IMPLIED>
<!ATTLIST column allows-null (true|false) #IMPLIED>
<!ATTLIST column default-value CDATA #IMPLIED>
<!ATTLIST column insert-value CDATA #IMPLIED>

<!ELEMENT field (extension*, join?, embedded?, element?, key?, val-
ue?, order?, column*, foreign-key?, index?, unique?, extension*)>
<!ATTLIST field name CDATA #REQUIRED>
<!ATTLIST field table CDATA #IMPLIED>
<!ATTLIST field column CDATA #IMPLIED>
<!ATTLIST field value-strategy CDATA #IMPLIED>
<!ATTLIST field delete-action (restrict|cascade|null|default|none)
#IMPLIED>
<!ATTLIST field indexed (true|false|unique) #IMPLIED>
<!ATTLIST field unique (true|false) #IMPLIED>
<!ATTLIST field sequence CDATA #IMPLIED>
<!ATTLIST field mapped-by CDATA #IMPLIED>

<!ELEMENT foreign-key (extension*, (column* | field* | property*),
extension*)>
<!ATTLIST foreign-key table CDATA #IMPLIED>
<!ATTLIST foreign-key deferred (true|false) #IMPLIED>
<!ATTLIST foreign-key delete-action (restrict|cascade|null|de-
fault|none) 'restrict'>
<!ATTLIST foreign-key update-action (restrict|cascade|null|de-
fault|none) 'restrict'>
<!ATTLIST foreign-key unique (true|false) #IMPLIED>
<!ATTLIST foreign-key name CDATA #IMPLIED>

<!ELEMENT key (extension*, embedded?, column*, foreign-key?, in-
dex?, unique?, extension*)>
<!ATTLIST key column CDATA #IMPLIED>
<!ATTLIST key table CDATA #IMPLIED>
<!ATTLIST key delete-action (restrict|cascade|null|default|none)
#IMPLIED>
<!ATTLIST key update-action (restrict|cascade|null|default|none)
#IMPLIED>
<!ATTLIST key indexed (true|false|unique) #IMPLIED>
<!ATTLIST key unique (true|false) #IMPLIED>
<!ATTLIST key mapped-by CDATA #IMPLIED>

<!ELEMENT value (extension*, embedded?, column*, foreign-key?, in-
dex?, unique?, extension*)>
<!ATTLIST value column CDATA #IMPLIED>
 JDO 2.0 243 February 28, 2006

Java Data Objects 2.0
<!ATTLIST value table CDATA #IMPLIED>
<!ATTLIST value delete-action (restrict|cascade|null|default|none)
#IMPLIED>
<!ATTLIST value update-action (restrict|cascade|null|default|none)
#IMPLIED>
<!ATTLIST value indexed (true|false|unique) #IMPLIED>
<!ATTLIST value unique (true|false) #IMPLIED>
<!ATTLIST value mapped-by CDATA #IMPLIED>

<!ELEMENT element (extension*, embedded?, column*, foreign-key?,
index?, unique?, extension*)>
<!ATTLIST element column CDATA #IMPLIED>
<!ATTLIST element table CDATA #IMPLIED>
<!ATTLIST element delete-action (restrict|cascade|null|de-
fault|none) #IMPLIED>
<!ATTLIST element update-action (restrict|cascade|null|de-
fault|none) #IMPLIED>
<!ATTLIST element indexed (true|false|unique) #IMPLIED>
<!ATTLIST element unique (true|false) #IMPLIED>
<!ATTLIST element mapped-by CDATA #IMPLIED>

<!ELEMENT order (extension*, column*, index?, extension*)>
<!ATTLIST order column CDATA #IMPLIED>
<!ATTLIST order mapped-by CDATA #IMPLIED>

<!ELEMENT embedded (extension*, (field|property)*, extension*)>
<!ATTLIST embedded owner-field CDATA #IMPLIED>
<!ATTLIST embedded null-indicator-column CDATA #IMPLIED>
<!ATTLIST embedded null-indicator-value CDATA #IMPLIED>

<!ELEMENT sequence (extension*)>
<!ATTLIST sequence name CDATA #REQUIRED>
<!ATTLIST sequence datastore-sequence CDATA #IMPLIED>
<!ATTLIST sequence factory-class CDATA #IMPLIED>
<!ATTLIST sequence strategy (nontransactional|contiguous|noncon-
tiguous) #REQUIRED>

<!ELEMENT index (extension*, (column* | field* | property*), exten-
sion*)>
<!ATTLIST index name CDATA #IMPLIED>
<!ATTLIST index table CDATA #IMPLIED>
<!ATTLIST index unique (true|false) 'false'>

<!ELEMENT query (#PCDATA|extension)*>
<!ATTLIST query name CDATA #REQUIRED>
<!ATTLIST query language CDATA #IMPLIED>
<!ATTLIST query unmodifiable (true|false) 'false'>
<!ATTLIST query unique (true|false) #IMPLIED>
 JDO 2.0 244 February 28, 2006

Java Data Objects 2.0
<!ATTLIST query result-class CDATA #IMPLIED>

<!ELEMENT unique (extension*, (column* | field* | property*), ex-
tension*)>
<!ATTLIST unique name CDATA #IMPLIED>
<!ATTLIST unique table CDATA #IMPLIED>
<!ATTLIST unique deferred (true|false) 'false'>

<!ELEMENT extension ANY>
<!ATTLIST extension vendor-name CDATA #REQUIRED>
<!ATTLIST extension key CDATA #IMPLIED>
<!ATTLIST extension value CDATA #IMPLIED>

18.23 The jdoquery Schema Descriptor

This describes files stored as .jdoquery files.

Note: The document type descriptors are descriptive, not normative. The xml schema in
the binary distribution is normative.

JDO vendors must support XSD and might support DTD. If using XSD, the declaration of
the jdoquery element must include the following:

<?xml version="1.0" encoding="UTF-8" ?>

<jdoquery xmlns="http://java.sun.com/xml/ns/jdo/jdoquery"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/jdo/jdoquery

http://java.sun.com/xml/ns/jdo/jdoquery_2_0.xsd">

The document type descriptor is referred by the xml, and must be identified with a DOC-
TYPE so that the parser can validate the syntax of the metadata file. Either the SYSTEM or
PUBLIC form of DOCTYPE can be used.

• If SYSTEM is used, the URI must be accessible; a jdo implementation might
optimize access for the URI "http://java.sun.com/dtd/
jdoquery_2_0.dtd"

• If PUBLIC is used, the public id should be "-//Sun Microsystems, Inc.//
DTD Java Data Objects Query Metadata 2.0//EN"; a jdo implementation
might optimize access for this id.

<?xml version="1.0" encoding="UTF-8"?>

<!-- The DOCTYPE should be as follows for jdoquery documents.

<!DOCTYPE jdoquery

 PUBLIC "-//Sun Microsystems, Inc.//DTD Java Data Objects Query
Metadata 2.0//EN"

 "http://java.sun.com/dtd/jdoquery_2_0.dtd">

-->

<!ELEMENT jdoquery (extension*, (package|query)+, (extension)*)>
 JDO 2.0 245 February 28, 2006

Java Data Objects 2.0
<!ELEMENT package (extension*, (interface|class)+, (extension)*)>

<!ATTLIST package name CDATA ''>

<!ELEMENT interface (extension*, query+, extension*)>

<!ATTLIST interface name CDATA #REQUIRED>

<!ELEMENT class (extension*, query+, extension*)>

<!ATTLIST class name CDATA #REQUIRED>

<!ELEMENT query (#PCDATA|extension)*>

<!ATTLIST query name CDATA #REQUIRED>

<!ATTLIST query language CDATA #IMPLIED>

<!ATTLIST query unmodifiable (true|false) 'false'>

<!ATTLIST query unique (true|false) #IMPLIED>

<!ATTLIST query result-class CDATA #IMPLIED>

<!ELEMENT extension ANY>

<!ATTLIST extension vendor-name CDATA #REQUIRED>

<!ATTLIST extension key CDATA #IMPLIED>

<!ATTLIST extension value CDATA #IMPLIED>

18.24 Example XML file

An example XML file for the query example classes follows. Note that all fields of both
classes are persistent, which is the default for fields. The emps field in Department con-
tains a collection of elements of type Employee, with a relationship to the dept field in
Employee.

In directory com/xyz, a file named hr.jdo contains:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE jdo SYSTEM "jdo.dtd">
<jdo>
<package name="com.xyz.hr">
<class name="Employee" identity-type="application">
<field name="name" primary-key="true">
<extension vendor-name="sunw" key="index" value="btree"/>
</field>
<field name="salary" default-fetch-group="true"/>
<field name="dept">
<extension vendor-name="sunw" key="inverse" value="emps"/>
</field>
<field name="boss"/>
</class>
 JDO 2.0 246 February 28, 2006

Java Data Objects 2.0
<class name="Department" identity-type="application" objectid-
class="DepartmentKey">
<field name="name" primary-key="true"/>
<field name="emps">
<collection element-type="Employee">
<extension vendor-name="sunw" key="element-inverse" value="dept"/>
</collection>
</field>
</class>
</package>
</jdo>
 JDO 2.0 247 February 28, 2006

Java Data Objects 2.0
19 Extent

This chapter specifies the Extent contract between an application component and the
JDO implementation.

19.1 Overview

An application needs to provide a candidate collection of instances to a query. If the query
filtering is to be performed in the datastore, then the application must supply the collection
of instances to be filtered. This is the primary function of the Extent interface.

An Extent instance is logically a holder for information:

• the class of instances;

• whether subclasses are part of the Extent; and

• a collection of active iterators over the Extent.

Thus, no action is taken at the time the Extent is constructed. The contents of the Extent
are calculated at the point in time when a query is executed and when an iterator is ob-
tained via the iterator() method.

A query may be executed against either a Collection or an Extent. The Extent is
used when the query is intended to be filtered by the datastore, not by in-memory process-
ing. There are no Collection methods in Extent except for iterator(). Thus, com-
mon Collection behaviors are not possible, including determining whether one
Extent contains another, determining the size of the Extent, or determining whether a
specific instance is contained in the Extent. Any such operations must be performed by
executing a query against the Extent.

If the Extent is large, then an appropriate iteration strategy should be adopted by the
JDO implementation.

The Extent for classes of embedded instances is not affected by changes to fields in ref-
erencing class instances.

19.2 Goals

The extent interface has the following goals:

• Large result set support. Queries might return massive numbers of JDO instances
that match the query. The JDO Query architecture must provide for processing
the results within the resource constraints of the execution environment.

• Application resource management. Iterating an Extent might use resources that
should be released when the application has finished an iteration. The application
should be provided with a means to release iterator resources.
 JDO 2.0 248 February 28, 2006

Java Data Objects 2.0
19.3 Interface Extent

package javax.jdo;

public interface Extent {

Iterator iterator();

This method returns an Iterator over all the instances in the Extent. If Nontransac-
tionalRead property is set to false, this method will throw a JDOUserException if
called outside a transaction.

If the IgnoreCache option is set to true in the PersistenceManager at the time that
this Iterator instance is obtained, then new and deleted instances in the current trans-
action might be ignored by the Iterator at the option of the implementation. That is,
new instances might not be returned; and deleted instances might be returned.

If the IgnoreCache option is set to false in the PersistenceManager at the time
that this Iterator instance is obtained, then:

• If instances were made persistent in the transaction prior to the execution of this
method, the returned Iterator will contain the instances.

• If instances were deleted in the transaction prior to the execution of this method,
the returned Iterator will not contain the instances.

The above describes the behavior of an extent-based query at query execution.

If any mutating method, including the remove method, is called on the Iterator re-
turned by this method, a UnsupportedOperationException is thrown.

boolean hasSubclasses();

This method returns an indicator of whether the extent includes subclasses.

Class getCandidateClass();

This method returns the class of the instances contained in it.

FetchPlan getFetchPlan();

This method returns the fetch plan associated with the Extent. The fetch plan originally
is a copy of the fetch plan that is active at the time the Extent is obtained from the Per-
sistenceManager, and thereafter can be changed independent of the fetch plan of the
PersistenceManager.

The fetch plan settings affect iterators obtained from the Extent. When instances are re-
trieved from the datastore, the fetch plan settings that are current in the Extent affect the
retrieval. Note that this means that portable applications do not change the fetch plan of
an Extent while an iterator is active.

PersistenceManager getPersistenceManager();

This method returns the PersistenceManager that created it.

void close(Iterator i);

This method closes an Iterator acquired from this Extent. After this call, the param-
eter Iterator will return false to hasNext(), and will throw NoSuchElementEx-
ception to next(). The Extent itself can still be used to acquire other iterators and can
be used as the Extent for queries.

void closeAll ();
 JDO 2.0 249 February 28, 2006

Java Data Objects 2.0
This method closes all iterators acquired from this Extent. After this call, all iterators ac-
quired from this Extent will return false to hasNext(), and will throw
NoSuchElementException to next().

Any change made to the fetch plan of the associated PersistenceManager affects in-
stance retrievals via next(). Only instances not already in memory are affected by the
PersistenceManager’s fetch plan. Fetch plan is described in Section 12.7.
 JDO 2.0 250 February 28, 2006

Java Data Objects 2.0
20 Portability Guidelines

One of the objectives of JDO is to allow an application to be portable across multiple JDO
implementations. This Chapter summarizes portability rules that are expressed elsewhere
in this document. If all of these programming rules are followed, then the application will
work in any JDO compliant implementation.

20.1 Optional Features

These features may be used by the application if the JDO vendor supports them. Since they
are not required features, a portable application must not use them.

20.1.1 Optimistic Transactions

Optimistic transactions are enabled by the PersistenceManagerFactory or Trans-
action method setOptimistic(true). JDO implementations that do not support
optimistic transactions throw JDOUnsupportedOptionException.

20.1.2 Nontransactional Read

Nontransactional read is enabled by the PersistenceManagerFactory or Trans-
action method setNontransactionalRead(true). JDO implementations that do
not support nontransactional read throw JDOUnsupportedOptionException.

20.1.3 Nontransactional Write

Nontransactional write is enabled by the PersistenceManagerFactory or Trans-
action method setNontransactionalWrite(true). JDO implementations that
do not support nontransactional write throw JDOUnsupportedOptionException.

20.1.4 Transient Transactional

Transient transactional instances are created by the PersistenceManager makeT-
ransactional(Object). JDO implementations that do not support transient transac-
tional throw JDOUnsupportedOptionException.

20.1.5 RetainValues

A portable application should run the same regardless of the setting of the retainVal-
ues flag.

20.1.6 IgnoreCache

A portable application should set this flag to false. The results of iterating Extents and
executing queries might be different among different implementations.

20.2 Object Model

References among persistence-capable classes must be defined as First Class Objects in the
model.
 JDO 2.0 251 February 28, 2006

Java Data Objects 2.0
SCO instances must not be shared among multiple persistent instances.

Arrays must not be shared among multiple persistent instances.

If arrays are passed by reference outside the defining class, the owning persistent instance
must be notified via jdoMakeDirty.

The application must not depend on any sharing semantics of immutable class objects.

The application must not depend on knowing the exact class of an SCO instance, as they
may be substituted by a subclass of the type.

Persistence-capable classes must not contain final non-static fields or methods or fields
that start with "jdo".

20.3 JDO Identity

Applications must be aware that support for application identity and datastore identity
are optional, and some implementations might support only one of these identity types.
The supported identity type(s) of the implementation should be checked by using the
supportedOptions method of PersistenceManagerFactory.

Applications must construct only ObjectId instances for classes that use application-de-
fined JDO identity, or use the PersistenceManager getObjectIdClass to obtain
the ObjectId class.

Classes that use application identity must only use key field types of primitive, String,
Date, Byte, Short, Integer, Long, Float, Double, BigDecimal, or
BigInteger.

Applications must only compare ObjectId instances from different JDO implementa-
tions for classes that use application-defined JDO identity.

The equals and hashCode methods of any persistence-capable class using application
identity must depend on all of the key fields.

Key fields can be defined only in the least-derived persistence-capable class in an inherit-
ance hierarchy. All of the classes in the hierarchy use the same key class.

A JDO implementation might not support changing primary key field values (which has
the effect of changing the primary key of the underlying datastore instance). Portable ap-
plications do not change primary key fields.

20.4 PersistenceManager

To be portable, instances of PersistenceManager must be obtained from a Persis-
tenceManagerFactory, and not by construction. The recommended way to instantiate
a PersistenceManagerFactory is to use the JDOHelper.getPersistenceMan-
agerFactory(Map) method.

20.5 Query

Using a query language other than JDOQL is not portable.

A query must constrain all variables used in any expressions with a contains clause refer-
encing a persistent field of a persistence-capable class.

Not all datastores allow storing null-valued collections. Portable queries on these collec-
tions should use isEmpty() instead of comparing to null.
 JDO 2.0 252 February 28, 2006

Java Data Objects 2.0
Portable queries must only use persistent or public final static field names in filter expres-
sions.

Portable queries must pass persistent or transactional instances as parameters of persis-
tence-capable types.

Wild card queries must use “matches” with a regular expression including only “(?i)” for
case-insensitivity, “.” for matching a single characters, and “.*” for matching multiple
characters.

20.6 XML metadata

Portable applications will define all persistence-capable classes in the XML metadata.

20.7 Life cycle

Portable applications will not depend on requiring instances to be hollow or persistent-
nontransactional, or to remain non-transactional in a transaction.

20.8 JDOHelper

Portable applications will use JDOHelper for state interrogations of instances of persis-
tence-capable classes and for determining if an instance is of a persistence-capable class.

20.9 Transaction

Portable applications must not depend on isolation levels stronger than read-committed
provided by the underlying datastore. Some fields might be read at different times by the
JDO implementation, and there is no guarantee as to read consistency compared to previ-
ously read data. A JDO persistence-capable instance might contain fields instantiated by
multiple datastore accesses, with no guarantees of consistency (read-committed isolation
level).

20.10 Binary Compatibility

Portable applications must not use the PersistenceCapable interface. Compliant imple-
mentations might use persistence-capable classes that do not implement the Persistence-
Capable interface. Instances can be queried as to their state by using the methods in
JDOHelper.

Readers primarily interested in developing applications with the JDO API can ignore the following
chapters. Skip to 23 – JDOPermission.
 JDO 2.0 253 February 28, 2006

Java Data Objects 2.0
21 JDO Reference Enhancer

This chapter specifies the JDO Reference Enhancement, which specifies the contract be-
tween JDO persistence-capable classes and JDO StateManager in the binary-compatible
runtime environment. The JDO Reference Enhancer modifies persistence-capable classes
to run in the JDO environment and implement the required contract. The resulting classes,
hereinafter referred to as enhanced classes, implement a contract used by the JDOHelper,
the JDOImplHelper, and the StateManager classes.

The JDO Reference Enhancer is just one possible implementation of the JDO Reference En-
hancement contract. Tools may instead preprocess or generate source code to create class-
es that implement this contract.

Enhancement is just one possible strategy for JDO implementations. If a JDO implementa-
tion supports BinaryCompatibility, it must support the PersistenceCapable contract.
Otherwise, it need only support the rest of the user-visible contracts (e.g. PersistenceMan-
agerFactory, PersistenceManager, Query, Transaction, and Extent).

 NOTE: This chapter is not intended to be used by application programmers. It
is for use only by implementations. Applications should use the methods defined
in class JDOHelper instead of these methods and fields.

21.1 Overview

The JDO Reference Enhancer will be used to modify each persistence-capable class before
using that persistence-capable class with the Reference Implementation Persistence-
Manager in the Java VM. It might be used before class loading or during the class loading
process.

The JDO Reference Enhancer transforms the class by making specific changes to the class
definition to enable the state of any persistent instances to be synchronized with the rep-
resentation of the data in the datastore.

Tools that generate source code or modify the Java source code files must generate classes
that meet the defined contract in this chapter.

The Reference Enhancer provides an implementation for the PersistenceCapable in-
terface.

21.2 Goals

The following are the goals for the JDO Reference Enhancer:

• Binary compatibility and portability of application classes among JDO vendor
implementations

• Binary compatibility between application classes enhanced by different JDO
vendors at different times.

• Minimal intrusion into the operation of the class and class instances
 JDO 2.0 254 February 28, 2006

Java Data Objects 2.0
• Provide metadata at runtime without requiring implementations to be granted
reflect permission for non-private fields

• Values of fields can be read and written directly without wrapping code with
accessors or mutators (field1 += 13 is allowed, instead of requiring the user
to code setField1(getField1() + 13))

• Navigation from one instance to another uses natural Java syntax without any
requirement for explicit fetching of referenced instances

• Automatically track modification of persistent instances without any explicit
action by the application or component developer

• Highest performance for transient instances of persistence-capable classes

• Support for all class and field modifiers

• Transparent operation of persistent and transient instances as seen by application
components and persistence-capable classes

• Shared use of persistence-capable classes (utility components) among multiple
JDO PersistenceManager instances in the same Java VM

• Preservation of the security of instances of PersistenceCapable classes from
unauthorized access

• Support for debugging enhanced classes by line number

21.3 Enhancement: Architecture

The reference enhancement of persistence-capable classes has the primary objective of pre-
serving transparency for the classes. Specifically, accesses to fields in the JDO instance are
mediated to allow for initializing values of fields from the associated values in the datas-
tore and for storing the values of fields in the JDO instance into the associated values in the
datastore at transaction boundaries.

To avoid conflicts in the name space of the persistence-capable classes, all methods and
fields added to the persistence-capable classes have the “jdo” prefix.

Enhancement might be performed at any time prior to use of the class by the application.
During enhancement, special JDO class metadata must be available if any non-default ac-
tions are to be taken. The metadata is in XML format .

Specifically, the following will require access to special class metadata at class enhance-
ment time, because these are not the defaults:

• classes are to use primary key or non-managed object identity;

• fields declared as transient in the class definition are to be persistent in the
datastore;

• fields not declared as transient in the class definition are to be non-persistent in the
datastore;

• fields are to be transactional non-persistent;

• fields with domains of references to persistence-capable classes are to be part of the
default fetch group;
 JDO 2.0 255 February 28, 2006

Java Data Objects 2.0
• fields with domains of primitive types (boolean, char, byte, short, int,
long, float, double) or primitive wrapper types (Boolean, Char, Byte,
Short, Integer, Long, Float, Double) are not to be part of the default fetch
group;

• fields with domains of String are not to be part of the default fetch group;

• fields with domains of array types are to be part of the default fetch group.

Enhancement makes changes to two categories of classes: persistence-capable and persis-
tence-aware. Persistence-capable classes are those whose instances are allowed to be
stored in a JDO-managed datastore. Persistence aware classes are those that while not nec-
essarily persistence-capable themselves, contain references to managed fields of classes
that are persistence-capable. Thus, persistence-capable classes may also be persistence-
aware.

Enhancement also treats Detachable classes specially, by adding fields and methods
needed to manage the detached state of the instance.

To preserve the security of instances of PersistenceCapable classes, access restric-
tions to fields before enhancement will be propagated to accessor methods after enhance-
ment. Further, to become the delegate of field access (StateManager) the caller must be
authorized for JDOPermission.

A JDO implementation must interoperate with classes enhanced by the Reference Enhanc-
er and with classes enhanced with other Vendor Enhancers. Additionally, classes en-
hanced by any Vendor Enhancers must interoperate with the Reference Implementation.

Name scope issues are minimized because the Reference Enhancement contract adds
methods and fields that begin with “jdo”, while methods and fields added by Vendor En-
hancers must not begin with “jdo”. Instead, they may begin with “sunwjdo”, “exlnj-
do” or other string that includes a vendor-identifying name and the “jdo” string.

Debugging by source line number must be preserved by the enhancement process. If any
code modification within a method body changes the byte code offsets within the method,
then the line number references of the method must be updated to reflect the change.

The Reference Enhancer makes the following changes to the least-derived (topmost) per-
sistence-capable classes:

• adds a field named jdoStateManager, of type
javax.jdo.spi.StateManager to associate each instance with zero or one
instance of JDO StateManager;

• adds a synchronized method jdoReplaceStateManager (to replace the value
of the jdoStateManager), which invokes security checking for declared
JDOPermission;

• adds a field named jdoFlags of type byte in the least-derived persistence
capable class, to distinguish readable and writable instances from non-readable
and non-writable instances;

• adds a method jdoReplaceFlags to require the instance to request an updated
value for the jdoFlags field from the StateManager;

• adds methods to implement status query methods by delegating to the
StateManager;

• adds method jdoReplaceFields(int[]) to obtain values of specified fields
from the StateManager and cache the values in the instance;
 JDO 2.0 256 February 28, 2006

Java Data Objects 2.0
• adds method jdoProvideFields(int[]) to supply values of specific fields
to the StateManager;

• adds a method void jdoCopyFields(Object other, int[]
fieldNumbers) to allow the StateManager to manage multiple images of the
persistence capable instance;

• adds a method void jdoCopyField(Object other, int
fieldNumber) to allow the StateManager to manage multiple images of the
persistence capable instance;

• adds a method jdoPreSerialize to load all non-transient fields into the
instance prior to serialization;

The Reference Enhancer makes the following changes to least-derived (topmost) persis-
tence-capable classes and classes that declare an objectid-class in their xml:

• adds methods jdoCopyKeyFieldsToObjectId(PersistenceCapable
pc, Object oid) and
jdoCopyKeyFieldsToObjectId(ObjectIdFieldSupplier fs,
Object oid).

• adds methods jdoCopyKeyFieldsFromObjectId(Object oid) and
jdoCopyKeyFieldsFromObjectId(ObjectIdFieldConsumer fc,
Object oid).

• adds a method jdoNewObjectIdInstance() which creates an instance of the
jdo ObjectId for this class.

The Reference Enhancer makes the following changes to the least-derived class marked as
Detachable:

• adds “implements javax.jdo.spi.Detachable” to the class definition;

• adds a serializable field “Object[] jdoDetachedState” to the class definition;

• adds a method “void jdoReplaceDetachedState() to the class definition.

The Reference Enhancer makes the following changes to all classes:

• adds “implements javax.jdo.spi.PersistenceCapable” to the class
definition;

• adds two methods jdoNewInstance, one of which takes a parameter of type
StateManager, to be used by the implementation when a new persistent
instance is required (this method allows a performance optimization), and the
other takes a parameter of type StateManager and a parameter of an
ObjectId for key field initialization;adds two methods, makeDirty(String
fieldName) and makeDirty(int fieldNumber), to manage making fields
dirty.

• adds method jdoReplaceField(int) to obtain values of specified fields from
the StateManager and cache the values in the instance;

• adds method jdoProvideField(int) to supply values of specific fields to the
StateManager;

• adds an accessor method and mutator method for each field declared in the class,
which delegates to the StateManager for values;
 JDO 2.0 257 February 28, 2006

Java Data Objects 2.0
• leaves the modifiers of all persistent fields the same as the unenhanced class to
allow the enhanced classes to be used for compilation of other classes;

• adds a method jdoCopyField(<class> other, int fieldNumber) to
allow the StateManager to manage multiple images of the persistence capable
instance;

• adds a method jdoGetManagedFieldCount() to manage the numbering of
fields with respect to inherited managed fields.

• adds a field jdoInheritedFieldCount, which is set at class initialization time
to the returned value of super.jdoGetManagedFieldCount().

• adds fields jdoFieldNames, jdoFieldTypes, and jdoFieldFlags, which
contain the names, types, and flags of managed fields.

• adds field Class jdoPersistenceCapableSuperclass, which contains
the Class of the PersistenceCapable superclass.

• adds a static initializer to register the class with the JDOImplHelper.

• adds a field serialVersionUID if it does not already exist, and calculates its
initial value based on the non-enhanced class definition.

Enhancement makes the following changes to persistence aware classes:

• modifies executable code that accesses fields of PersistenceCapable classes
not known to be not managed, replacing getfield and putfield calls with
calls to the generated accessor and mutator methods.

21.4 Inheritance

Enhancement allows a class to manage the persistent state only of declared fields. It is a
future objective to allow a class to manage fields of a non-persistence capable superclass.

Fields that hide inherited fields (because they have the same name) are fully supported.
The enhancer delegates accesses of inherited hidden fields to the appropriate class by ref-
erencing the appropriate method implemented in the declaring class.

All persistence capable classes in the inheritance hierarchy must use the same kind of JDO
identity.

21.5 Field Numbering

Enhancement assigns field numbers to all managed (transactional or persistent) fields.
Generated methods and fields that refer to fields (jdoFieldNames, jdoFieldTypes,
jdoFieldFlags, jdoGetManagedFieldCount, jdoCopyFields, jdo-
MakeDirty, jdoProvideField, jdoProvideFields, jdoReplaceField, and
jdoReplaceFields) are generated to include both transactional and persistent fields.

Relative field numbers are calculated at enhancement time. For each persistence capable
class the enhancer determines the declared managed fields. To calculate the relative field
number, the declared fields array is sorted by field name. Each managed field is assigned
a relative field number, starting with zero.

Absolute field numbers are calculated at runtime, based on the number of inherited man-
aged fields, and the relative field number. The absolute field number used in method calls
is the relative field number plus the number of inherited managed fields.
 JDO 2.0 258 February 28, 2006

Java Data Objects 2.0
The absolute field number is used in method calls between the StateManager and Per-
sistenceCapable; and in the reference implementation, between the StateManager
and StoreManager.

21.6 Serialization

Serialization of a transient instance results in writing an object graph of objects connected
via non-transient fields. The explicit intent of JDO enhancement of serializable classes is to
permit serialization of transient instances or persistent instances to a format that can be de-
serialized by either an enhanced or non-enhanced class.

Classes marked as Detachable are not serialization-compatible with un-enhanced class-
es. This is intentional, and requires that the enhanced version of the class be used wherever
the instance might be instantiated. If a Detachable class were used in an environment
where the un-enhanced class was not used, then access to unloaded fields would not be
restricted, and field modifications could not be tracked.

When the writeObject method is called on a class to serialize it, all fields not declared
as transient must be loaded into the instance. This function is performed by the enhancer-
generated method jdoPreSerialize. This method simply delegates to the StateM-
anager to ensure that all persistent non-transient fields are loaded into the instance.
[Fields not declared as transient and not declared as persistent must have been loaded by
the PersistenceCapable class an application-specific way.]

For Detachable classes, the jdoPreSerialize method must also initialize the jdoDe-
tachedState instance so that the detached state is serialized along with the instance.

The jdoPreSerialize method need be called only once for a persistent instance.
Therefore, the writeObject method in the least-derived pc class that implements Se-
rializable in the inheritance hierarchy needs to be modified or generated to call it.

If a standard serialization is done to an enhanced class instance, the fields added by the
enhancer will not be serialized because they are declared to be transient.

To allow a non-enhanced class to deserialize the stream, the serialVersionUID for the
enhanced and non-enhanced classes must be identical. If the serialVersionUID field
does not already exist in the non-enhanced class, the enhancer will calculate it (excluding
any enhancer-generated fields or methods) and add it to the enhanced class.

If a PersistenceCapable class is assignable to java.io.Serializable but its
persistence-capable superclass is not, then the enhancer will modify the class in the follow-
ing way:

• if the class does not contain implementations of writeObject, or
writeReplace, then the enhancer will generate writeObject. Fields that are
required to be present during serialization operations will be explicitly
instantiated by the generated method jdoPreSerialize, which will be called
by the enhancer-generated writeObject.

• if the class contains an implementation of writeObject or writeReplace, it
will be changed to call jdoPreSerialize prior to any user-written code in the
method.

If a PersistenceCapable class is assignable to java.io.Serializable, then the
non-transient fields might be instantiated prior to serialization. However, the closure of in-
stances reachable from this instance might include a large part of instances in the datas-
tore.
 JDO 2.0 259 February 28, 2006

Java Data Objects 2.0
For non-Detachable classes, the results of restoring a serialized persistent instance graph
is a graph of interconnected transient instances. The method readObject is not en-
hanced, as it deals only with transient instances.

For Detachable classes, the results of restoring a serialized persistent instance graph is a
graph of interconnected detached instances that might be attached via the attachCopy
methods.

21.7 Cloning

If a standard clone is made of a persistent instance, the jdoFlags and jdoStateMan-
ager fields will also be cloned. The clone will eventually invoke the StateManager if
the source of the cloned instance is not transient. This condition will be detected by the
runtime, but disconnecting the clone is a convoluted process. To avoid this situation where
possible, the enhancer modifies the cloning behavior by modifying certain methods that
invoke clone, setting these two fields to indicate that the clone is a transient instance.
Otherwise, all of the fields in the clone contain the standard shallow copy of the fields of
the cloned instance.

The reference enhancement will modify the clone() method in the persistence-capable
root class (the least-derived (topmost) PersistenceCapable class) to reset these two
fields immediately after returning from super.clone(). This caters for the normal case
where clone methods in subclasses call super.clone() and the clone is disconnected
immediately after being cloned.

The clone method is also modified to copy the jdoDetachedState field of an instance of
a Detachable class to the clone if the instance is detached. The effect of this is that while
detached, the clone is also a detached object. While attached, the detached state will not be
cloned, and the clone will therefore be transient.

This technique does not address these cases:

• A non-persistence-capable superclass clone method calls a runtime method (for
example, makePersistent) on the newly created clone. In this case, the
makePersistent will succeed, but the clone method in the persistence-
capable subclass will disconnect the clone, thereby undoing the
makePersistent. Thus, calling any life cycle change methods with the clone as
an argument is not permitted in clone methods.

• Where there is no clone method declared in the persistence-capable root class, the
clone will not be disconnected, and the runtime will disconnect the clone the first
time the StateManager is called by the clone.

21.8 Introspection (Java core reflection)

No changes are made to the behavior of introspection. The current state of all fields is ex-
posed to the reflection APIs.

This is not at all what some users might expect. It is a future objective to more gracefully
support introspection of fields in persistent instances of persistence capable classes.
 JDO 2.0 260 February 28, 2006

Java Data Objects 2.0
21.9 Field Modifiers

Fields in persistence-capable classes are treated by the enhancer in one of several ways,
based on their modifiers as declared in the Java language and their enhanced modifiers as
declared by the persistence-capable MetaData.

These modifiers are orthogonal to the modifiers defined by the Java language. They have
default values based on modifiers defined in the class for the fields. They may be specified
in the XML metadata used at enhancement time.

21.9.1 Non-persistent

Non-persistent fields are ignored by the enhancer. They are assumed to lie outside the do-
main of persistence. They might be changed at will by any method based only on the pri-
vate/protected/public modifiers. There is no enhancement of accesses to non-persistent
fields.

The default modifier is non-persistent for fields identified as transient in the class declara-
tion.

21.9.2 Transactional non-persistent

Transactional non-persistent fields are non-persistent fields whose values are saved and
restored during rollback. Their values are not stored in the datastore. There is no enhance-
ment of read accesses to transactional non-persistent fields. Write accesses are always me-
diated (the StateManager is called on write).

21.9.3 Persistent

Persistent fields are fields whose values are synchronized with values in the datastore. The
synchronization is performed transparent to the methods in the persistence-capable class.

The default persistence-modifier for fields is based on their modifiers and type, as detailed
in the XML metadata chapter.

The modification to the class by the enhancer depends on whether the persistent field is a
member of the default fetch group.

If the persistent field is a member of the default fetch group, then the enhanced code be-
haves as follows. The constant values READ_OK, READ_WRITE_OK, and
LOAD_REQUIRED are defined in interface PersistenceCapable.

• for read access, jdoFlags is checked for READ_OK or READ_WRITE_OK. If it is
then the value in the field is retrieved. If it is not, then the StateManager
instance is requested to load the value of the field from the datastore, which might
cause the StateManager to populate values of all default fetch group fields in
the instance, and other values as defined by the JDO vendor policy. This behavior
is not required, but optional. If the StateManager chooses, it may simply
populate the value of the specific field requested. Upon conclusion of this process,
the jdoFlags value might be set by the StateManager to READ_OK and the
value of the field is retrieved. If not all fields in the default fetch group were
populated, the StateManager must not set the jdoFlags to be READ_OK.

• for write access, jdoFlags is checked for READ_WRITE_OK. If it is
READ_WRITE_OK, then the value is stored in the field. If it is not
READ_WRITE_OK, then the StateManager instance is requested to load the
state of the values from the datastore, which might cause the StateManager to
 JDO 2.0 261 February 28, 2006

Java Data Objects 2.0
populate values of all default fetch group fields in the instance. Upon conclusion
of the load process, the jdoFlags value might be set by the StateManager to
READ_WRITE_OK and the value of the field is stored.

If the persistent field is not a member of the default fetch group, then each read and write
access to the field is delegated to the StateManager. For read, the value of the field is
obtained from the StateManager, stored in the field, and returned to the caller. For
write, the proposed value is given to the StateManager, and the returned value from
the StateManager is stored in the field.

The enhanced code that fetches or modifies a field that is not in the default fetch group first
checks to see if there is an associated StateManager instance and if not (the case for tran-
sient instances) the access is allowed without intervention.

21.9.4 PrimaryKey

Primary key fields are not part of the default fetch group; all changes to the field can be
intercepted by the StateManager. This allows special treatment by the implementation
if any primary key fields are changed by the application.

Primary key fields are always available in the instance, regardless of the state. Therefore,
read access to these fields is never mediated.

21.9.5 Embedded

Fields identified as embedded in the XML metadata are treated as containing embedded
instances. The default for Array, Collection, and Map types is embedded. This is to al-
low JDO implementations to map persistence-capable field types to embedded objects (ag-
gregation by containment pattern).

21.9.6 Null-value

Fields of Object types might be mapped to datastore elements that do not allow null val-
ues. The default behavior “none” is that no special treatment is done for null-valued fields.
In this case, null-valued fields throw a JDOUserException when the instance is flushed
to the datastore and the datastore does not support null values.

However, the treatment of null-valued fields can be modified by specifying the behavior
in the XML metadata. The null-value setting of “default” is used when the default value
for the datastore element is to be used for null-valued fields.

If the application requires non-null values to be stored in this field, then the setting
should be “exception”, which throws a JDOUserException if the value of the field is
null at the time the instance is stored in the datastore.

For example, if a field of type Integer is mapped to a datastore int value, committing an
instance with a field value of null where the null-value setting is “default” will result in
a zero written to the datastore element. Similarly, a null-valued String field would be
written to the datastore as an empty (zero length) String where the null-value setting is
“default”.

21.10 Treatment of standard Java field modifiers

21.10.1 Static

Static fields are ignored by the enhancer. They are not initialized by JDO; accesses to values
are not mediated.
 JDO 2.0 262 February 28, 2006

Java Data Objects 2.0
21.10.2 Final

Final fields are treated as non-persistent and non-transactional by the enhancer. Final
fields are initialized only by the constructor, and their values cannot be changed after con-
struction of the instance. Therefore, their values cannot be loaded or stored by JDO; access-
es are not mediated.

This treatment might not be what users expect; therefore, final fields are not supported as
persistent or transactional instance fields, final static fields are supported by ignoring
them.

21.10.3 Private

Private fields are accessed only by methods in the class itself. JDO handles private fields
according to the semantic that values are stored in private fields by the enhancement-gen-
erated jdoSetXXX methods or jdoReplaceField, which become part of the class def-
inition. The enhancement-generated jdoGetXXX or jdoProvideField methods,
which become part of the class definition, load values from private fields.

21.10.4 Public, Protected

Public fields are not recommended to be persistent in persistence capable classes. Classes
that make reference to persistent public fields (persistence aware) must be enhanced them-
selves prior to execution. Protected fields and fields without an explicit access modifier
(commonly referred to as package access) may be persistent.

Users must enhance all classes, regardless of package, that reference any persistent or
transactional field.

21.11 Fetch Groups

Fetch groups represent a grouping of fields that are retrieved from the datastore together.
Typically, a datastore associates a number of data values together and efficiently retrieves
these values. Other values require extra method calls to retrieve.

For example, in a relational database, the Employee table defines columns for Employee
id, Name, and Position. These columns are efficiently retrieved with one data transfer re-
quest. The corresponding fields in the Employee class might be part of the default fetch
group.

Continuing this example, there is a column for Department dept, defined as a foreign key
from the Employee table to the Department table, which corresponds to a field in the Em-
ployee class named dept of type Department. The runtime behavior of this field depends
on the mapping to the Department table. The reference might be to a derived class and it
might be expensive to determine the class of the Department instance. Therefore, the dept
field will not be defined as part of the default fetch group, even though the foreign key that
implements the relationship might be fetched when the Employee is fetched. Rather, the
value for the dept field will be retrieved from the StateManager every time it is request-
ed. Similarly, the StateManager will be called for each modification of the value of dept.

The jdoFlags field is the indicator of the state of the default fetch group.

21.12 jdoFlags Definition

The value of the jdoFlags field is entirely determined by the StateManager. The
StateManager calls the jdoReplaceFlags method to inform the persistence capable
class to retrieve a new value for the jdoFlags field. The values permitted are constants
 JDO 2.0 263 February 28, 2006

Java Data Objects 2.0
defined in the interface PersistenceCapable: READ_OK, READ_WRITE_OK, and
LOAD_REQUIRED.

During the transition from transient to a managed life cycle state, the jdoFlags field is
set to LOAD_REQUIRED by the persistence capable instance, to indicate that the instance
is not ready. During the transition from a managed state to transient, the jdoFlags field
is set to READ_WRITE_OK by the persistence capable instance, to indicate that the instance
is available for read and write of any field.

The jdoFlags field is a byte with these possible values and associated meanings:

• 0 - READ_WRITE_OK: the values in the default fetch group can be read or written
without intermediation of the associated StateManager instance.

• -1 - READ_OK: the values in the default fetch group can be read but not written
without intermediation of the associated StateManager instance.

• 1 - LOAD_REQUIRED: the values in the default fetch group cannot be accessed,
either for read or write, without intermediation of the associated StateManager
instance.

Regardless of the jdoFlags setting, detached instances will disallow access to non-key
fields that are not marked as loaded in the detached state.

21.13 Exceptions

Generated methods validate the state of the persistence-capable class and the arguments
to the method.

If an argument is illegal, then IllegalArgumentException is thrown. For example,
an illegal field number argument is less than zero or greater than the number of managed
fields.

Some methods require a non-null state manager. In these cases, if the jdoStateMan-
ager is null, then IllegalStateException is thrown.

21.14 Modified field access

The enhancer modifies field accesses to guarantee that the values of fields are retrieved
from the datastore prior to application usage.

For any field access that reads the value of a field, the getfield byte code is replaced with a
call to a generated local method, jdoGetXXX, which determines based on the kind of field
(default fetch group or not) and the state of the jdoFlags whether to call the StateM-
anager with the field number needed.

For any field access that stores the new value of a field, the putfield byte code is replaced
with a call to a generated local method, jdoSetXXX, which determines based on the kind
of field (default fetch group or not) and the state of the jdoFlags whether to call the
StateManager with the field number needed. A JDO implementation might perform
field validation during this operation and might throw a JDOUserException if the val-
ue of the field does not meet the criterion.
 JDO 2.0 264 February 28, 2006

Java Data Objects 2.0
The following table specifies the values of the jdoFieldFlags for each type of mediated

field.

not checked: access is always granted

checked: the condition of jdoFlags is checked to see if access should be mediated

mediated: access is always mediated (delegated to the StateManager)

flags: the value in the jdoFieldFlags field

The flags are defined in PersistenceCapable and may be combined only as in the
above table (SERIALIZABLE may be combined with any other flags):

1 - CHECK_READ

2 - MEDIATE_READ

4 - CHECK_WRITE

8 - MEDIATE_WRITE

16 - SERIALIZABLE

21.15 Generated fields in least-derived PersistenceCapable class

These fields are generated only in the least-derived (topmost) class in the inheritance hier-
archy of persistence-capable classes.

protected transient javax.jdo.spi.StateManager jdoStateManager;

This field contains the managing StateManager instance, if this instance is being managed.

protected transient byte jdoFlags;

This field contains the detached state, if this instance is detached.

protected Object[] jdoDetachedState;

21.16 Generated fields in all PersistenceCapable classes

The following fields are generated in all persistence-capable classes.

private final static int jdoInheritedFieldCount;

This field is initialized at class load time to be the number of fields managed by the super-
classes of this class, or to zero if there is no persistence capable superclass.

private final static String[] jdoFieldNames;

Table 9: Field access mediation

field type read access write access flags

transient transactional not checked checked CHECK_WRITE

primary key not checked mediated MEDIATE_WRITE

default fetch group checked checked CHECK_READ +
CHECK_WRITE

non-default fetch group mediated mediated MEDIATE_READ +
MEDIATE_WRITE
 JDO 2.0 265 February 28, 2006

Java Data Objects 2.0
This field is initialized at class load time to an array of names of persistent and transaction-
al fields. The position in the array is the relative field number of the field.

private final static Class[] jdoFieldTypes;

This field is initialized at class load time to an array of types of persistent and transactional
fields. The position in the array is the relative field number of the field.

private final static byte[] jdoFieldFlags;

This field is initialized at class load time to an array of flags indicating the characteristics
of each persistent and transactional field.

private final static Class jdoPersistenceCapableSuperclass;

This field is initialized at class load time to the class instance of the PersistenceCa-
pable superclass, or null if there is none.

private final static long serialVersionUID;

This field is declared only if it does not already exist, and it is initialized to the value that
would obtain prior to enhancement.

Generated static initializer

The generated static initializer uses the values for jdoFieldNames, jdoFieldTypes, jd-
oFieldFlags, and jdoPersistenceCapableSuperclass, and calls the static
registerClass method in JDOImplHelper to register itself with the runtime envi-
ronment. If the class is abstract, then it does not register a helper instance. If the class is not
abstract, it registers a newly constructed instance.

The generated static initialization code is placed after any user-defined static initialization
code.

21.17 Generated methods in least-derived PersistenceCapable class

These methods are declared in interface PersistenceCapable.

public final boolean jdoIsPersistent();

public final boolean jdoIsTransactional();

public final boolean jdoIsNew();

public final boolean jdoIsDeleted();

These methods check if the jdoStateManager field is null. If so, they return false.
If not, they delegate to the corresponding method in StateManager.

public final boolean jdoIsDetached();

This method checks if the instance is detached. If so, it returns true.

public final boolean jdoIsDirty();

This method checks if the instance is detached. If so, it returns the modified state of the
field from the detached state. If not, it checks if the jdoStateManager field is null. If
so, it returns false. If not, it delegates to the corresponding method in StateManager.

public final void jdoMakeDirty (String fieldName);

public final void jdoMakeDirty (int fieldNumber);

This method checks if the jdoStateManager field is null. If so, it returns silently. If
not, it delegates to the makeDirty method in StateManager.
 JDO 2.0 266 February 28, 2006

Java Data Objects 2.0
public final PersistenceManager jdoGetPersistenceManager();

This method checks if the jdoStateManager field is null. If so, it returns null. If not,
it delegates to the getPersistenceManager method in StateManager.

public final Object jdoGetObjectId();

public final Object jdoGetVersion();

public final Object jdoGetTransactionalObjectId();

These methods check if the instance is detached. If so, they return the appropriate element
of the detached state. If not detached, the methods check if the jdoStateManager field
is null. If so, they return null. If not, they delegate to the corresponding method in
StateManager.

public synchronized final void jdoReplaceStateManager (StateM-
anager sm);

NOTE: This method will be called by the StateManager on state changes when transi-
tioning an instance from transient to a managed state, and from a managed state to tran-
sient.

This method is implemented as synchronized to resolve race conditions, if more than one
StateManager attempts to acquire ownership of the same PersistenceCapable in-
stance.

If the current jdoStateManager is not null, this method replaces the current value for
jdoStateManager with the result of calling jdoStateManager.replacing-
StateManager(this, sm). If successful, the method ends. If the change was not re-
quested by the StateManager, then the StateManager throws a
JDOUserException.

If the current jdoStateManager field is null, then a security check is performed by
calling JDOImplHelper.checkAuthorizedStateManager with the StateManager
parameter sm passed as the parameter to the check. Thus, only StateManager instances
in code bases authorized for JDOPermission(“setStateManager”) are allowed to
set the StateManager. If the security check succeeds, the jdoStateManager field is
set to the value of the parameter sm, and the jdoFlags field is set to LOAD_REQUIRED
to indicate that mediation is required.

public final void jdoReplaceFlags ();

NOTE: This method will be called by the StateManager on state changes when transi-
tioning an instance from a managed state to transient.

If the current jdoStateManager field is null, then this method silently returns with no
effect.

If the current jdoStateManager is not null, this method replaces the current value for
jdoFlags with the result of calling jdoStateManager.replacingFlags(this).

public final void jdoReplaceFields (int[] fields);

For each field number in the fields parameter, jdoReplaceField method is called.

public final void jdoProvideFields (int[] fields);

For each field number in the fields parameter, jdoProvideField method is called.

protected final void jdoPreSerialize();

This method is called by the generated or modified writeObject to allow the instance
to fully populate serializable fields. This method delegates to the StateManager method
 JDO 2.0 267 February 28, 2006

Java Data Objects 2.0
preSerialize so that fields can be fetched by the JDO implementation prior to serial-
ization. If the jdoStateManager field is null, this method returns with no effect.

21.18 Generated methods in PersistenceCapable root classes

These methods are generated for PersistenceCapable root classes and all classes that
declare objectid-class in xml metadata.

public void jdoCopyKeyFieldsToObjectId (ObjectIdFieldSupplier
fs, Object oid)

This method is called by the JDO implementation (or implementation helper) to populate
key fields in object id instances. If this class is not the persistence-capable root class, it first
calls the method of the same name in the root class. Then, for each key field declared in the
metadata, this method calls the object id field supplier and stores the result in the oid in-
stance.

If the oid parameter is not assignment compatible with the object id class of this instance,
then ClassCastException is thrown. If this class does not use application identity,
then this method silently returns.

public void jdoCopyKeyFieldsToObjectId (Object oid)

This method is called by the JDO implementation (or implementation helper) to populate
key fields in object id instances from persistence-capable instances. This might be used to
implement getObjectId or getTransactionalObjectId. If this class is not the
persistence-capable root class, it first calls the method of the same name in the root class.
Then, for each key field declared in the metadata, this method copies the value of the key
field to the oid instance.

If the oid parameter is not assignment compatible with the object id class of this instance,
then ClassCastException is thrown. If this class does not use application identity,
then this method silently returns.

public void jdoCopyKeyFieldsFromObjectId(ObjectIdFieldConsumer
fc, Object oid)

This method is called by the JDO implementation (or implementation helper) to export key
fields from object id instances. If this class is not the persistence-capable root class, it first
calls the method of the same name in the root class. Then, for each key field declared in the
metadata, this method passes the value of the key field in the oid instance to the store
method of the object id field consumer.

If the oid parameter is not assignment compatible with the object id class of this instance,
then ClassCastException is thrown. If this class does not use application identity,
then this method silently returns.

protected void jdoCopyKeyFieldsFromObjectId (Object oid)

This method is called by the jdoNewInstance(Object oid) method. If this class is
not the persistence-capable root class, it first calls the method of the same name in the root
class. Then, for each key field declared in the metadata, this method copies the value of the
key field in the oid instance to the key field in this instance.

If the oid parameter is not assignment compatible with the object id class of this instance,
then ClassCastException is thrown. If this class does not use application identity,
then this method silently returns.

public Object jdoNewObjectIdInstance();
 JDO 2.0 268 February 28, 2006

Java Data Objects 2.0
public Object jdoNewObjectIdInstance(Object obj);

In the case of single field identity, the parameter is an instance of one of the following:

• Number: the parameter is converted to the appropriate type and passed to the
constructor of the single-field identity class

• String: the parameter is converted to the appropriate type and passed to the
constructor of the single-field identity class

• ObjectIdFieldSupplier: the parameter is used to fetch the value of the object
id field which is passed to the constructor of the single-field identity class

• Object: for ObjectIdentity only, the parameter is passed to the constructor of
ObjectIdentity

NOTE: This method is called by the JDO implementation (or implementation helper) to
populate key fields in object id instances.

If this class uses application identity, then this method returns a new instance of the Ob-
jectId class. Otherwise, null is returned.

21.19 Generated method in least-derived Detachable classes

public void jdoReplaceDetachedState();

This method delegates to the jdoStateManager method replacingDetachedState,
passing the current value of the detached state and replacing the detached state with the
result of the method call.

21.20 Generated methods in all PersistenceCapable classes

public PersistenceCapable jdoNewInstance(StateManager sm);

This method uses the default constructor, assigns the sm parameter to the jdoStateM-
anager field, and assigns LOAD_REQUIRED to the jdoFlags field. If the class is ab-
stract, a JDOFatalInternalException is thrown.

public PersistenceCapable jdoNewInstance(StateManager sm, Ob-
ject objectid);

This method uses the default constructor, assigns the StateManager parameter to the
jdoStateManager field, assigns LOAD_REQUIRED to the jdoFlags field, and copies
the key fields from the objectid parameter. If the class is abstract, a JDOFatalInter-
nalException is thrown. If the objectid parameter is not of the correct class, then
ClassCastException is thrown.

protected static int jdoGetManagedFieldCount();

This method returns the number of managed fields declared by this class plus the number
inherited from all superclasses. This method is generated in the class to allow the class to
determine at runtime the number of inherited fields, without having introspection code in
the enhanced class.

final static mmm ttt jdoGet<field>(<class> instance);

The generated jdoGet methods have exactly the same stack signature as the byte code
getfield. They return the value of one specific field. The field returned was either
cached in the instance or retrieved from the StateManager.
 JDO 2.0 269 February 28, 2006

Java Data Objects 2.0
The name of the generated method is constructed from the field name. This allows for hid-
den fields to be supported explicitly, and for classes to be enhanced independently.

The modifier mmm is the same access modifier as the corresponding field in the unen-
hanced class. The return type ttt is the same type as the corresponding field in the unen-
hanced class.

The generated code depends on the type of field and whether the class is marked as De-
tachable:

• If the instance is detached, the method checks to see if the field is marked as loaded
in the detached state. If the field is not loaded ,then
JDODetachedFieldAccessException is thrown.

• If the field is CHECK_READ, then the method first checks to see if jdoFlags field
is anything except LOAD_REQUIRED. If so, the value of the field is returned. If not,
then the value of jdoStateManager is checked. If it is null, the value of the
field is returned. If non-null, then method isLoaded is called on the
jdoStateManager. If the result of isLoaded is true, then the value of the
field is returned. If the result of isLoaded is false, then the result of method
getXXXField on the jdoStateManager is returned.

• If the field is MEDIATE_READ, then the value of jdoStateManager is checked.
If it is null, the value of the field is returned. If non-null, then method
isLoaded is called on the jdoStateManager. If the result of isLoaded is
true, then the value of the field is returned. If the result of isLoaded is false,
then the result of method getXXXField on the jdoStateManager is returned.

• If the field is neither of the above, then the value of the field is returned.

final static mmm void jdoSet<field> (<class> instance, ttt
newValue);

The generated jdoSet methods have exactly the same stack signature as the byte code
putfield. They set the value of one specific field. The field might be provided to the
StateManager.

The name of the generated method is constructed from the field name. This allows for hid-
den fields to be supported explicitly, and for classes to be enhanced independently.

The modifier mmm is the same access modifier as the corresponding field in the unen-
hanced class. The type ttt is the same type as the corresponding field in the unenhanced
class.

The generated code depends on the type of field and whether the class is marked as De-
tachable:

• If the instance is detached, the method checks to see if the field is marked as loaded
in the detached state. If the field is not loaded ,then
JDODetachedFieldAccessException is thrown. If the field is loaded, then the
field is marked as modified in the detached state.

• If the field is CHECK_WRITE, then the method first checks to see if the jdoFlags
field is READ_WRITE_OK. If so, then the field is set to the new value. If not, then
the value of jdoStateManager is checked. If it is null, the value of the field is
set to the new value. If non-null, then method setXXXField is executed on the
jdoStateManager, passing the new value.
 JDO 2.0 270 February 28, 2006

Java Data Objects 2.0
• If the field is MEDIATE_WRITE, then the value of jdoStateManager is checked.
If it is null, then the field is set to the parameter. If non-null, then method
setXXXField is executed on the jdoStateManager, passing the new value.

• If the field is neither of the above, then the value of the field is set to the new value.

public void jdoReplaceField (int field);

NOTE: This method is used by the StateManager to store values from the datastore into
the instance. If there is no StateManager (the jdoStateManager field is null), then
this method throws JDOFatalInternalException.

This method calls the StateManager replacingXXXField to get a new value for one
field from the StateManager.

The field number is examined to see if it is a declared field or an inherited field. If it is in-
herited, then the call is delegated to the superclass. If it is declared, then the appropriate
StateManager replacingXXXField method is called, which retrieves the new value
for the field.

If the field is out of range (less than zero or greater than the number of managed fields in
the class) then a JDOFatalInternalException is thrown.

public void jdoReplaceFields (int[] fields);This method internally calls
jdoReplaceField for each field number in the parameter.

public void jdoProvideField (int field);

NOTE: This method is used by the StateManager to retrieve values from the instance,
during flush to the datastore or for in-memory query processing. If there is no StateM-
anager (the jdoStateManager field is null), then this method throws JDOFa-
talInternalException.

This method calls the StateManager providedXXXField method to supply the value
of the specified field to the StateManager.

The field number is examined to see if it is a declared field or an inherited field. If it is in-
herited, then the call is delegated to the superclass. If it is declared, then the appropriate
StateManager providedXXXField method is called, which provides the StateM-
anager with the value for the field.

If the field is out of range (less than zero or greater than the number of managed fields in
the class) then a JDOFatalInternalException is thrown.

public void jdoProvideFields (int[] fields);This method internally calls
jdoProvideField for each field number in the parameter.

public void jdoCopyFields (Object other, int[] fieldNumbers);

This method is called by the StateManager to create before images of instances for the
purpose of rollback.This method copies the specified fields from the other instance, which
must be the same class as this instance, and owned by the same StateManager.

If the other instance is not assignment compatible with this instance, then ClassCas-
tException is thrown. If the other instance is not owned by the same StateManager,
then JDOFatalInternalException is thrown.

public final void jdoCopyField (<class> other, int fieldNumber);

This method is called by the jdoCopyFields method to copy the specified field from the
other instance. If the field number corresponds to a field in a persistence-capable super-
class, this method delegates to the superclass method. If the field is out of range (less than
 JDO 2.0 271 February 28, 2006

Java Data Objects 2.0
zero or greater than the number of managed fields in the class) then a JDOFatalInter-
nalException is thrown.

private void writeObject(java.io.ObjectOutputStream out)

throws java.io.IOException{

If no user-written method writeObject exists, then one will be generated. The generat-
ed writeObject makes sure that all persistent and transactional serializable fields are
loaded into the instance, by calling jdoPreSerialize(), and then the default output
behavior is invoked on the output stream.

If the class is serializable (either by explicit declaration or by inheritance) then this code
will guarantee that the fields are loaded prior to standard serialization. If the class is not
serializable, then this code will never be executed.

Note that there is no modification of a user’s readObject. During the execution of
readObject, a new transient instance is created. This instance might be made persistent
later, but while it is being constructed by serialization, it remains transient.

21.21 Example class: Employee

The following class definitions for persistence capable classes are used in the examples.
The Employee class is enhanced for application identity using IntIdentity as the ob-
ject id class.

package com.xyz.hr;

import javax.jdo.spi.*; // generated by enhancer...

class Employee

implements Detachable // generated by enhancer...

{

Employee boss; // relative field 0

Department dept; // relative field 1

int empid; // relative field 2, key field

String name; // relative field 3

21.21.1 Generated fields

protected transient javax.jdo.spi.StateManager jdoStateManager =
null;

protected transient byte jdoFlags =

javax.jdo.spi.PersistenceCapable.READ_WRITE_OK;

// if no superclass, the following:

private final static int jdoInheritedFieldCount = 0;

/* otherwise,

private final static int jdoInheritedFieldCount =

<persistence-capable-superclass>.jdoGetManagedFieldCount();

*/

private final static String[] jdoFieldNames = {“boss”, “dept”, “em-
pid”, “name”};

private final static Class[] jdoFieldTypes = {Employee.class, De-
partment.class, int.class, String.class};
 JDO 2.0 272 February 28, 2006

Java Data Objects 2.0
private final static byte[] jdoFieldFlags = {

MEDIATE_READ+MEDIATE_WRITE,

MEDIATE_READ+MEDIATE_WRITE,

MEDIATE_WRITE,

CHECK_READ+CHECK_WRITE

};

// if no PersistenceCapable superclass, the following:

private final static Class jdoPersistenceCapableSuperclass = null;

/* otherwise,

private final static Class jdoPersistenceCapableSuperclass = <pc-
super>;

private final static long serialVersionUID = 1234567890L;

*/

21.21.2 Generated static initializer

static {

javax.jdo.spi.JDOImplHelper.registerClass (

Employee.class,

jdoFieldNames,

jdoFieldTypes,

jdoFieldFlags,

jdoPersistenceCapableSuperclass,

new Employee());

}

21.21.3 Generated interrogatives

public final boolean jdoIsPersistent() {

return jdoStateManager==null?false:

jdoStateManager.isPersistent(this);

}

public final boolean jdoIsTransactional(){

return jdoStateManager==null?false:

jdoStateManager.isTransactional(this);

}

public final boolean jdoIsNew(){

return jdoStateManager==null?false:

jdoStateManager.isNew(this);

}

public final boolean jdoIsDirty(){

return jdoStateManager==null?false:

jdoStateManager.isDirty(this);
 JDO 2.0 273 February 28, 2006

Java Data Objects 2.0
}

public final boolean jdoIsDeleted(){

return jdoStateManager==null?false:

jdoStateManager.isDeleted(this);

}

public final boolean jdoIsDetached(){

return jdoStateManager==null?false:

jdoStateManager.isDetached(this);

}

public final void jdoMakeDirty (String fieldName){

if (jdoStateManager==null) return;

jdoStateManager.makeDirty(this, fieldName);

}

public final PersistenceManager jdoGetPersistenceManager(){

return jdoStateManager==null?null:

jdoStateManager.getPersistenceManager(this);

}

public final Object jdoGetObjectId(){

return jdoStateManager==null?null:

jdoStateManager.getObjectId(this);

}

public final Object jdoGetTransactionalObjectId(){

return jdoStateManager==null?null:

jdoStateManager.getTransactionalObjectId(this);

}

21.21.4 Generated jdoReplaceStateManager

The generated method asks the current StateManager to approve the change or vali-
dates the caller’s authority to set the state.

public final synchronized void jdoReplaceStateManager

(javax.jdo.spi.StateManager sm) {

// throws exception if current sm didn’t request the change

if (jdoStateManager != null) {

jdoStateManager = jdoStateManager.replacingStateManager (this,

sm);

} else {

// the following will throw an exception if not authorized

JDOImplHelper.checkAuthorizedStateManager(sm);

jdoStateManager = sm;

this.jdoFlags = LOAD_REQUIRED;

}

}

 JDO 2.0 274 February 28, 2006

Java Data Objects 2.0
21.21.5 Generated jdoReplaceFlags

public final void jdoReplaceFlags () {

if (jdoStateManager != null) {

jdoFlags = jdoStateManager.replacingFlags (this);

}

}

21.21.6 Generated jdoNewInstance helpers

The first generated helper assigns the value of the passed parameter to the jdoStateM-
anager field of the newly created instance.

public PersistenceCapable jdoNewInstance(StateManager sm) {

// if class is abstract, throw new JDOFatalInternalException()

Employee pc = new Employee ();
pc.jdoStateManager = sm;

pc.jdoFlags = LOAD_REQUIRED;

return pc;

}

/* The second generated helper assigns the value of the passed parameter to the
jdoStateManager field of the newly created instance, and initializes the values of the
key fields from the oid parameter.

*/

public PersistenceCapable jdoNewInstance(StateManager sm, Object
oid) {

// if class is abstract, throw new JDOFatalInternalException()

Employee pc = new Employee ();
pc.jdoStateManager = sm;

pc.jdoFlags = LOAD_REQUIRED;

// now copy the key fields into the new instance

jdoCopyKeyFieldsFromObjectId (oid);

return pc;

}

21.21.7 Generated jdoGetManagedFieldCount

The generated method returns the number of managed fields in this class plus the number
of inherited managed fields. This method is expected to be executed only during class
loading of the subclasses.

The implementation for topmost classes in the hierarchy:

protected static int jdoGetManagedFieldCount () {

return jdoFieldNames.length;
 JDO 2.0 275 February 28, 2006

Java Data Objects 2.0
}

The implementation for subclasses:

protected static int jdoGetManagedFieldCount () {

return <pc-superclass>.jdoGetManagedFieldCount() +

jdoFieldNames.length;

}

21.21.8 Generated jdoGetXXX methods (one per persistent field)

The access modifier is the same modifier as the corresponding field definition. Therefore,
access to the method is controlled by the same policy as for the corresponding field.

final static String

jdoGetname(Employee x) {

// this field is in the default fetch group (CHECK_READ)

if (x.jdoFlags <= READ_WRITE_OK) {

 // ok to read

 return x.name;

}

// field needs to be fetched from StateManager

// this call might result in name being stored in instance

StateManager sm = x.jdoStateManager;

if (sm != null) {

if (sm.isLoaded (x, jdoInheritedFieldCount + 3))

return x.name;

 return sm.getStringField(x, jdoInheritedFieldCount + 3,

 x.name);

} else {

return x.name;

}

}

final static com.xyz.hr.Department

jdoGetdept(Employee x) {

 // this field is not in the default fetch group (MEDIATE_READ)

StateManager sm = x.jdoStateManager;

if (sm != null) {

if (sm.isLoaded (x, jdoInheritedFieldCount + 1))

return x.dept;

return (com.xyz.hr.Department)

sm.getObjectField(x,
 JDO 2.0 276 February 28, 2006

Java Data Objects 2.0
jdoInheritedFieldCount + 1,

x.dept);

} else {

return x.dept;

}

}

21.21.9 Generated jdoSetXXX methods (one per persistent field)

The access modifier is the same modifier as the corresponding field definition. Therefore,
access to the method is controlled by the same policy as for the corresponding field.

final static void

jdoSetname(Employee x, String newValue) {

// this field is in the default fetch group

if (x.jdoFlags == READ_WRITE_OK) {

 // ok to read, write

 x.name = newValue;

 return;

}

StateManager sm = x.jdoStateManager;

if (sm != null) {

sm.setStringField(x,

jdoInheritedFieldCount + 3,

x.name,

newValue);

} else {

x.name = newValue;

}

}

final static void

jdoSetdept(Employee x, com.xyz.hr.Department newValue) {

// this field is not in the default fetch group

StateManager sm = x.jdoStateManager;

if (sm != null) {

sm.setObjectField(x,

jdoInheritedFieldCount + 1,

x.dept, newValue);

} else {
 JDO 2.0 277 February 28, 2006

Java Data Objects 2.0
x.dept = newValue;

}

}

21.21.10 Generated jdoReplaceField and jdoReplaceFields

The generated jdoReplaceField retrieves a new value from the StateManager for
one specific field based on field number. This method is called by the StateManager
whenever it wants to update the value of a field in the instance, for example to store values
in the instance from the datastore.

This may be used by the StateManager to clear fields and handle cleanup of the objects cur-
rently referred to by the fields (e.g., embedded objects).

public void jdoReplaceField (int fieldNumber) {

int relativeField = fieldNumber - jdoInheritedFieldCount;

switch (relativeField) {

case (0): boss = (Employee)

jdoStateManager.replacingObjectField (this,

fieldNumber);

break;

case (1): dept = (Department)

jdoStateManager.replacingObjectField (this,

fieldNumber);

break;

case (2): empid =

jdoStateManager.replacingIntField (this,

fieldNumber);

break;

case (3): name =

jdoStateManager.replacingStringField (this,

fieldNumber);

break;

default:

/* if there is a pc superclass, delegate to it

if (relativeField < 0) {

super.jdoReplaceField (fieldNumber);

} else {

throw new IllegalArgumentException(“fieldNumber”);

}

*/

// if there is no pc superclass, throw an exception
 JDO 2.0 278 February 28, 2006

Java Data Objects 2.0
throw new IllegalArgumentException(“fieldNumber”);

} // switch

}

public final void jdoReplaceFields (int[] fieldNumbers) {

for (int i = 0; i < fieldNumbers.length; ++i) {

int fieldNumber = fieldNumbers[i];

jdoReplaceField (fieldNumber);

}

}

21.21.11 Generated jdoProvideField and jdoProvideFields

The generated jdoProvideField gives the current value of one field to the StateM-
anager. This method is called by the StateManager whenever it wants to get the value
of a field in the instance, for example to store the field in the datastore.

public void jdoProvideField (int fieldNumber) {

int relativeField = fieldNumber - jdoInheritedFieldCount;

switch (relativeField) {

case (0): jdoStateManager.providedObjectField(this,

fieldNumber, boss);

break;

case (1): jdoStateManager.providedObjectField(this,

fieldNumber, dept);

break;

case (2): jdoStateManager.providedIntField(this,

fieldNumber, empid);

break;

case (3): jdoStateManager.providedStringField(this,

fieldNumber, name);

break;

default:

/* if there is a pc superclass, delegate to it

if (relativeField < 0) {

super.jdoProvideField (fieldNumber);

} else {

throw new IllegalArgumentException(“fieldNumber”);

}

*/

// if there is no pc superclass, throw an exception

throw new IllegalArgumentException(“fieldNumber”);
 JDO 2.0 279 February 28, 2006

Java Data Objects 2.0
} // switch

}

public final void jdoProvideFields (int[] fieldNumbers) {

for (int i = 0; i < fieldNumbers.length; ++i) {

int fieldNumber = fieldNumbers[i];

jdoProvideField (fieldNumber);

}

}

21.21.12 Generated jdoCopyField and jdoCopyFields methods

The generated jdoCopyFields copies fields from another instance to this instance. This
method might be used by the StateManager to create before images of instances for roll-
back, or to restore instances in case of rollback.

This method delegates to method jdoCopyField to copy values for all fields requested.

To avoid security exposure, jdoCopyFields can be invoked only when both instances
are owned by the same StateManager. Thus, a malicious user cannot use this method
to copy fields from a managed instance to a non-managed instance, or to an instance man-
aged by a malicious StateManager.

public void jdoCopyFields (Object pc, int[] fieldNumbers){

// the other instance must be owned by the same StateManager

// and our StateManager must not be null!

if (((PersistenceCapable)other).jdoStateManager

!= this.jdoStateManager)

throw new IllegalArgumentException(“this.jdoStateManager !=
other.jdoStateManager”);

if (this.jdoStateManager == null)

throw new IllegalStateException(“this.jdoStateManager ==
null”);

// throw ClassCastException if other class is the wrong class

Employee other = (Employee) pc;

for (int i = 0; i < fieldNumbers.length; ++i) {

jdoCopyField (other, fieldNumbers[i]);

} // for loop

} // jdoCopyFields

protected void jdoCopyField (Employee other, int fieldNumber) {

int relativeField = fieldNumber - jdoInheritedFieldCount;

switch (relativeField) {

case (0): this.boss = other.boss;
 JDO 2.0 280 February 28, 2006

Java Data Objects 2.0
break;

case (1): this.dept = other.dept;

break;

case (2): this.empid = other.empid;

break;

case (3): this.name = other.name;

break;

default: // other fields handled in superclass

// this class has no superclass, so throw an exception

throw new IllegalArgumentException(“fieldNumber”);

/* if it had a superclass, it would handle the field as follows:

super.jdoCopyField (other, fieldNumber);

 */

break;

} // switch

} // jdoCopyField

21.21.13 Generated writeObject method

If no user-written method writeObject exists, then one will be generated. The generat-
ed writeObject makes sure that all persistent and transactional serializable fields are
loaded into the instance, and then the default output behavior is invoked on the output
stream.

private void writeObject(java.io.ObjectOutputStream out)

throws java.io.IOException{

jdoPreSerialize();

out.defaultWriteObject ();

}

21.21.14 Generated jdoPreSerialize method

The generated jdoPreSerialize method makes sure that all persistent and transac-
tional serializable fields are loaded into the instance by delegating to the corresponding
method in StateManager.

private final void jdoPreSerialize() {

if (jdoStateManager != null)

jdoStateManager.preSerialize(this);

}

21.21.15 Generated jdoNewObjectIdInstance

The generated methods create and return a new instance of the object id class.

public Object jdoNewObjectIdInstance() {
 JDO 2.0 281 February 28, 2006

Java Data Objects 2.0
return new IntIdentity(Employee.class, empid);

}

public Object jdoNewObjectIdInstance(Object obj) {

if (obj instanceof String) {

return new IntIdentity(Employee.class, (String)str);

} else if (obj instanceof Integer) {

return new IntIdentity(Employee.class, (Integer)obj);

} else if (obj instanceof ObjectIdFieldSupplier) {

return new IntIdentity(Employee.class,

((ObjectIdFieldSupplier)obj).fetchIntField(2));

} else

throw new JDOUserException(“illegal object id type”);

}

21.21.16 Generated jdoCopyKeyFieldsToObjectId

The generated methods copy key field values from the PersistenceCapable instance
or from the ObjectIdFieldSupplier.

public void jdoCopyKeyFieldsToObjectId (ObjectIdFieldSupplier fs,
Object oid) {

throw new JDOFatalInternalException(“Object id is immutable”);

}

public void jdoCopyKeyFieldsToObjectId (Object oid) {

throw new JDOFatalInternalException(“Object id is immutable”);

}

21.21.17 Generated jdoCopyKeyFieldsFromObjectId

The generated methods copy key fields from the object id instance to the Persistence-
Capable instance or to the ObjectIdFieldConsumer.

public void jdoCopyKeyFieldsFromObjectId (ObjectIdFieldConsumer
fc, Object oid) {

 fc.storeIntField (2, ((IntIdentity)oid).getKey());

}

This method is part of the PersistenceCapable contract. It copies key fields from the object
id instance to the ObjectIdFieldConsumer.

protected void jdoCopyKeyFieldsFromObjectId (Object oid) {

empid = ((IntIdentity)oid).getKey());

}

This method is used internally to copy key fields from the object id instance to a newly cre-
ated PersistenceCapable instance.

21.21.18 Generated Detachable methods

public void jdoReplaceDetachedState() {
 JDO 2.0 282 February 28, 2006

Java Data Objects 2.0
jdoDetachedState = sm.replacingDetachedState(this,

jdoDetachedState);

}

} // end class definition
 JDO 2.0 283 February 28, 2006

Java Data Objects 2.0
22 Interface StateManager

This chapter specifies the StateManager interface, which is responsible for managing
the state of fields of persistence-capable classes in the JDO environment.

 NOTE: This interface is not intended to be used by application programmers.
It is for use only by implementations.

22.1 Overview

A class that implements the JDO StateManager interface must be supplied by the JDO
implementation. There is no user-visible behavior for this implementation; its only caller
from the user’s perspective is the PersistenceCapable class.Goals

This interface allows the JDO implementation to completely control the behavior of the
PersistenceCapable classes under management. In particular, the implementation
may choose to exploit the caching capabilities of PersistenceCapable or not.

The architecture permits JDO implementations to have a singleton StateManager for all
PersistenceCapable instances; a StateManager for all PersistenceCapable
instances associated with a particular PersistenceManager or PersistenceMan-
agerFactory; a StateManager for all PersistenceCapable instances of a partic-
ular class; or a StateManager for each PersistenceCapable instance. This list is not
intended to be exhaustive, but simply to identify the cases that might be typical.

Clone support

Note that any of the methods in this interface might be called by a clone of a persistence-
capable instance, and the implementation of StateManager must disconnect the clone
upon detecting it. Disconnecting the clone requires setting the clone’s jdoFlags to
READ_WRITE_OK; setting the clone’s jdoStateManager to null; and then returning
from the method as if the clone were transient. For example, in response to isLoaded, the
StateManager calls clone.jdoReplaceFlags(READ_WRITE_OK);
clone.jdoReplaceStateManager(null); return true.

package javax.jdo.spi;

public interface StateManager {

22.2 StateManager Management

The following methods provide for updating the corresponding PersistenceCapable
fields. These methods are intended to be called only from the PersistenceCapable in-
stance.

It is possible for these methods to be called from a cloned instance of a persistent instance
(between the time of the execution of clone() and the enhancer-generated reset of the
jdoStateManager and jdoFlags fields). In this case, the StateManager is not man-
 JDO 2.0 284 February 28, 2006

Java Data Objects 2.0
aging the clone. The StateManager must detect this case and disconnect the clone from
the StateManager. The end result of disconnecting is that the jdoFlags field is set to
READ_WRITE_OK and the jdoStateManager field is set to null.

public StateManager replacingStateManager (PersistenceCapable pc,
StateManager sm);

When the current StateManager is not null, it should be the only caller of Persis-
tenceCapable.jdoReplaceStateManager, which calls this method. This method
should be called when the current StateManager wants to set the jdoStateManager
field to null to transition the instance to transient.

The jdoFlags are completely controlled by the StateManager. The meaning of the
values are the following:

0: READ_WRITE_OK

any negative number: READ_OK

1: LOAD_REQUIRED

2: DETACHED

public byte replacingFlags(PersistenceCapable pc);

This method is called by the PersistenceCapable in response to the StateManager
calling jdoReplaceFlags. The PersistenceCapable will store the returned value
into its jdoFlags field.

22.3 PersistenceManager Management

The following method provides for getting the PersistenceManager. This method is
intended to be called only from the PersistenceCapable instance.

public PersistenceManager getPersistenceManager (PersistenceCa-
pable pc);

22.4 Dirty management

The following methods provide for marking the PersistenceCapable instance dirty:

public void makeDirty (PersistenceCapable pc, String field-
Name);public void makeDirty (PersistenceCapable pc, int fieldNum-
ber);

22.5 State queries

The following methods are delegated from the PersistenceCapable class, to imple-
ment the associated behavior of PersistenceCapable.

public boolean isPersistent (PersistenceCapable pc);

public boolean isTransactional (PersistenceCapable pc);

public boolean isNew (PersistenceCapable pc);

public boolean isDirty (PersistenceCapable pc);

public boolean isDeleted (PersistenceCapable pc);
 JDO 2.0 285 February 28, 2006

Java Data Objects 2.0
22.6 JDO Identity

public Object getObjectId (PersistenceCapable pc);

This method returns the JDO identity of the instance.

public Object getTransactionalObjectId (PersistenceCapable pc);

This method returns the transactional JDO identity of the instance.

22.7 Serialization support

public void preSerialize (PersistenceCapable pc);

This method loads all non-transient persistent fields in the PersistenceCapable in-
stance, as a precursor to serializing the instance. It is called by the generated jdoPreSe-
rialize() method in the PersistenceCapable class.

22.8 Field Management

The StateManager completely controls the behavior of the PersistenceCapable
with regard to whether fields are loaded or not. Setting the value of the jdoFlags field in
the PersistenceCapable directly affects the behavior of the PersistenceCapable
with regard to fields in the default fetch group.

• The StateManager might choose to never cache any field values in the
PersistenceCapable, but rather to retrieve the values upon request. To
implement this strategy, the StateManager will always use the
LOAD_REQUIRED value for the jdoFlags, and will always return false to any
call to isLoaded.

• The StateManager might choose to selectively retrieve and cache field values in
the PersistenceCapable. To implement this strategy, the StateManager
will always use the LOAD_REQUIRED value for jdoFlags, and will return true
to calls to isLoaded that refer to fields that are cached in the
PersistenceCapable.

• The StateManager might choose to retrieve at one time all field values for fields
in the default fetch group, and to take advantage of the performance optimization
in the PersistenceCapable. To implement this strategy, the StateManager
will use the LOAD_REQUIRED value for jdoFlags only when the fields in the
default fetch group are not cached. Once all of the fields in the default fetch group
are cached in the PersistenceCapable, the StateManager will set the value
of the jdoFlags to READ_OK. This will probably be done during the call to
isLoaded made for one of the fields in the default fetch group, and before
returning true to the method, the StateManager will call
jdoReplaceFields with the field numbers of all fields in the default fetch
group, and will call jdoReplaceFlags to set jdoFlags to READ_OK.

• The StateManager might choose to manage updates of fields in the default fetch
group individually. To implement this strategy, the StateManager will not use
the READ_WRITE_OK value for jdoFlags. This will result in the
PersistenceCapable always delegating to the StateManager for any
change to any field. In this way, the StateManager can reliably tell when any
field changes, and can optimize the writing of data to the store.
 JDO 2.0 286 February 28, 2006

Java Data Objects 2.0
The following method is used by the PersistenceCapable to determine whether the
value of the field is already cached in the PersistenceCapable instance. If it is cached
(perhaps during the execution of this method) then the value of the field is returned by the
PersistenceCapable method without further calls to the StateManager.

boolean isLoaded (PersistenceCapable pc, int field);

22.8.1 User-requested value of a field

The following methods are used by the PersistenceCapable instance to inform the
StateManager of a user-initiated request to access the value of a persistent field.

The pc parameter is the instance of PersistenceCapable making the call; the field
parameter is the field number of the field; and the currentValue parameter is the cur-
rent value of the field in the instance.

The current value of the field is passed as a parameter to allow the StateManager to
cache values in the PersistenceCapable. If the value is cached in the Persis-
tenceCapable, then the StateManager can simply return the current value provided
with the method call.

public boolean getBooleanField (PersistenceCapable pc, int field,
boolean currentValue);

public char getCharField (PersistenceCapable pc, int field, char
currentValue);

public byte getByteField (PersistenceCapable pc, int field, byte
currentValue);

public short getShortField (PersistenceCapable pc, int field, short
currentValue);

public int getIntField (PersistenceCapable pc, int field, int cur-
rentValue);

public long getLongField (PersistenceCapable pc, int field, long
currentValue);

public float getFloatField (PersistenceCapable pc, int field, float
currentValue);

public double getDoubleField (PersistenceCapable pc, int field,
double currentValue);

public String getStringField (PersistenceCapable pc, int field,
String currentValue);

public Object getObjectField (PersistenceCapable pc, int field, Ob-
ject currentValue);

22.8.2 User-requested modification of a field

The following methods are used by the PersistenceCapable instance to inform the
StateManager of a user-initiated request to modify the value of a persistent field.

The pc parameter is the instance of PersistenceCapable making the call; the field
parameter is the field number of the field; the currentValue parameter is the current
value of the field in the instance; and the newValue parameter is the value of the field giv-
en by the user method.

public void setBooleanField (PersistenceCapable pc, int field,
boolean currentValue, boolean newValue);
 JDO 2.0 287 February 28, 2006

Java Data Objects 2.0
public void setCharField (PersistenceCapable pc, int field, char
currentValue, char newValue);

public void setByteField (PersistenceCapable pc, int field, byte
currentValue, byte newValue);

public void setShortField (PersistenceCapable pc, int field, short
currentValue, short newValue);

public void setIntField (PersistenceCapable pc, int field, int cur-
rentValue, int newValue);

public void setLongField (PersistenceCapable pc, int field, long
currentValue, long newValue);

public void setFloatField (PersistenceCapable pc, int field, float
currentValue, float newValue);

public void setDoubleField (PersistenceCapable pc, int field, dou-
ble currentValue, double newValue);

public void setStringField (PersistenceCapable pc, int field,
String currentValue, String newValue);

public void setObjectField (PersistenceCapable pc, int field, Ob-
ject currentValue, Object newValue);

22.8.3 StateManager-requested value of a field

The following methods inform the StateManager of the value of a persistent field re-
quested by the StateManager.

The pc parameter is the instance of PersistenceCapable making the call; the field
parameter is the field number of the field; and the currentValue parameter is the cur-
rent value of the field in the instance.

public void providedBooleanField (PersistenceCapable pc, int field,
boolean currentValue);

public void providedCharField (PersistenceCapable pc, int field,
char currentValue);

public void providedByteField (PersistenceCapable pc, int field,
byte currentValue);

public void providedShortField (PersistenceCapable pc, int field,
short currentValue);

public void providedIntField (PersistenceCapable pc, int field, int
currentValue);

public void providedLongField (PersistenceCapable pc, int field,
long currentValue);

public void providedFloatField (PersistenceCapable pc, int field,
float currentValue);

public void providedDoubleField (PersistenceCapable pc, int field,
double currentValue);

public void providedStringField (PersistenceCapable pc, int field,
String currentValue);

public void providedObjectField (PersistenceCapable pc, int field,
Object currentValue);
 JDO 2.0 288 February 28, 2006

Java Data Objects 2.0
22.8.4 StateManager-requested modification of a field

The following methods ask the StateManager for the value of a persistent field request-
ed to be modified by the StateManager.

The pc parameter is the instance of PersistenceCapable making the call; and the
field parameter is the field number of the field.

public boolean replacingBooleanField (PersistenceCapable pc, int
field);

public char replacingCharField (PersistenceCapable pc, int field);

public byte replacingByteField (PersistenceCapable pc, int field);

public short replacingShortField (PersistenceCapable pc, int
field);

public int replacingIntField (PersistenceCapable pc, int field);

public long replacingLongField (PersistenceCapable pc, int field);

public float replacingFloatField (PersistenceCapable pc, int
field);

public double replacingDoubleField (PersistenceCapable pc, int
field);

public String replacingStringField (PersistenceCapable pc, int
field);

public Object replacingObjectField (PersistenceCapable pc, int
field);

22.9 Detached instance support

public Object[] replacingDetachedState (

Detached pc, Object[] loaded);

This method is called by a detachable instance in response to the StateManager calling
replaceDetachedState. It provides the Detachable and the detached state to the
StateManager.
 JDO 2.0 289 February 28, 2006

Java Data Objects 2.0
23 JDOPermission

A permission represents access to a system resource. For a resource access to be allowed
for an applet (or an application running with a security manager), the corresponding per-
mission must be explicitly granted to the code attempting the access.

The JDOPermission class provides a marker for the security manager to grant access to
a class to perform privileged operations necessary for JDO implementations.

There are four JDO permissions defined:

• setStateManager: this permission allows an instance to manage an instance of
PersistenceCapable, which allows the instance to access and modify any
fields defined as persistent or transactional. This permission is similar to but
allows access to only a subset of the broader ReflectPermission
("suppressAccessChecks"). This permission is checked by the
PersistenceCapable.jdoReplaceStateManager method.

• getMetadata: this permission allows an instance to access the metadata for any
registered PersistenceCapable class. This permission allows access to a
subset of the broader RuntimePermission("accessDeclaredMembers").
This permission is checked by the JDOImplHelper.getJDOImplHelper
method.

• closePersistenceManagerFactory: this permission allows a caller to close a
PersistenceManagerFactory, thereby releasing resources. This permission is
checked by the close() method of
PersistenceManagerFactory.manageMetadata: this permission allows a
caller to unload metadata for a class or a class loader, thereby releasing resources.
This permission is checked by the unregisterClass() and
unregisterClasses() methods of JDOImplHelper.

Use of JDOPermission allows the security manager to restrict potentially malicious
classes from accessing information contained in instances of PersistenceCapable.

A sample policy file entry granting code from the /home/jdoImpl directory permission
to get metadata, manage PersistenceCapable instances, and close PersistenceM-
anagerFactory instances is

grant codeBase "file:/home/jdoImpl/" {

permission javax.jdo.spi.JDOPermission "getMetadata";

permission javax.jdo.spi.JDOPermission "setStateManager";

permission javax.jdo.spi.JDOPermission

"closePersistenceManagerFactory";

permission javax.jdo.spi.JDOPermission "manageMetadata";

};
 JDO 2.0 290 February 28, 2006

Java Data Objects 2.0
24 JDOQL BNF

24.1 Grammar Notation

The grammar notation is taken from the Java Language Specification, section 2.4 Grammar Notation.

• Terminal symbols are shown in bold fixed width font in the productions of the lexical and syntactic grammars,
and throughout this specification whenever the text is directly referring to such a terminal symbol. These are to
appear in a program exactly as written.

• Nonterminal symbols are shown in italic type. The definition of a nonterminal is introduced by the name of the
nonterminal being defined followed by a colon. One or more alternative right-hand sides for the nonterminal then
follow on succeeding lines.

• The subscripted suffix "opt", which may appear after a terminal or nonterminal, indicates an optional symbol. The
alternative containing the optional symbol actually specifies two right-hand sides, one that omits the optional ele-
ment and one that includes it.

• When the words "one of" follow the colon in a grammar definition, they signify that each of the terminal symbols
on the following line or lines is an alternative definition.

24.2 Single-String JDOQL

This section describes the syntax of single-string JDOQL.

SingleStringJDOQL:
Select Fromopt Whereopt Decls Groupingopt Orderingopt Rangeopt

Select:
select uniqueopt ResultClauseopt IntoClauseopt

IntoClause:
into ResultClassName

From:
from CandidateClassName ExcludeClauseopt

ExcludeClause:
exclude subclasses

Where:
where Expression

Decls:
Variablesopt Parametersopt Importsopt

Variables:
variables VariableList
 JDO 2.0 291 February 28, 2006

Java Data Objects 2.0
Parameters:
parameters ParameterList

Imports:
ImportList

Grouping:
group by GroupingClause

Ordering:
order by OrderingClause

Range:
range Expression , Expression

24.3 Filter Specification

This section describes the syntax of the setFilter argument.

Basically, the query filter expression is a Java boolean expression, where some of the Java operators are not permit-
ted. Specifically, pre- and post- increment and decrement (++ and - -), shift (>> and <<) and assignment expressions
(+=, -=, etc.) are not permitted.

The Nonterminal InfixOp lists the valid operators for binary expressions in decreasing precedence. Operators one
the same line have the same precedence. As in Java operators require operands of appropriate types. See the Java
Language Specification for more information.

Plase note, the grammar allows arbitrary method calls (see MethodInvocation), where JDO only permits the fol-
lowing methods:

Expression:
UnaryExpression
Expression InfixOp UnaryExpression

InfixOp: one of
* / %
+ -

 > >= < <= instanceof
 == !=
&
|

Collection methods contains(Object), isEmpty(), size()
Map methods containsKey(Object), containsValue(Object),

isEmpty(), size(), get()
String methods startsWith(String), endsWith(String),

matches(String),
toLowerCase(), toUpperCase(),
indexOf(String), indexOf(String, int),
substring(int), substring(int, int)

Math methods Math.abs(numeric), Math.sqrt(numeric)
JDOHelper methods getObjectId(Object)
 JDO 2.0 292 February 28, 2006

Java Data Objects 2.0
&&
||

UnaryExpression:
PrefixOp UnaryExpression
(Type) UnaryExpression
Primary

PrefixOp: one of
+ - ~ !

Primary:
Literal
VariableName
ParameterName
this
FieldAccess
MethodInvocation
ClassOrInterfaceName
(Expression)
AggregateExpression 1

FieldAccess:
FieldName

 Primary . FieldName

MethodInvocation:
Primary . MethodName (ArgumentListopt)

ArgumentList:
Expression
ArgumentList , Expression

AggregateExpression:
count (distinctopt CountArgument)
sum (distinctopt Expression)
min (Expression)
max (Expression)
avg (distinctopt Expression)

CountArgument:
this
FieldAccess
VariableName

1 Please note, an AggregateExpression is only allowed as part of a result specification or a having specifica-
tion.

24.4 Parameter Declaration

This section describes the syntax of the declareParameters argument.
 JDO 2.0 293 February 28, 2006

Java Data Objects 2.0
ParameterList:
Parameters ,opt

ParameterDecls:
ParameterDecl
ParameterDecls , ParameterDecl

ParameterDecl:
Type ParameterName

Please note, as a usability feature ParameterList supports an optional trailing comma (in addition to what the Java
syntax allows in a parameter declaration).

24.5 Variable Declaration

This section describes the syntax of the declareVariables argument.

VariableList:
VariableDecls ;opt

VariableDecls:
VariableDecl
VariableDecls ; VariableDecl

VariableDecl:
Type ParameterName

Please note, as a usability feature VariableList defines the trailing semicolon as optional (in addition to what the
Java syntax allows in a variable declaration).

24.6 Import Declaration

This section describes the syntax of the declareImports argument.

ImportList:
ImportDecls ;opt

ImportDecls:
ImportDecl
ImportDecls ; ImportDecl

ImportDecl:
import QualifiedIdentifier
import QualifiedIdentifier . *

Please note, as a usability feature ImportList defines the trailing semicolon as optional (in addition to what the
Java syntax allows in an import statement).

24.7 Ordering Specification

This section describes the syntax of the setOrdering argument.
 JDO 2.0 294 February 28, 2006

Java Data Objects 2.0
OrderingClause:
OrderingSpecs ,opt

OrderingSpecs:
OrderingSpec
OrderingSpecs , OrderingSpec

OrderingSpec:
Expression Ascending
Expression Descending

Ascending: one of
asc ascending

Descending: one of
desc descending

Please note, as a usability feature OrderingClause supports an optional trailing comma.

24.8 Result Specification

This section describes the syntax of the setResult argument.

ResultClause:
distinctopt ResultSpecs ,opt

ResultSpecs:
ResultSpec
ResultSpecs , ResultSpec

ResultSpec:
Expression ResultNamingopt

ResultNaming:
as Identifier

Please note, a result specification expression may be an aggregate expression. As a usability feature Result-
Clause supports an optional trailing comma.

24.9 Grouping Specification

This section describes the syntax of the setGrouping argument.

GroupingClause:
GroupingSpecs ,opt HavingSpecopt

GroupingSpecs:
Expression

 GroupingSpecs , Expression
 JDO 2.0 295 February 28, 2006

Java Data Objects 2.0
HavingSpec:
having Expression

Please note, a having specification expression may include an aggregate expression. As a usability feature Group-
ingClause supports an optional trailing comma.

24.10 Types

This section describes a type specification, used in a parameter or variable declaration or in a cast expression.

Type
PrimitiveType
ClassOrInterfaceName

PrimitiveType:
NumericType
boolean

NumericType:
IntegralType
FloatingPointType

IntegralType: one of
byte short int long char

FloatingPointType: one of
float double

24.11 Literals

A literal is the source code representation of a value of a primitive type, or the String type. Please refer to the Java
Language Specification for the lexical structure of Integer-, Floating Point-, and String-Literals. JDOQL allows
String-Literals being enclosed in either single quotes or double quotes. A single character enclosed in either single or
double quotes is considered to a be both: a char and a string literal.

Literal:
IntegerLiteral
FloatingPointLiteral
BooleanLiteral
StringLiteral
NullLiteral

IntegerLiteral: ...

FloatingPointLiteral: ...

BooleanLiteral: one of
true false

StringLiteral: ...
 JDO 2.0 296 February 28, 2006

Java Data Objects 2.0
NullLiteral:
null

24.12 Names

A name is a possibly qualified identifier. Please refer to the Java Language Specification for the lexical structure of
identifiers.

QualifiedIdentifier:
Identifier
QualifiedIdentifier . Identifier

CandidateClassName:
QualifiedIdentifier

ResultClassName:
QualifiedIdentifier

ClassOrInterfaceName:
QualifiedIdentifier

VariableName:
Identifier

ParameterName:
Identifier
ColonPrefixedIdentifier

FieldName:
Identifier

MethodName:
Identifier

24.13 Keywords

Keywords must not be used as package names, class names, parameter names, or variable names in queries. Key-
words are permitted as field names only if they are on the right side of the “.” in field access expressions as defined in
the Java Language Specification second edition, section 15.11. Keywords include the Java language keywords and
the JDOQL keywords. Java keywords are as defined in the Java language specification section 3.9, plus the boolean
literals true and false, and the null literal. JDOQL keywords maybe written in all lower case or all upper case.

JDOQLKeyword: one of
as AS asc ASC
ascending ASCENDING avg AVG
by BY count COUNT
desc DESC descending DESCENDING
distinct DISTINCT exclude EXCLUDE
from FROM group GROUP
having HAVING into INTO
max MAX min MIN
order ORDER parameters PARAMETERS
 JDO 2.0 297 February 28, 2006

Java Data Objects 2.0
range RANGE select SELECT
subclasses SUBCLASSES sum SUM
unique UNIQUE variables VARIABLES
where WHERE
 JDO 2.0 298 February 28, 2006

Java Data Objects 2.0
25 Items Deferred to the Next Release

This chapter contains the list of items that were raised during the development of JDO but
were not resolved.

25.1 Nested Transactions

Define the semantics of nested transactions.

This proposal is still pending as of JDO 2.0.

25.2 Savepoint, Undosavepoint

Related to nested transactions, savepoints allow for making changes to instances and then
undoing those changes without making any datastore changes. It is a single-child nested
transaction.

This proposal is still pending as of JDO 2.0.

25.3 Inter-PersistenceManager References

Explain how to establish and maintain relationships between persistent instances man-
aged by different PersistenceManagers.

This proposal is still pending as of JDO 2.0.

25.4 Enhancer Invocation API

A standard interface to call the enhancer will be defined.

This proposal is still pending as of JDO 2.0.

25.5 Prefetch API

A standard interface to specify prefetching of instances by policy will be defined. The in-
tended use it to allow the application to specify a policy whereby instances of persistence
capable classes will be prefetched from the datastore when related instances are fetched.
This should result in improved performance characteristics if the prefetch policy matches
actual application access patterns.

This functionality is now part of JDO 2.0.

25.6 BLOB/CLOB datatype support

JDO implementations can choose to implement mapping from java.sql.Blob datatype to
byte arrays, and java.sql.Clob to String or other java type; but these mappings are not stan-
dard, and may not have the performance characteristics desired.
 JDO 2.0 299 February 28, 2006

Java Data Objects 2.0
This functionality is now part of JDO 2.0.

25.7 Managed (inverse) relationship support

In order for JDO implementations to be used for container managed persistence entity
beans, relationships among persistent instances need to be explicitly managed. See the EJB
Specification 2.0, sections 9.4.6 and 9.4.7 for requirements. The intent is to support these
semantics when the relationships are identified in the metadata as inverse relationships.

This proposal has been rejected. If this is valuable for persistent instances, it is just as valu-
able for transient instances. To have the behavior change when making an instance persis-
tent is probably inappropriate.

This proposal should become an independent Java Specification Request.

25.8 Case-Insensitive Query

Use of String.toLowerCase() as a supported method in query filters would allow case-in-
sensitive queries.

This functionality is now part of JDO 2.0.

25.9 String conversion in Query

Supported String constructors String(<integer expression>) and String(<floating-point ex-
pression>) would make queries more flexible.

This proposal is still pending as of JDO 2.0.

25.10 Read-only fields

Support (probably marking the fields in the XML metadata) for read-only fields would al-
low better support for databases where modification of data elements is proscribed. The
metadata annotation would permit earlier detection of incorrect modification of the corre-
sponding fields.

25.11 Enumeration pattern

The enumeration pattern is a powerful technique for emulating enums. The pattern in
summary allows for fields to be declared as:

class Foo {

Bar myBar = Bar.ONE;

Bar someBar = new Bar(“illegal”); // doesn’t compile

}

class Bar {

private String istr;

private Bar(String s) {

istr = s;

}

public static Bar ONE = new Bar(“one”);
 JDO 2.0 300 February 28, 2006

Java Data Objects 2.0
public static Bar TWO = new Bar(“two”);

}

The advantage of this pattern is that fields intended to contain only certain values can be
constrained to those values. Supporting this pattern explicitly allows for classes that use
this pattern to be supported as persistence-capable classes.

25.12 Non-static inner classes

Allow non-static inner classes to be persistence-capable. The implication is that the enclos-
ing class must also be persistence-capable, and there is a one-many relationship between
the enclosing class and the inner class.

25.13 Projections in query

Currently the only return value from a JDOQL query is a Collection of persistent instances.
Many applications need values returned from queries, not instances. For example, to prop-
erly support EJBQL, projections are required. One way to provide projections is to model
what EJBQL has already done, and add a method setResult (String projection) to jav-
ax.jdo.Query. This method would take as a parameter a single-valued navigation expres-
sion. The result of execute for the query would be a Collection of instances of the
expression.

This functionality is now part of JDO 2.0.

25.14 LogWriter support

Currently, there is no direct support for writing log messages from an implementation, al-
though there is a connection factory property that can be used for this purpose. A future
revision could define how an implementation should use a log writer.

25.15 New Exceptions

Some exceptions might be added to more clearly define the cause of an exception. Candi-
dates include JDODuplicateObjectIdException, JDOClassNotPersis-
tenceCapableException, JDOExtentNotManagedException,
JDOConcurrentModificationException, JDOQueryException, JDOQue-
rySyntaxException, JDOUnboundQueryParameterException, JDOTrans-
actionNotActiveException, JDODeletedObjectFieldAccessException.

25.16 Distributed object support

Provide for remote object graph support, including instance reconciliation, relationship
graph management, instance insertion ordering, etc.

This functionality is now part of JDO 2.0.

25.17 Object-Relational Mapping

Extend the current xml metadata to include optional O/R mapping information. This
could include tables to map to classes, columns to map to fields, and foreign keys to map
to relationships.
 JDO 2.0 301 February 28, 2006

Java Data Objects 2.0
Other O/R mapping issues include sequence generation for primary key support.

This functionality is now part of JDO 2.0.
 JDO 2.0 302 February 28, 2006

Java Data Objects 2.0
26 JDO 1.0.1 Metadata

This chapter specifies the metadata that describes a persistence-capable class. The metada-
ta is stored in XML format. The information must be available when the class is enhanced,
and might be cached by an implementation for use at runtime. If the metadata is changed
between enhancement and runtime, the behavior is unspecified.

Metadata files must be available via resources loaded by the same class loader as the class.
These rules apply both to enhancement and to runtime. Hereinafter, the term "metadata"
refers to the aggregate of all XML data for all packages and classes, regardless of their
physical packaging.

The metadata associated with each persistence capable class must be contained within a
file, and its format is defined by the DTD. If the metadata is for only one class, then its file
name is <class-name>.jdo. If the metadata is for a package, or a number of packages, then
its file name is package.jdo. In this case, the file is located in one of several directories:
“META-INF”; “WEB-INF”; <none>, in which case the metadata file name is "package.jdo"
with no directory; “<package>/.../<package>”, in which case the metadata directory
name is the partial or full package name with “package.jdo” as the file name.

When metadata information is needed for a class, and the metadata for that class has not
already been loaded, the metadata is searched as follows: META-INF/package.jdo, WEB-
INF/package.jdo, package.jdo, <package>/.../<package>/package.jdo, and <package>/
<class>.jdo. Once metadata for a class has been loaded, the metadata will not be replaced
in memory. Therefore, metadata contained higher in the search order will always be used
instead of metadata contained lower in the search order.

For example, if the persistence-capable class is com.xyz.Wombat, and there is a file "ME-
TA-INF/package.jdo" containing xml for this class, then its definition is used. If there is no
such file, but there is a file "WEB-INF/package.jdo" containing metadata for
com.xyz.Wombat, then it is used. If there is no such file, but there is a file "package.jdo"
containing metadata for com.xyz.Wombat, then it is used. If there is no such file, but there
is a file "com/package.jdo" containing metadata for com.xyz.Wombat, then it is used. If
there is no such file, but there is a file "com/xyz/package.jdo" containing metadata for
com.xyz.Wombat, then it is used. If there is no such file, but there is a file "com/xyz/
Wombat.jdo", then it is used. If there is no such file, then com.xyz.Wombat is not persis-
tence-capable.

Note that this search order is optimized for implementations that cache metadata informa-
tion as soon as it is encountered so as to optimize the number of file accesses needed to
load the metadata. Further, if metadata is not in the natural location, it might override
metadata that is in the natural location. For example, while looking for metadata for class
com.xyz.Wombat, the file com/package.jdo might contain metadata for class org.ac-
me.Foo. In this case, subsequent search of metadata for org.acme.Foo will find the cached
metadata and none of the usual locations for metadata will be searched.

The metadata must declare all persistence-capable classes. If any field declarations are not
provided in the metadata, then field metadata is defaulted for the missing field declara-
tions. Therefore, the JDO implementation is able to determine based on the metadata
 JDO 2.0 303 February 28, 2006

Java Data Objects 2.0
whether a class is persistence-capable or not. And any class not known to be persistence-
capable by the JDO specification (for example, java.lang.Integer) and not explicitly named
in the metadata is not persistence-capable.

For compatibility with installed applications, an implementation might first use the search
order as specified in the JDO 1.0 release. In this case, if metadata is not found, then the
search order as specified in JDO 1.0.1 must be used.

26.1 ELEMENT jdo

This element is the highest level element in the xml document. It is used to allow multiple
packages to be described in the same document.

26.2 ELEMENT package

This element includes all classes in a particular package. The complete qualified package
name is required.

26.3 ELEMENT class

This element includes fields declared in a particular class, and optional vendor extensions.
The name of the class is required. The name is relative to the package name of the enclosing
package.

Only persistence-capable classes may be declared. Non-persistence-capable classes must
not be included in the metadata.

The identity type of the least-derived persistence-capable class defines the identity type for
all persistence-capable classes that extend it.

The identity type of the least-derived persistence-capable class is defaulted to applica-
tion if objectid-class is specified, and datastore, if not.

The objectid-class attribute is required only for application identity. The objectid
class name uses Java rules for naming: if no package is included in the name, the package
name is assumed to be the same package as the persistence-capable class. Inner classes are
identified by the “$” marker. If the objectid-class attribute is defined in any concrete
class, then the objectid class itself must be concrete, and no subclass of the class may in-
clude the objectid-class attribute. If the objectid-class attribute is defined for
any abstract class, then:

• the objectid class of this class must directly inherit Object or must be a subclass
of the objectid class of the most immediate abstract persistence-capable superclass
that defines an objectid class; and

• if the objectid class is abstract, the objectid class of this class must be a superclass
of the objectid class of the most immediate subclasses that define an objectid class;
and

• if the objectid class is concrete, no subclass of this persistence-capable class may
define an objectid class.

The effect of this is that objectid classes form an inheritance hierarchy corresponding to the
inheritance hierarchy of the persistence-capable classes. Associated with every concrete
persistence-capable class is exactly one objectid class.
 JDO 2.0 304 February 28, 2006

Java Data Objects 2.0
The objectid class must declare fields identical in name and type to fields declared in this
class.

The requires-extent attribute specifies whether an extent must be managed for this
class. The PersistenceManager.getExtent method can be executed only for class-
es whose metadata attribute requires-extent is specified or defaults to true. If the
PersistenceManager.getExtent method is executed for a class whose metadata
specifies requires-extent as false, a JDOUserException is thrown. If re-
quires-extent is specified or defaults to true for a class, then requires-extent
must not be specified as false for any subclass.

The persistence-capable-superclass attribute is deprecated for this release. It is
ignored so metadata files from previous releases can be used.

26.4 ELEMENT field

The element field is optional, and the name attribute is the field name as declared in the
class. If the field declaration is omitted in the xml, then the values of the attributes are de-
faulted.

The persistence-modifier attribute specifies whether this field is persistent, trans-
actional, or none of these. The persistence-modifier attribute can be specified only
for fields declared in the Java class, and not fields inherited from superclasses. There is
special treatment for fields whose persistence-modifier is persistent or
transactional.

Default persistence-modifier

The default for the persistence-modifier attribute is based on the Java type and
modifiers of the field:

• Fields with modifier static: none. No accessors or mutators will be generated
for these fields during enhancement.

• Fields with modifier transient: none. Accessors and mutators will be
generated for these fields during enhancement, but they will not delegate to the
StateManager.

• Fields with modifier final: none. Accessors will be generated for these fields
during enhancement, but they will not delegate to the StateManager.

• Fields of a type declared to be persistence-capable: persistent.

• Fields of the following types: persistent:

• primitives: boolean, byte, short, int, long, char, float, double;
• java.lang wrappers: Boolean, Byte, Short, Integer, Long, Character,
Float, Double;

• java.lang: String, Number;
• java.math: BigDecimal, BigInteger;
• java.util: Currency, Date, Locale, ArrayList, HashMap, HashSet,
Hashtable, LinkedHashMap, LinkedHashSet, LinkedList, TreeMap,
TreeSet, Vector, Collection, Set, List, and Map;

• Arrays of primitive types, java.util.Date, java.util.Locale,
java.lang and java.math types specified immediately above, and
persistence-capable types.
 JDO 2.0 305 February 28, 2006

Java Data Objects 2.0
• Fields of types of user-defined classes and interfaces not mentioned above: none.
No accessors or mutators will be generated for these fields.

The primary-key attribute is used to identify fields that have special treatment by the
enhancer and by the runtime. The enhancer generates accessor methods for primary key
fields that always permit access, regardless of the state of the instance. The mutator meth-
ods always delegate to the jdoStateManager, if it is non-null, regardless of the state
of the instance.

The null-value attribute specifies the treatment of null values for persistent fields
during storage in the datastore. The default is "none".

• "none": store null values as null in the datastore, and throw a
JDOUserException if null values cannot be stored by the datastore.

• "exception": always throw a JDOUserException if this field contains a
null value at runtime when the instance must be stored;

• "default": convert the value to the datastore default value if this field contains
a null value at runtime when the instance must be stored.

The default-fetch-group attribute specifies whether this field is managed as a
group with other fields. It defaults to "true" for non-key fields of primitive types, ja-
va.util.Date, and fields of java.lang, java.math types specified above.

The embedded attribute specifies whether the field should be stored as part of the con-
taining instance instead of as its own instance in the datastore. It must be specified or de-
fault to "true" for fields of primitive types, wrappers, java.lang, java.math,
java.util, collection, map, and array types specified above; and "false" otherwise.
While a compliant implementation is permitted to support these types as first class in-
stances in the datastore, the semantics of embedded=”true” imply containment. That is,
the embedded instances have no independent existence in the datastore and have no Ex-
tent representation.

If the embedded attribute is "true" the field values are stored as persistent references to
the referred instances in the datastore.

The embedded attribute applied to a field of a persistence-capable type is a hint to the im-
plementation to treat the field as if it were a Second Class Object. But this behavior is not
further specified and is not portable.

A portable application must not assign instances of mutable classes to multiple embedded
fields, and must not compare values of these fields using Java identity (“f1==f2”).

The following field declarations are mutually exclusive; only one may be specified:

• default-fetch-group = “true”

• primary-key = “true”

• persistence-modifier = “transactional”

• persistence-modifier = “none”

26.4.1 ELEMENT collection

This element specifies the element type of collection typed fields. The default is Collec-
tion typed fields are persistent, and the element type is Object.

The element-type attribute specifies the type of the elements. The type name uses Java
rules for naming: if no package is included in the name, the package name is assumed to
 JDO 2.0 306 February 28, 2006

Java Data Objects 2.0
be the same package as the persistence-capable class. Inner classes are identified by the "$"
marker.

The embedded-element attribute specifies whether the values of the elements should
be stored as part of the containing instance instead of as their own instances in the datas-
tore. It defaults to "false" for persistence-capable types, Object types, and interface
types; and "true" for other types.

The embedded treatment of the collection instance itself is governed by the embedded at-
tribute of the field element.

26.4.2 ELEMENT map

This element specifies the treatment of keys and values of map typed fields. The default is
map typed fields are persistent, and the key and value types are Object.

The key-type and value-type attributes specify the types of the key and value, re-
spectively. The type names use Java rules for naming: if no package is included in the
name, the package name is assumed to be the same package as the persistence-capable
class. Inner classes are identified by the "$" marker.

The embedded-key and embedded-value attributes specify whether the key and val-
ue should be stored as part of the containing instance instead of as their own instances in
the datastore. They default to "false" for persistence-capable types, Object types, and
interface types; and "true" for other types.

The embedded treatment of the map instance itself is governed by the embedded attribute
of the field element.

26.4.3 ELEMENT array

This element specifies the treatment of array typed fields. The default persistence-modifier
for array typed fields is based on the Java type of the component and modifiers of the field,
according to the rules in 18.4 Default persistence-modifier.

The embedded-element attribute specifies whether the values of the components
should be stored as part of the containing instance instead of as their own instances in the
datastore. It defaults to "false" for persistence-capable types, Object types, interface
types, and concrete implementation classes of map and collection types. It defaults to
"true" for other types.

The embedded treatment of the array instance itself is governed by the embedded at-
tribute of the field element.

26.5 ELEMENT extension

This element specifies JDO vendor extensions. The vendor-name attribute is required.
The vendor name "JDORI" is reserved for use by the JDO reference implementation. The
key and value attributes are optional, and have vendor-specific meanings. They may be
ignored by any JDO implementation.

26.6 The Document Type Descriptor

The document type descriptor is referred by the xml, and must be identified with a DOC-
TYPE so that the parser can validate the syntax of the metadata file. Either the SYSTEM or
PUBLIC form of DOCTYPE can be used.
 JDO 2.0 307 February 28, 2006

Java Data Objects 2.0
• If SYSTEM is used, the URI must be accessible; a jdo implementation might
optimize access for the URI “file:/javax/jdo/jdo.dtd”

• If PUBLIC is used, the public id should be "-//Sun Microsystems, Inc.//
DTD Java Data Objects Metadata 1.0//EN“; a jdo implementation might
optimize access for this id.

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE jdo
 PUBLIC "-//Sun Microsystems, Inc.//DTD Java Data Objects Metadata 1.0//EN"
 "http://java.sun.com/dtd/jdo_1_0.dtd">
<!ELEMENT jdo ((package)+, (extension)*)>
<!ELEMENT package ((class)+, (extension)*)>
<!ATTLIST package name CDATA #REQUIRED>
<!ELEMENT class (field|extension)*>
<!ATTLIST class name CDATA #REQUIRED>
<!ATTLIST class identity-type (application|datastore|nondurable)
#IMPLIED>
<!ATTLIST class objectid-class CDATA #IMPLIED>
<!ATTLIST class requires-extent (true|false) 'true’>
<!ATTLIST class persistence-capable-superclass CDATA #IMPLIED>
<!ELEMENT field ((collection|map|array)?, (extension)*)?>
<!ATTLIST field name CDATA #REQUIRED>
<!ATTLIST field persistence-modifier (persistent|transaction-
al|none) #IMPLIED>
<!ATTLIST field primary-key (true|false) 'false’>
<!ATTLIST field null-value (exception|default|none) 'none’>
<!ATTLIST field default-fetch-group (true|false) #IMPLIED>
<!ATTLIST field embedded (true|false) #IMPLIED>
<!ELEMENT collection (extension)*>
<!ATTLIST collection element-type CDATA #IMPLIED>
<!ATTLIST collection embedded-element (true|false) #IMPLIED>
<!ELEMENT map (extension)*>
<!ATTLIST map key-type CDATA #IMPLIED>
<!ATTLIST map embedded-key (true|false) #IMPLIED>
<!ATTLIST map value-type CDATA #IMPLIED>
<!ATTLIST map embedded-value (true|false) #IMPLIED>
<!ELEMENT array (extension)*>
<!ATTLIST array embedded-element (true|false) #IMPLIED>
<!ELEMENT extension (extension)*>
<!ATTLIST extension vendor-name CDATA #REQUIRED>
<!ATTLIST extension key CDATA #IMPLIED>
<!ATTLIST extension value CDATA #IMPLIED>

26.7 Example XML file

An example XML file for the query example classes follows. Note that all fields of both
classes are persistent, which is the default for fields. The emps field in Department con-
tains a collection of elements of type Employee, with an inverse relationship to the dept
field in Employee.
 JDO 2.0 308 February 28, 2006

Java Data Objects 2.0
In directory com/xyz, a file named hr.jdo contains:

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE jdo SYSTEM “jdo.dtd”>
<jdo>
<package name=”com.xyz.hr”>
<class name=”Employee” identity-type=”application” objectid-
class=”IntIdentity”>
<field name=”name” primary-key=”true”>
<extension vendor-name=”sunw” key=”index” value=”btree”/>
</field>
<field name=”salary” default-fetch-group=”true”/>
<field name=”dept”>
<extension vendor-name=”sunw” key=”inverse” value=”emps”/>
</field>
<field name=”boss”/>
</class>
<class name=”Department” identity-type=”application” objectid-
class=”DepartmentKey”>
<field name=”name” primary-key=”true”/>
<field name=”emps”>
<collection element-type=”Employee”>
<extension vendor-name=”sunw” key=”element-inverse” value=”dept”/>
</collection>
</field>
</class>
</package>
</jdo>
 JDO 2.0 309 February 28, 2006

Java Data Objects 2.0
Appendix A: References

[1] Enterprise JavaBeans (EJB) specification:

http://java.sun.com/products/ejb/docs.html

[2] Java Transaction API (JTA) specification - version 1.0

http://java.sun.com/products/jta/

[3] Java 2 Platform Enterprise Edition (J2EE), Platform specification:

http://java.sun.com/j2ee/docs.html

[4] Java 2 Platform Enterprise Edition (J2EE), Connector Architecture:

http://java.sun.com/j2ee/apidocs/

http://java.sun.com/j2ee/download.html#connectorspec
 JDO 2.0 310 February 28, 2006

Java Data Objects 2.0
Appendix B: Design Decisions

This appendix outlines some of the design decisions that were considered and not taken,
along with the rationale.

B.1 Enhancer
With JDO 2.0, enhancement is now no longer required. Reflection techniques for examin-
ing persistent instances at transaction commit can be used instead, and proxies can be used
to fault in referenced instances.

The enhancer could generate code that would delegate to the associated StateManager ev-
ery access (read or write) for every field. This design was rejected because of several fac-
tors.

• Code bloat: the enhanced code would add an extra method call to every access to
a persistent field.

• Performance: the calls to the StateManager would add extra cycles to every
access to a persistent field, even if the field were already fetched into the persistent
instance.

The enhancer could require complete metadata descriptions for all persistence-capable
classes and persistent and transactional fields, and further require that all classes be avail-
able during enhancement of any class.

This would allow the enhancer to generate the most efficient code, but imposes an extra
burden on the user to keep the metadata and class definition absolutely in sync. If a field
were declared in a class after the metadata was defined, the user would have to update the
metadata to add the new field.

Requiring access to all classes during enhancement of any class was also seen as an extra
burden on the user, who would have to execute the enhancement in an environment that
did not necessarily reflect the runtime environment. There is also a performance penalty
and additional complexity for the enhancer.

The decision that was taken was that the enhancer must be able to determine the persis-
tence-modifier (persistent or none) from the Java modifiers and type of a field. Further, the
information needed to enhance a class is only the class file for the class being enhanced,
plus the metadata for the class and classes directly reachable (via references or inheritance)
from the class.

The java byte codes generated in a class for a field in another class do not contain much
information about the modifiers (final or transient) of the field. They do have the field
name and the field type, and whether the field is static. There is an implied access control
that permits the generated access (package, protected, or public) but no distinction among
the choices.

Therefore, a field that is not declared in the metadata must be enhanced to generate an ac-
cessor and mutator even though the field is not persistent. For example, for a final int field
declared in a class, the field is not persistent, so it is not included in the list of persistent/
transactional fields, but an accessor is generated for it. This accessor will be used only by
other classes’ accesses, and access will not be mediated (the StateManager will never be
called). Accesses within the class are not enhanced.
 JDO 2.0 311 February 28, 2006

Java Data Objects 2.0
Appendix C: Revision History

This appendix outlines the significant changes during the evolution of the specification.

C.1 Changes since Draft 0.1
Added Appendix for revision history

Added Appendix for design decisions not taken

C.2 Changes since Draft 0.2
Changed the description for the persistent state (cached non-transactional values)

Added JDO instance state transition diagram and descriptions of state transitions.

Enhanced description of non-datastore JDO identity.

Added persistent-new-dirty and persistent-new-clean states to the life cycle.

Removed the checkpoint method from the Transaction interface. This functionality
is now done by the TRANSACTION_RETAIN_VALUES Transaction flag.

Added jdoCopy to the PersistenceCapable interface.

Added Query interface.

C.3 Changes since Draft 0.3
Changed Query signatures for setVars and setParams.

Changed all “set” Query signatures to return void instead of “Query”.

Added description of key (JDO identity) change semantics.

Added life cycle description for deletePersistent, a new interrogatory jdoIsDe-
leted, and two new states persistent-new-deleted and persistent-deleted.

Added Chapter 6 Persistent Object Model, which specifies the field types for persistent
fields, including the required Collection types.

Added descriptions of enhancement to Chapter 13 JDO Enhancer, including serialization,
cloning, and reflection.

Added multiple object versions of makePersistent, makeTransactional, mak-
eNontransactional.

C.4 Changes since Draft 0.4

C.4.1 PersistenceManager

Removed flush and postCompletion from the API.

Changed refresh to indicate it is effective only in optimistic transactions.

Removed getFlags and setFlags, substituting getXXX and setXXX for all options.

Added getProperties, which returns VendorName, VersionNumber, etc.

Added get/setUserObject, which allow a user-specified object to be remembered by the
PersistenceManager.

Required the implementation to support PersistenceManagerFactory and specified the in-
terface for it.
 JDO 2.0 312 February 28, 2006

Java Data Objects 2.0
Associated the concept of Extent with makePersistent and deletePersistent. Only classes
with a managed Extent can be parameters of these methods.

Added getObjectIdClass to allow the application to get the ObjectId class for a class.

C.4.2 Query

Added newQuery (Class cls, String filter).

Changed signature of compile to return void. This is not required to do anything but val-
idate query elements.

Made the Query implementation class serializable. A serialized and restored query in-
stance can be bound to a PersistenceManager by newQuery (Object).

Removed execute methods with four, five, and six parameters.

Allowed Date comparisons for equality and range queries.

Allowed String comparisons for equality and range queries.

Added “this” as a valid keyword in filters.

Added a query option to indicate faster queries that don’t execute the filter on cached in-
stances.

Clarified that portable applications require all variables to be scoped by a contains clause.

Defined that variables not scoped by a contains clause are scoped by the Extent of the class.

C.4.3 Object Model

Changed the name of “Tracked SCO” to “SCO”.

Required a transaction to be in effect to execute makePersistent and deletePersistent.

Allowed an implementation to treat all reference types as First Class Objects.

Sharing of SCOs is permitted but the semantics are not guaranteed to be portable.

C.4.4 Life Cycle

Removed state persistent-new-clean and changed the name of persistent-new-dirty to per-
sistent-new.

Updated life cycle state diagram to simplify state transition descriptions.

Added section describing optimistic transaction state changes.

C.4.5 PersistenceCapable

Removed methods jdoIsReadReady and jdoIsWriteReady. None of the applica-
tion’s business, these.

Changed the semantics of jdoIsTransactional to return false if an instance is read
in an optimistic transaction. In an optimistic transaction, only new, deleted, modified in-
stances and instances made transactional return true.

Added jdoGetPersistenceManager, jdoGetObjectId, and jdoMakeDirty.

C.5 Changes since Draft 0.5
Clarified NontransactionalRead, Optimistic, and RetainValues flag dependencies.

Added a table and diagrams of life cycle transitions.

Changed datastore ObjectId to allow primitive wrapper classes to be used.
 JDO 2.0 313 February 28, 2006

Java Data Objects 2.0
Added failed object array and methods to JDOException, JDOCanRetryException, JDO-
DataStoreException, and JDOUserException.

Added a Chapter on Application Portability Guidelines.

Added a Chapter on XML Metadata.

Added two collection factories to PersistenceManager.

Added connection factory to PersistenceManagerFactory.

C.6 Changes since Draft 0.6 (Participant Review Draft)
Updated life cycle table to match transition descriptions for persistent-nontransactional in-
stances. Clarified that all data accessed while a datastore transaction is in progress will be
transactional.

Added a discussion on inheritance issues for persistence capable classes.

Added class JDOHelper with static methods to avoid calling JDO specific methods on Per-
sistenceCapable classes.

Added a discussion on using the life cycle methods of PersistenceManager to clarify that
the correct method must be called if an instance that implements a Collection interface is
to be a parameter.

Query use of operator = was extended to include pre- and post-increment and -decrement
operators.

Query variables need not be unique; if they need to be unique, then uniqueness can be
specified with an additional query term.

Query examples were clarified as to their intent.

The terms persistent, non-persistent, transient were made consistent throughout the doc-
ument. “Persistent field” and “non-persistent field” refer to fields as declared in the JDO
metadata. “Transient field” refers to the field modifiers (orthogonal to persistent/non-per-
sistent) and “transient instance” refers to an instance of a persistence capable class that is
not persistent. “Persistent instance” refers to an instance of a persistence capable class that
is persistent.

Derived fields were removed. These fields were supposed to be non-persistent fields
whose values depended on values of persistent fields. For example, age depends on birth-
date. The application will have to have a method age() instead of an instance variable age.

Transactional non-persistent fields were added. These fields have their values saved and
restored during rollback transitions along with persistent fields.

More details were added on use of JDO in the EJB environment.

C.7 Changes since Draft 0.7
Binary compatibility table was added to 2.1.1.

Optional features were added to Portability Guidelines.

Section 5.5.2 was clarified to require that the JDO identity instance can be obtained imme-
diately after the transition from transient to persistent-new.

The treatment of marking fields dirty for hidden fields was changed.

A table of arithmetic operators was added to the Query section.
 JDO 2.0 314 February 28, 2006

Java Data Objects 2.0
C.8 Changes since Draft 0.8
Query filter defaults to “true” if not specified.

Added java.lang.BigInteger, java.lang.BigDecimal to object model.

Added cast operator (class) to query filter syntax.

Added bitwise invert operator to query filter syntax.

Added unary + to query filter syntax.

Added parentheses to query filter syntax.

Added String methods beginsWith and endsWith to query filter syntax.

Added chapter for StateManager interface.

Rewrote entire chapter on Reference Enhancer.

Updated PersistenceCapable interface to match Reference Enhancer.

Removed PersistenceManager.setObjectId.

Updated XML to conform to xml4j DOM and Apache/Xerces verifying parsers.

Added second-class XML attribute to field element.

Added null-value XML attribute to field element. This attribute specifies the behavior of
the runtime system when a null-valued field mapped to a non-nullable datastore element
is stored. The user can choose to throw an exception or to convert the null value to a default
datastore value.

Changed the description of life cycle states and enhancer to indicate that primary key field
access is always permitted, regardless of the life cycle state.

Added Extent chapter. The Extent interface was defined to be the result type of Persis-
tenceManager.getExtent. The interface does not have the methods of Collection, so it can
be used only for iteration or for specifying the candidate instances for Query.

Fields in an inherited class may not be managed by a persistence capable class. It is a future
objective to allow a class to manage the state of inherited fields if it directly derives from a
non-persistence capable class.

Clarified the behavior of null parameters in calls to PersistenceManager. Null values are
permitted as parameters for PersistenceCapable instances, and permitted as elements of
Collection and Object[] parameters, but are not permitted as parameters for Collection and
Object[].

Added JDOPermission class to allow security management to enable jdo implementations
without requiring ReflectPermission, which is too permissive.

C.9 Changes since Draft 0.9
Updated XML Metadata

• Added xml version number

• Changed definition of class element to allow multiple field, vendor elements

• Added jdo element, which contains multiple package elements

• Added key-type to field element for Map types.

• Changed key-type in class element to identity-type

• Changed key-class in class element to objectid-class

• Added inverse to field element for managed relationships
 JDO 2.0 315 February 28, 2006

Java Data Objects 2.0
• Added has-extent to class element

Fixed missing “static” in generated jdoInheritedFieldCount.

Fixed jdoGetXXX/jdoSetXXX in enhanced code for non-dfg fields. Transient instances
would have thrown null pointer exception.

Fixed missing generated method in PersistenceCapable: PersistenceCapable jdoNewIn-
stance(StateManager sm)

Fixed the reference to the Connector Architecture in Appendix A.

Updated ordering to include expressions and restrict the types of ordering expressions to
primitives except boolean, wrappers except Boolean, BigDecimal, BigInteger, and Date.

Removed bitwise AND, OR, and XOR from query operators.

Changed signatures of PersistenceManager methods getObjectById and getTransactiona-
lInstance to include a boolean flag indicating whether to validate that the instance exists in
the datastore.

Clarified that getObjectId returns the identity as of the beginning of the transaction, in case
the identity is being modified in the transaction.

C.10 Changes since draft 0.91
Changed xml has-extent to requires-extent

Corrected the signature of replacingIntField in StateManager.

Corrected the example code generated for PersistenceCapable jdoReplaceField.

Corrected the name of the verify parameter to validate in the signature of getObjectById.

Removed getTransactionalInstance in favor of overloading the meaning of getObjectById.

Changed the requirement to expose the hollow state to the application. A JDO implemen-
tation might perform a state transition of a hollow instance as if the application had read
a field.

Changed inheritance rules to allow non-persistence-capable classes to have persistence-ca-
pable superclasses and subclasses.

Corrected the description of the field name in the markDirty method so an unqualified
name refers to the field in the most-derived class.

Corrected the signature of the newInstance method in JDOHelper to return Object.

Updated the instance callback description to include the rationale and environment for
callbacks.

Updated makePersistent and deletePersistent to remove the restriction that the class of the
instances must have an Extent.

The behavior of failing instances in the life cycle methods was clarified to specify that all
instances will be attempted, and all failing instances will be included in the exception.

The newCollectionInstance was modified to include an initialContents parameter.

A new method newMapInstance was created to allow construction of a second class map
instance.

Optimistic transaction management was clarified to specify that instances accessed during
an optimistic transaction are not enlisted in any datastore transaction until commit.

The ordering specification was modified to include String.

The isEmpty method was added to the allowed Collection methods in query.
 JDO 2.0 316 February 28, 2006

Java Data Objects 2.0
The treatment of null-valued collection fields was specified to be identical to fields con-
taining empty collections.

Specified the behavior of the iterator of an Extent if there are deleted or newly persistent
instances in the Extent.

The chapter on EJB has been substantially redone.

Exceptions were updated as to the contents of the failed object array.

The meaning of JDOHelper.getObjectId versus PersistenceManager.getObjectId was clar-
ified with regard to change of identity within a transaction.

Fixed (removed) all references to reference parameter in StateManager.

Changed interface in PersistenceCapable for creating new instances, registering the Persis-
tenceCapable class with the runtime, and managing minimal “reflective” metadata for the
runtime (managed field names and types).

Added chapters for JDOHelper and JDOImplHelper.

C.11 Changes since draft 0.92
PersistenceManager methods that take a collection or array of instances have been
changed to include All in their names.

Text throughout the document has been clarified to refer to the specific exception thrown.

Corrected sample code generated by the enhancer.

Added PersistenceManagerFactory methods getPersistenceManager(String userid, String
password).

Static fields for values of jdoFlags were added to the PersistenceCapable interface.

A new ELEMENT array was added to the XML metadata to specify for array types wheth-
er the elements are embedded or not.

Clarified the possible treatment of jdoFlags by the StateManager, and the handling of is-
Loaded.

Added methods PersistenceManager.getTransactionalObjectId, PersistenceCapable.jdo-
GetTransactionalObjectId, and JDOHelper.getTransactionalObjectId to cover the case of
changing primary key in a transaction.

Changed the requirement for a compliant implementation to support all Collection types.
The behavior of all Collection types is specified, but only Collection, Set, and HashSet are
required.

Clarified the semantics of getObjectId with the validate flag set to true when the instance
is in the cache, for the cases of transactional v. nontransactional instances.

Changed failedObjectArray to failedObject, and nestedException to nestedExceptionAr-
ray in JDOException.

C.12 Changes since draft 0.93
Removed the requirement for application identity key classes to implement equals for all
object types that include the correct name and type fields.

Changed the state transition of persistent-deleted to be unchanged by refresh.

Added a generated constructor jdoNewObjectIdInstance to facilitate key class handling.

Added a generated constructor jdoNewInstance (StateManager sm, Object oid) to facilitate
key class handling.
 JDO 2.0 317 February 28, 2006

Java Data Objects 2.0
Added generated jdoCopyKeyFieldsToObjectId methods to facilitate key class handling.

Added nested interface ObjectIdFieldManager to facilitate key class handling.

Added PersistenceManagerFactory properties ConnectionFactory2 and
ConnectionFactory2Name for application server optimistic transaction support.

Added loadFactor to the newCollectionInstance method.

Clarified handling of getObjectId, getObjectById, and validate.

Added methods close(Iterator) and closeAll() to Extent.

Added methods close (Object queryResult) and closeAll() to Query.

Updated EJB chapter to clarify life cycle changes.

Removed inverse from XML metadata.

Corrected some code examples in reference enhancer.

Added methods to support different query languages: PersistenceManager.newQuery
(String language, Object query) and Set supportedQueryLanguages().

Added nested extensions, and package extensions to xml.

C.13 Changes since draft 0.94
Added PersistenceManager and PersistenceManagerFactory methods to support the Mul-
tithreaded property. This property indicates that the application is multithreaded (multi-
ple threads will access instances managed by the PersistenceManager).

Removed the PersistenceCapable constructor that takes StateManager as an argument.
The helper methods newInstance will use the default constructor instead, and will create
protected default constructor if none exists.

Removed jdoVersionUID and replaced it with explicit byte[] jdoFieldFlags and Class jdoP-
ersistenceCapableSuperclass.

Added static fields to define values for jdoFieldFlags elements.

Added a chapter on JDOPermission.

Added optional extension element to xml elements array, collection, and map.

Added Multithreaded property to PersistenceManager, which indicates whether the Per-
sistenceManager must synchronize accesses from multiple application threads.

Added allowNulls parameter to PersistenceManager newMapInstance.

Changed the name of the method getJDOImplHelper to getInstance.

Clarified the handling of abstract classes, which might be PersistenceCapable (for the ben-
efit of concrete subclasses).

Removed the requirement for implementations to track modifications made to arrays.

Removed method getProperties from PersistenceManager. This method now is in Persis-
tenceManagerFactory only.

Removed supportedQuery from PersistenceManager. This method has been replaced by
supportedOptions, from which supported query languages should be available.

Added a method supportedOptions to PersistenceManagerFactory for the application to
determine which optional features are supported by an implementation.

Added query BNF chapter.
 JDO 2.0 318 February 28, 2006

Java Data Objects 2.0
C.14 Changes since draft 0.95 (Proposed Final Draft)
Defined the term “Managed Fields” to mean persistent or transactional fields.

Clarified the treatment of non-managed identity if multiple instances are changed or de-
leted.

Removed the requirement that a transaction be active to make an instance transactional or
nontransactional.

Reorganized the State Transitions table to indicate that some state transitions are impossi-
ble (e.g. without a transaction active, there can be no new instances).

Clarified the requirement for a no-args constructor in PersistenceCapable classes and su-
perclasses.

Fixed bug in PersistenceCapable.jdoReplaceStateManager code generation.

Removed properties minPool, maxPool, msWait, and ConnectionDriverName from the in-
terface. These can be specified by PersistenceManagerFactory implementations as needed.

Reorganized sections 20.14 through 20.16 for clarity.

Changed jdoFieldFlags to be independent flags, allowing for identification of non-tran-
sient (serializable) fields.

Reworded the transaction synchronization sections for clarity.

Reworded the optimistic transaction section for clarity.

Modified the String concatenation operator (+) to allow only String + String, not String +
primitive.

Clarified that String comparisons are lexicographical (not Locale-specific).

Added descriptions of JDOUserException for transaction not active and object deleted.

C.15 Changes since draft 0.96
Changed to specify that String comparisons in queries are based on an ordering not spec-
ified by JDO, allowing for locale-specific orderings by JDO implementations.

Added a portability requirement for object id classes to have a toString() method and a
public constructor that takes a String argument. Added newObjectIdInstance (Class,
String) to PersistenceCapable, jdoNewObjectIdInstance(String) to PersistenceCapable and
newObjectIdInstance(Class, String) to JDOImplHelper.

Split PersistenceCapable.ObjectIdFieldManager into two interfaces: PersistenceCa-
pable.ObjectIdFieldSupplier to supply values and PersistenceCapable.ObjectIdFieldCon-
sumer to receive values.

Added the ability to construct a PersistenceManagerFactory from a Properties instance
containing keys and values of properties. Added a convenience method to JDOHelper get-
PersistenceManagerFactory(Properties) to call the method in the implementation class.

Changed SCO factory name to newTrackedInstance, and removed the simultaneous set-
ting of the field value in the persistence-capable instance. The user must assign the newly
created instance to a field directly.

Added a parameter to newTrackedInstance to allow the user to specify a comparator for
Collection or Map.

Modified the behavior of makePersistent with regard to reachable instances. The newly
reachable instances have the characteristics of persistent-new until transaction end, at
which time they either become persistent or revert to transient.
 JDO 2.0 319 February 28, 2006

Java Data Objects 2.0
Made support for application changes to application object identity an optional feature.

Methods retrieve and retrieveAll were added to PersistenceManager to allow the applica-
tion to give the implementation a hint that the instances are going to be used by the appli-
cation, and the implementation can perform some optimized fetching of the instances.

Introduced the notion of provisional persistence. Instances that are reachable by persistent
fields from instances made persistent become provisionally persistent. They behave like
persistent instances until commit, at which time if they are no longer reachable from per-
sistent instances they revert to transient.

Type-import-on-demand (import <package-name>.*) has been added to query declareIm-
ports. The Java rules for determining the package for an unqualified name are followed by
query.

The newQuery methods that take both Extent and Class have been changed to eliminate
the Class argument. The Class is taken from the Extent.

The Reference Enhancement chapter was reorganized to make it easier to determine:
changes to PersistenceCapable root classes; changes to non-root classes; and changes to
non-PersistenceCapable classes.

Changed the signatures of StateManager interface methods to take PersistenceCapable as
the first argument, to avoid a cast operation.

Defined a new method to be enhanced into the least-derived PersistenceCapable class to
handle copying key fields from oid into the instance: jdoCopyKeyFieldsFromObjectId
(Object oid).

Removed that makeDirty in JDOHelper throws an exception in the case that the instance
is not transient and the field is not managed. This is only one case that throws an exception;
the other cases silently ignore the condition. To be consistent, this condition will also si-
lently return.

C.16 Changes since draft 0.97
Clarified comparisons in JDOQL for wrapped types and promotion of numeric types.

Made static method getPersistenceManagerFactory(Properties) mandatory for JDO imple-
mentations.

Added PersistenceManagerFactory property ConnectionDriverName.

Added vendor-specific global configuration data in the first part of a XXX.jdo file. For this,
the DTD was changed from <!ELEMENT jdo (package)+> to <!ELEMENT jdo (package)+
(extension)*>.

Clarified that the class of a persistent instance must be preserved, unless some outside
change is made to the datastore.

Clarified that parameters to query must be persistent, associated with the same Persis-
tenceManager as the Query.

Clarified that for portability, the instances in a candidate collection must be persistent, as-
sociated with the same PersistenceManager as the Query.

Changed the semantics of retrieve and retrieveAll to require that the PersistenceManager
load all fields of the parameter instances, so a subsequent call to makeTransient can oper-
ate on a valid instance (all persistent fields loaded).

Added description of class loaders to the PersistenceManager chapter 12.5.

Clarified that there are no default values for flags in getPersistenceManager.
 JDO 2.0 320 February 28, 2006

Java Data Objects 2.0
Added transaction flag restoreValues, which determines the treatment of persistent in-
stances at transaction rollback.

Changed the specification of application identity key classes to require (instead of recom-
mend) that the class override the toString method and provide a public constructor that
takes only a String parameter.

Clarified query comparisons for persistent and transient parameters and candidate in-
stances.

C.17 Changes since Approved Draft
Changed 3.2.1 to correct the interface name from javax.jdo.PersistenceCapable to jav-
ax.jdo.spi.PersistenceCapable.

Fixed typo in 5.5.6. Changed “The instance loses its JDO Identity and its association with
the PersistenceManager.” to “The instance retains its JDO Identity and its associ-
ation with the PersistenceManager.”

In 5.4.1 changed the wording regarding field types of application identity key fields to re-
quire portable applications to use only primitive, String, Date, and Number types.

In 5.4.1 added a restriction that application object id instances must not have any key fields
with a value of null.

Added to 5.6.1 that the PersistenceManager must not hold a strong reference to a per-
sistent-nontransactional instance, so that it may be garbage collected.

In 5.8, clarified that a before image might be created on update depending on the imple-
mentation of optimistic verification.

Corrected table 2 for rollback entries; changed the flag that affects the operation from reta-
inValues to restoreValues.

In Figure 13 Note 23, fixed “A persistent-dirty instance transitions to persistent-nontrans-
actional... at rollback when RestoreValues set to true.”

In Figure 13 Note 18 fixed from “The instance is cleared of values.” to ”No changes are
made to the values.”

Clarified 6.3 to discuss the treatment of Second Class Objects embedded in First Class Ob-
jects. SCO instances of PersistenceCapable types have no standard treatment.

In 8.5, fixed missing property javax.jdo.option.ConnectionDriverName in JDOHelper list
of standard properties for getPersistenceManagerFactory.

Added new section 9.5 for new security checking for StateManager. The new authorization
strategy does not require that the persistence-capable classes be authorized for JDOPer-
mission(“setStateManager”).

Fixed 10.3 the description of jdoPreClear does not include deleted instances, as these in-
stances do not transition to hollow.

Fixed typos in 11.2, 12.6.5: changed “JDODatastoreException” to “JDODataS-
toreException”

Inserted new 11.4 to add PersistenceManagerFactory close method.

Added to 12.6 “In a non-managed environment, if the current transaction is active, close()
throws JDOUserException.”

In 12.6.1, added new methods retrieveAll (Collection, boolean) and retrieveAll (Object[],
boolean).
 JDO 2.0 321 February 28, 2006

Java Data Objects 2.0
In 12.6.1, clarified the description of retrieve.

In 12.6.4, clarified the description of getExtent to throw JDOUserException if the metadata
does not require an extent to be maintained.

In 12.6.5, changed code example from aPersistenceManager.getObjectById (pc.getPersis-
tenceManager().getObjectId(pc), validate) to aPersistenceManager.getObjectById
(JDOHelper.getObjectId(pc), validate). This avoids using the PersistenceCapable interface
from user code.

In 12.6.5, changed the exception thrown by getObjectById to JDOObjectNotFoundEx-
ception.

In 12.6.6, clarified description of makeTransient to make clear that the persistence manager
is not responsible for clearing references to parameter instances to avoid making them per-
sistent by reachability at commit.

In 12.6.6, clarified description of makeTransactional to include throwing JDOUnsupport-
edOptionException if a parameter is transient but TransientTransactional is not support-
ed.

Fixed typo in 13.4.2. Changed “The retainValues setting currently active is returned.“
to “The restoreValues setting currently active is returned.“

Fixed typo in 13.4.2. Changed “If this flag is set to true, then restoration of persistent in-
stances does not take place after transaction rollback.” to “If this flag is set to true, then
restoration of persistent instances takes place after transaction rollback.”

Corrected 13.4.3 to remove the requirement that Transaction must implement javax.trans-
action.Synchronization.

In 13.5, changed the behavior of failed optimistic transactions. The commit method throws
a JDOOptimisticVerificationException and automatically rolls back the transaction.

Clarified 14.3 that variable declarations each require a type and a name, and there must be
separating semicolons only if more than one declaration.

Clarified 14.3 that “candidate instances” are a subset of the candidate collection that are
instances of the candidate class or a subset of the candidate class.

Clarified 14.4 that “compile time” refers to “JDOQL-compile time”.

Changed 14.5 to state “If the candidates are not specified, then the candidate extent is the
extent of instances in the datastore with subclasses true.”

Clarified 14.6.2 if a cast operation would throw ClassCastException, it is treated the
same as a NullPointerException.

Clarified 14.6.5 the semantics of “contains” is “exists”. This clarification is needed to pro-
vide a rational meaning if the contains clause is negated.

Clarified in 15 that Extents are not managed for instances of embedded fields.

In 15.3, clarified that the iterator method will throw an exception if NontransactionalRead
is not supported.

In 17.1, added getCause(), getFailedObject() and getNestedExceptions() to
the description of JDOException.

In 17.1, fixed description of JDOUnsupportedOptionException: “This class is a de-
rived class of JDOUserException. This exception is thrown by an implementation to in-
dicate that it does not implement a JDO optional feature.”

In 17.1.9, added new JDOObjectNotFoundException to report instances that cannot be
found in the datastore.
 JDO 2.0 322 February 28, 2006

Java Data Objects 2.0
In 17.1.10, added new JDOOptimisticVerificationException to report optimistic
verification failures during commit.

Changed chapter 18 introduction to describe new policy for naming and accessing meta-
data files.

In 18.3, changed name scoping for persistence-capable-superclass.

Corrected 18.4 to correct an inconsistency with 20.9.6: “null-valued fields throw a
JDOUserException when the instance is flushed to the datastore and the datastore
does not support null values.”

Clarified in 18.4 that Extents are not managed for instances of embedded fields.

Updated 18.4.1 and 18.4.2 to clarify type name scoping: The type names use Java rules for
naming: if no package is included in the name, the package name is assumed to be the
same package as the persistence-capable class. Inner classes are identified by the "$" mark-
er.

In 18.6, added DOCTYPE description to describe access to the public DTD at ja-
va.sun.com/dtd.

Changed 19.3 to reflect change in portable object identity field types.

Changed 20.9.6 to correct an inconsistency with 18.4: “null-valued fields throw a
JDOUserException when the instance is flushed to the datastore and the datastore
does not support null values.”

Changed 20.17 and 20.20.4 to modify security checking for JDOPermission(“setStateMan-
ager”).

Changed 20.17 to correct the access modifier of jdoPreSerialize from private to protected.

Changed 20.20.1 to correct the interface name from javax.jdo.PersistenceCapable to jav-
ax.jdo.spi.PersistenceCapable.

Added new JDOPermission(“closePersistenceManagerFactory”) to check that the caller of
PersistenceManagerFactory.close() is authorized.

Corrected Chapter 23 to remove alternative Name (ArgumentListopt) from MethodInvo-
cation nonterminal in the BNF.

Corrected Chapter 23 to remove the exclusive or operator from the BNF.

Removed Appendix B.3 since it no longer reflects reality.

C.18 Changes since 1.0.1
In 5.4, added classes used as an application identity class where there is a single applica-
tion identity field.

In 6.4.3, added interfaces and classes required to be supported as persistent field types:
LinkedHashMap, LinkedHashSet, LinkedList, and Currency.

Added to 7.3 .1 a method to retrieve the version of an instance.

Added to 7.4.6 a method to determine if an instance is detached.

Changed 7.12 to add methods handling SimpleIdentity.

Changed in 8.5 the signature of the getPersistenceManagerFactory from Properties to
Map.

Added to 8.5 new helper methods for getting PersistenceManagerFactory.

Added to 8.6 new options to specify the mapping for a PersistenceManagerFactory.
 JDO 2.0 323 February 28, 2006

Java Data Objects 2.0
Updated 10 to disaggregate instance callbacks.

Changed in 11.1 and 11.7 the parameter of the getPersistenceManagerFactory from Prop-
erties to Map.

Changed 11.6 to add javax.jdo.option.BinaryCompatibility, javax.jdo.option.Uncon-
strainedQueryVariables, javax.jdo.query.SQL, and javax.jdo.option.GetDataStoreConnec-
tion to optional features that can be supported by the implementation.

Added to 11.8 a second level cache management API.

Added to 11.9 life cycle event listeners.

Changed requirements for PersistenceCapable to refer to BinaryCompatibility through-
out.

Added new method in 12.6.4 getExtent(Class persistenceCapableClass).

Added to 12.6 a discussion on using interfaces with Extents.

Added to 12.6.1 a new method refreshAll(JDOException ex) to refresh instances after a
failed optimistic transaction.

Added to 12.6.5 new methods getObjectsById to retrieve multiple instances based on id.

Added to 12.6.5 a new methods getObjectById to retrieve an instance based on class and
key.

Added 12.6.6 newInstance method to create instances of persistence-capable interfaces.

Added 12.6.8 methods to detach and attach instances for multi-tier applications.

Added 12.7 methods to specify how instances are fetched from the datastore.

Added 12.8 a method to explicitly flush changes to the datastore.

Added to 12.11 methods to access multiple User Objects.

Added 12.14 new method getSequence.

Added 12.15 new LifecycleEventListener.

Added 12.16 new method getDataStoreConnection.

Clarified 13.4.4 if a transaction is active when begin is called, or a transaction is not active
when commit or rollback is called, JDOUserException is thrown.

Added 13.4.5 get/setRollbackOnly to the Transaction interface.

Added to 14.5 newNamedQuery method.

Added to 14.6.1 setParameters methods to bind parameters to query instances.

Added to 14.6.2 the requirement for support of public final static fields in query filters.

Added to 14.6.2 table with supported methods on Collection, Map, and String.

Added to 14.6.2 static method JDOHelper.getObjectId(Object) to allow use of object id in
queries.

Added after 14.6.7 new query elements for uniqueness, result, result class, grouping, and
result cardinality limits.

Added after 14.6.12 a table for interactions among new query elements.

Added after 14.6 a new section to describe delete by query.

Added after 14.6 a new section to describe support for SQL native queries.

Changed 14.6.6 to permit ordering on boolean fields as a non-portable extension.

Moved Chapter 15 Extent to Chapter 19.
 JDO 2.0 324 February 28, 2006

Java Data Objects 2.0
Added new Chapter 15 with object-relational mapping examples.

Moved Chapter 18 to Chapter 25 for JDO 1.0.1 XML metadata.

Added object-relational mapping metadata to Chapter 18.

Added 20.10 to discuss Binary Compatibility portability implications.

Renumbered Chapter 20 Reference Enhancer to Chapter 21.

Added new methods to Chapter 21 to support detached instances.

Updated 21.20.7 to correct a bug in the specification and implementation of getManaged-
FieldCount.

Renumbered Chapter 21 State Manager to Chapter 22.

Added new methods to Chapter 22 to support detached instances.

Updated 24.6 BLOB/CLOB datatype support to reflect that this functionality is part of JDO
2.0.

Updated 24.8 Case-Insensitive Query to reflect that this functionality is part of JDO 2.0.

Updated 24.13 Projections in query to reflect that this functionality is part of JDO 2.0.

Updated 24.16 Distributed object support to reflect that this functionality is part of JDO 2.0.

Updated 24.17 Object-Relational Mapping to reflect that this functionality is part of JDO
2.0.

Removed B.2 which discussed implications of removing PersistenceCapable.

C.19 Changes since Proposed Final Draft
Updated 18.14 to remove serialized attribute from element, key, and value. Removed for-
eign-key attribute from field element. Added attribute serialized-element to elements col-
lection and array. Added attributes serialized-key and serialized-value to element map.

Removed attribute serialized from orm metadata. Added serialized-element, serialized-
key, and serialized-value to jdo metadata.

Removed true/false use of attribute foreign-key in metadata.

Allowed persistence-capable class to be the parameter of PersistenceManager newIn-
stance.

Allowed attribute order in element collection to permit specifying a column to allow du-
plicates.

Allowed java.lang classes to be used in metadata without importing them.

Added DetachAllOnCommit property to PersistenceManager to facilitate construction of
detached instances.

Changed signature of makePersistent to return the persistent instances, and to attach de-
tached instances.

Added attribute element-type to element array in metadata.

Added field-type to element field in metadata.

Specified behavior of null values in aggregates in JDOQL.

Allowed distinct with aggregates in JDOQL.

Allowed constructors or result class in JDOQL.

Allowed setUnique for delete by query in JDOQL.
 JDO 2.0 325 February 28, 2006

Java Data Objects 2.0
Required relationships mapped using mapped-by to be consistent after flush.

Replaced fetch-depth by recursion-depth in fetch plan.

Added methods to specify detachment roots in fetch plan.

Automatically import JDOHelper in JDOQL.

Defined behavior of deletePersistent on detached instances.
 JDO 2.0 326 February 28, 2006

Java Data Objects 2.0

Index

A
accessDeclaredMembers 290
addInstanceLifecycleListener 106, 136
addRegisterClassListener 90
addStateInterrogation 93
afterCompletion 52, 143
allows-null 220
application 42
ApplicationIdentity 102
Array 103
ArrayList 103
associated object 131
AttachCallback 96
AttachLifecycleListener 135
ATTRIBUTE deferred 225
ATTRIBUTE delete-action 225
ATTRIBUTE update-action 225

B
beforeCompletion 51, 143
begin 143
Binary Compatibility 26
Binary compatibility 254
BinaryCompatibility 103
ByteIdentity 47

C
Cache management 110
Change of identity 45
ChangeApplicationIdentity 103
char literals 157
CharIdentity 48
ClearCallback 95
ClearLifecycleListener 134
clone 260
Cloning 260
Closing Query results 162
Collection 110
commit 143, 144, 145
compile 154
compound Identity 47
Conflicting changes 187
Connection 27, 32
connection 23, 31, 33, 138
Connection Management 139
ConnectionFactory 100
copyKeyFieldsToObjectId 92
CreateLifecycleListener 133

Currency 73

D
datastore connection 136
DataStoreCache 105
DatastoreIdentity 102
DateTime 103
declareImports 153
declareParameters 153
declareVariables 153
default fetch group 122
default-value 220
Delete persistent instances 117
DeleteCallback 95
DeleteLifecycleListener 134
deletePersistent 117
DETACH_LOAD_FIELDS 121, 122
DETACH_UNLOAD_FIELDS 121
Detachable 82, 257
DetachAllOnCommit 54, 119
DetachCallback 95
detachCopy 120
detachCopyAll 120
Detached 78
Detached-clean 54
Detached-dirty 54
detachedState 260
DetachLifecycleListener 134
DirtyLifecycleListener 134
Document Type Descriptor 234, 307

E
ELEMENT array 231, 307
ELEMENT class 304
ELEMENT collection 225, 226, 230, 306
ELEMENT column 218
ELEMENT discriminator 224
ELEMENT element 233
ELEMENT embedded 232
ELEMENT extension 234, 307
ELEMENT field 225, 305
ELEMENT implements 224
ELEMENT inheritance 224
ELEMENT interface 217
ELEMENT jdo 217, 304
ELEMENT join 223
ELEMENT key 232
ELEMENT map 231, 307
JDO 2.0 327 February 28, 2006

Java Data Objects 2.0
ELEMENT orm 234
ELEMENT package 217, 304
ELEMENT primary-key 223
ELEMENT property 226
ELEMENT query 233
ELEMENT sequence 233
ELEMENT value 232
ELEMENT version 222
equals 43
evict 110
Evicting objects from the cache 105
exceptions 211
exclude subclasses 167
execute 155
executeWithArray 156
executeWithMap 156
Extent 112, 249
Extent iterator 249

F
Fetch Groups 122
fetch plan 112, 122
fetch size 122
FETCH_SIZE_GREEDY 126
FETCH_SIZE_OPTIMAL 126
fetch-group 127
FetchPlan 124
FGOnly 111
Field Numbering 258
flush 187

G
Generated fields 265, 266
Generated methods 266
Generated static initializer 266
getDataStoreCache 105
GetDataStoreConnection 103
getDataStoreConnection 137
getDetachAllOnCommit 119
getDetachmentOptions 126
getFetchPlan 249
getFieldNames 89
getFieldTypes 89
getIgnoreCache 112, 154
GetJDBCConnection 103
getJDOImplHelper 290
getKey 48
getKeyAsObject 47
getMultithreaded 130

getNativeConnection 136
getObjectById 113, 115
getObjectId 85, 114
getObjectIdClass 131
getObjectIds 85
getObjectsById 115
GetPersistenceManager 76
getPersistenceManager 101, 141, 152
getPersistenceManagerFactory 131
getSynchronization 143
getTargetClass 47
getTargetClassName 47
getTransactionalObjectId 115
getUserObject 131
getVersion 85
group by 168

H
hashCode 43
HeterogeneousInterfaceType 104
HeterogeneousObjectType 104
Hollow 52

I
IgnoreCache 154
Inheritance 74, 258
inheritance 221, 304
Inner class 216, 304
insert-value 220
Instance life cycle management 116
InstanceCallbacks 94
InstanceLifecycleEvent 135
InstanceLifecycleListener 106, 133
IntIdentity 48
Introspection (Java core reflection) 260
isActive 141
isClosed 109
isDetached 86
isUnmodifiable 154

J
java.sql.Connection 137
javax.jdo.mapping.Catalog 99
javax.jdo.mapping.Schema 99
javax.jdo.option.ChangeApplicationIdentity 121
javax.jdo.option.Mapping 99, 215
jdbc-type 219
JDO Identity 43, 51, 70, 77, 85, 113, 159, 252,
286
JDO 2.0 328 February 28, 2006

Java Data Objects 2.0
JDO identity 46
JDO option 42, 55
JDOConnection 136
jdoCopyFields 280
jdoCopyKeyFieldsToObjectId 268, 269, 281, 282
JDODetachedFieldAccessException 121, 270
jdoDetachedState 82, 265
jdoFieldFlags 265
jdoFieldNames 265, 272
jdoFieldTypes 266, 272
jdoFlags 263, 272
jdoGetField 256, 257, 263, 276
jdoGetManagedFieldCount 275
jdoGetObjectId 77, 85, 267
jdoGetPersistenceManager 76
jdoGetTransactionalObjectId 267
jdoGetVersion 267
JDOHelper 76, 84
JDOImplHelper 89
jdoInheritedFieldCount 265, 272
jdoIsDeleted 78, 86, 266
jdoIsDetached 266
jdoIsDirty 78, 266
jdoIsNew 78, 86, 266
jdoIsPersistent 78, 86, 266
jdoIsTransactional 78, 85, 266
jdoMakeDirty 77, 266
jdoNewInstance 79, 269, 275
jdoNewObjectIdInstance 80
JDONullIdentityException 48, 81
JDOPermission("getMetadata") 290
JDOPermission("setStateManager") 290
jdoPersistenceCapableSuperclass 266
jdoPostAttach 96
jdoPostDetach 96
jdoPostLoad 94
jdoPreAttach 96
jdoPreClear 95
jdoPreDelete 95
jdoPreDetach 95
jdoPreSerialize 259, 281
jdoPreStore 95
jdoProvideField 279
jdoProvideFields 279, 280
JDOQL 104
jdoReplaceDetachedState 83, 269
jdoReplaceField 278
jdoReplaceFields 278, 279
jdoReplaceStateManager 274, 275
jdoSetField 257, 263, 277, 278, 279

jdoStateManager 272
JoinedTablePerClass 104
JoinedTablePerConcreteClass 104

L
length 220
LinkedHashMap 73
LinkedHashSet 73
LinkedList 103
List 103
LoadCallback 94
LoadLifecycleListener 133
Locale 73
LongIdentity 48

M
Make instances nontransactional 119
Make instances persistent 116
Make instances transactional 118
Make instances transient 118
makeNontransactional 119
makePersistent 116, 117
makeTransactional 118
makeTransient 118
mapped-by 187
MaxFetchDepth 123
Membership 173
Message-driven Beans 27
Multithreaded 130

N
Namespaces in queries 149
newInstance 90
newObjectIdInstance 92
newQuery 150
NonDurableIdentity 102
NonJoinedTablePerConcreteClass 104
Nontransactional 54
NontransactionalRead 102, 141
NontransactionalWrite 102
NullCollection 103, 159

O
Object Database 33
object database 25, 26, 147
object equality 43
object identity 43, 255
ObjectId class management 131
ObjectIdentity 48
JDO 2.0 329 February 28, 2006

Java Data Objects 2.0
ObjectIdFieldConsumer 82
ObjectIdFieldManager 82
ObjectIdFieldSupplier 82
Optimistic 102, 140, 142, 144
Optimistic transaction 58
order by 168
Ordering 162

P
parseXXX 48
persistence by reachability 51
PersistenceCapable 76
PersistenceManager 107
PersistenceManagerFactory 97
Persistent-clean 53
Persistent-deleted 53
Persistent-dirty 52
Persistent-new 51
Persistent-nontransactional 56
Persistent-nontransactional-dirty 57
Pinning objects in the cache 106
Portability Guidelines 248
post-load 127
PreDirtyEvent 103
primary key 44
Properties 102
provisionally persistent 116

Q
Query factory 112

R
Recursion-depth 124
ReflectPermission 290
refresh 111
registerClass 90, 273
relational 22, 25, 26, 33, 40, 147, 263
relationship 187
RelationSubclassTable 104
removeInstanceLifecycleListener 106, 136
removeRegisterClassListener 91
removeStateInterrogation 93
restoreValue 51
RestoreValues 54, 55, 88, 142
result 167
result-class-name 167
RetainValues 102, 142
retrieve 111

retrieveAll 111
rollback 143

S
scale 220
Second-level cache management 105
Sequence 132
Serialization 259
Serializing Persistent Instances 120
setCandidates 153
setClass 153
setDetachAllOnCommit 119
setDetachmentOptions 126
setFilter 153
setGrouping 153
setIgnoreCache 112, 154
setMultithreaded 130
setNontransactionalRead 141
setNontransactionalWrite 141
setOptimistic 142
setOrdering 153
setRange 154
setResult 153
setResultClass 154
setRetainValues 142
setStateManager 290
setSynchronization 142, 143
setUnique 153
setUnmodifiable 154
setUserObject 131
ShortIdentity 48
single field identity 47, 81, 269
Single-String Query 167
SQL 103, 147
SQL Portability 137
sql-type 220
State interrogation 78
StateImage 103
StateInterrogation 92
static initialization 266
static initializer 273
StoreCallback 94
StoreLifecycleListener 133
StringIdentity 48
supported query languages 102
supportedOptions 102
suppressAccessChecks 290
Synchronization 130, 142
JDO 2.0 330 February 28, 2006

Java Data Objects 2.0
T
Threading 108
Transaction factory 112
Transient 51, 58
Transient Transactional 58
Transient-clean 58
Transient-dirty 58
TransientTransactional 102
TreeMap 103
TreeSet 103

U
UnconstrainedQueryVariables 103
unique 167
Unpinning objects in the cache 106

V
validate 113
Vector 103

W
writeObject 281
JDO 2.0 331 February 28, 2006

4140 Network Circle
Santa Clara, CA 95404

For U.S. Sales Office locations, call:
800 821-4643
In California:
800 821-4642

Australia: (02) 844 5000
Belgium: 32 2 716 7911
Canada: 416 477-6745
Finland: +358-0-525561
France: (1) 30 67 50 00
Germany: (0) 89-46 00 8-0
Hong Kong: 852 802 4188
Italy: 039 60551
Japan: (03) 5717-5000
Korea: 822-563-8700
Latin America: 415 688-9464
The Netherlands: 033 501234
New Zealand: (04) 499 2344
Nordic Countries: +46 (0) 8 623 90 00
PRC: 861-849 2828
Singapore: 224 3388
Spain: (91) 5551648
Switzerland: (1) 825 71 11
Taiwan: 2-514-0567
UK: 0276 20444

Elsewhere in the world,
call Corporate Headquarters:
415 960-1300
Intercontinental Sales: 415 688-9000

	Table of Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Overview
	1.2 Scope
	1.3 Target Audience
	1.4 Organization
	1.5 Document Convention
	1.6 Terminology Convention

	2 Overview
	2.1 Definitions
	2.1.1 JDO common interfaces
	Table 1: Which Enhancement Interface is Used

	2.1.2 JDO in a managed environment
	Enterprise Information System (EIS)
	EIS Resource
	Resource Manager (RM)
	Connection
	Application Component
	Session Beans
	Message-driven Beans
	Entity Beans
	Helper objects
	Container

	2.2 Rationale
	Figure 1.0 Standard plug-and-play between application programs and EISes using JDO

	2.3 Goals

	3 JDO Architecture
	3.1 Overview
	Figure 2.0 Overview of non-managed JDO architecture

	3.2 JDO Architecture
	3.2.1 Two tier usage
	3.2.2 Application server usage
	Resource Adapter
	Pooling
	Contracts
	Figure 3.0 Contracts between application server and native JDO resource adapter
	Figure 4.0 Contracts between application server and layered JDO implementation

	4 Roles and Scenarios
	4.1 Roles
	4.1.1 Application Developer
	4.1.2 Application Component Provider
	4.1.3 Application Assembler
	4.1.4 Deployer
	4.1.5 System Administrator
	4.1.6 JDO Vendor
	4.1.7 Connector Provider
	4.1.8 Application Server Vendor
	4.1.9 Container Provider

	4.2 Scenario: Embedded calendar management system
	Figure 5.0 Scenario: Embedded calendar manager

	4.3 Scenario: Enterprise Calendar Manager
	Figure 6.0 Scenario: Enterprise Calendar Manager

	5 Life Cycle of JDO Instances
	5.1 Overview
	5.2 Goals
	5.3 Architecture:
	JDO Instances
	JDO State Manager
	JDO Managed Fields

	5.4 JDO Identity
	Three Types of JDO identity
	Uniquing
	Change of identity
	JDO Identity Support
	5.4.1 Application (primary key) identity
	Compound Identity

	5.4.2 Single Field Identity
	5.4.3 Datastore identity
	5.4.4 Nondurable JDO identity

	5.5 Life Cycle States
	Datastore Transactions
	5.5.1 Transient (Required)
	5.5.2 Persistent-new (Required)
	5.5.3 Persistent-dirty (Required)
	5.5.4 Hollow (Required)
	5.5.5 Persistent-clean (Required)
	5.5.6 Persistent-deleted (Required)
	5.5.7 Persistent-new-deleted (Required)
	5.5.8 Detached-clean (Required)
	5.5.9 Detached-dirty (Required)

	5.6 Nontransactional (Optional)
	5.6.1 Persistent-nontransactional (Optional)
	5.6.2 Persistent-nontransactional-dirty (Optional)

	5.7 Transient Transactional (Optional)
	5.7.1 Transient-clean (Optional)
	5.7.2 Transient-dirty (Optional)

	5.8 Optimistic Transactions (Optional)
	Table 2: State Transitions
	Figure 7.0 Life Cycle: New Persistent Instances
	Figure 8.0 Life Cycle: Transactional Access
	Figure 9.0 Life Cycle: Datastore Transactions
	Figure 10.0 Life Cycle: Optimistic Transactions
	Figure 11.0 Life Cycle: Access Outside Transactions
	Figure 12.0 Life Cycle: Transient TransactionalLife Cycle: Transient Transactional
	Figure 13.0 Life Cycle: Detached
	Figure 14.0 JDO Instance State Transitions

	6 The Persistent Object Model
	6.1 Overview
	Figure 15.0 Instantiated persistent objects

	6.2 Goals
	6.3 Architecture
	Persistence-capable
	First Class Objects and Second Class Objects
	First Class Objects
	Second Class Objects
	Arrays
	Primitives
	Interfaces

	6.4 Field types of persistence-capable classes
	6.4.1 Nontransactional non-persistent fields
	6.4.2 Transactional non-persistent fields
	6.4.3 Persistent fields
	Precision of fields
	Primitive types
	Immutable Object Class types
	Mutable Object Class types
	Persistence-capable Class types
	Object Class type
	Collection Interface types
	Other Interface types
	Arrays

	6.5 Inheritance

	7 PersistenceCapable
	7.1 Persistence Manager
	7.2 Make Dirty
	7.3 JDO Identity
	7.3.1 Version

	7.4 Status interrogation
	7.4.1 Dirty
	7.4.2 Transactional
	7.4.3 Persistent
	7.4.4 New
	7.4.5 Deleted
	7.4.6 Detached
	Table 3: State interrogation

	7.5 New instance
	7.6 State Manager
	7.7 Replace Flags
	7.8 Replace Fields
	7.9 Provide Fields
	7.10 Copy Fields
	7.11 Static Fields
	7.12 JDO identity handling
	interface ObjectIdFieldSupplier
	interface ObjectIdFieldConsumer
	interface ObjectIdFieldManager

	7.13 Detachable

	8 JDOHelper
	8.1 Persistence Manager
	8.2 Make Dirty
	8.3 JDO Identity
	8.4 JDO Version
	8.5 Status interrogation
	8.5.1 Dirty
	8.5.2 Transactional
	8.5.3 Persistent
	8.5.4 New
	8.5.5 Deleted
	8.5.6 Detached

	8.6 PersistenceManagerFactory methods

	9 JDOImplHelper
	9.1 JDOImplHelper access
	9.2 Metadata access
	9.3 Persistence-capable instance factory
	9.4 Registration of PersistenceCapable classes
	9.4.1 Notification of PersistenceCapable class registrations
	RegisterClassEvent
	RegisterClassListener

	9.5 Security administration
	9.6 Application identity handling
	9.7 Persistence-capable class state interrogation

	10 InstanceCallbacks
	10.1 jdoPostLoad
	10.2 jdoPreStore
	10.3 jdoPreClear
	10.4 jdoPreDelete
	10.5 jdoPreDetach and jdoPostDetach
	10.6 jdoPreAttach and jdoPostAttach

	11 PersistenceManagerFactory
	11.1 Interface PersistenceManagerFactory
	Construction by Properties

	11.2 ConnectionFactory
	11.3 PersistenceManager access
	11.4 Close the PersistenceManagerFactory
	11.5 Non-configurable Properties
	11.6 Optional Feature Support
	11.7 Static Properties constructor
	11.8 Second-level cache management
	Evicting objects from the cache
	Pinning objects in the cache
	Unpinning objects in the cache

	11.9 Registering for life cycle events

	12 PersistenceManager
	12.1 Overview
	12.2 Goals
	12.3 Architecture: JDO PersistenceManager
	12.4 Threading
	12.5 Class Loaders
	12.6 Interface PersistenceManager
	State Transitions for persistent instances at close
	Null management
	12.6.1 Cache management
	12.6.2 Transaction factory interface
	12.6.3 Query factory interface
	12.6.4 Extent Management
	Extents of interfaces

	12.6.5 JDO Identity management
	Getting Multiple Persistent Instances
	Getting an Object by Class and Key

	12.6.6 Persistent instance factory
	12.6.7 JDO Instance life cycle management
	Make instances persistent
	Delete persistent instances
	Make instances transient
	Make instances transactional
	Make instances nontransactional

	12.6.8 Detaching and attaching instances
	Committing the transaction with DetachAllOnCommit
	Serializing Persistent Instances
	Explicit detach
	Behavior of Detached Instances

	12.7 Fetch Plan
	12.7.1 Fetch Groups
	12.7.2 MaxFetchDepth
	12.7.3 Root instances
	12.7.4 Recursion-depth
	12.7.5 The FetchPlan interface
	12.7.6 Defining fetch groups

	12.8 Flushing instances
	12.9 Transaction completion
	12.10 Multithreaded Synchronization
	12.11 User associated objects
	12.12 PersistenceManagerFactory
	12.13 ObjectId class management
	12.14 Sequence
	12.15 Life-cycle callbacks
	InstanceLifecycleEvent

	12.16 Access to internal datastore connection
	SQL Portability

	13 Transactions and Connections
	13.1 Overview
	13.2 Goals
	13.3 Architecture: PersistenceManager, Transactions, and Connections
	Connection Management Scenarios
	Native Connection Management
	Non-native Connection Management
	Optimistic Transactions
	Figure 16.0 Transactions and Connections

	13.4 Interface Transaction
	13.4.1 PersistenceManager
	13.4.2 Transaction options
	Nontransactional access to persistent values
	Optimistic concurrency control
	Retain values at transaction commit
	Restore values at transaction rollback

	13.4.3 Synchronization
	13.4.4 Transaction demarcation
	Non-managed environment
	Managed environment

	13.4.5 RollbackOnly

	13.5 Optimistic transaction management

	14 Query
	14.1 Overview
	14.2 Goals
	14.3 Architecture: Query
	14.4 Namespaces in queries
	Keywords

	14.5 Query Factory in PersistenceManager interface
	14.6 Query Interface
	Persistence Manager
	Fetch Plan
	Query element binding
	Query options
	Query modification
	Query evaluation
	Query compilation
	14.6.1 Query execution
	14.6.2 Filter specification
	Table 4: Query Operators
	Table 5: Query Methods

	14.6.3 Parameter declaration
	Implicit parameter declaration

	14.6.4 Import statements
	14.6.5 Variable declaration
	Implicit variable declaration

	14.6.6 Ordering statement
	14.6.7 Closing Query results
	14.6.8 Limiting the Cardinality of the Query Result
	14.6.9 Specifying the Result of a Query (Projections, Aggregates)
	Distinct results
	Named Result Expressions
	Aggregate Types
	Primitive Types
	Null Results
	Default Result

	14.6.10 Grouping Aggregate Results
	14.6.11 Specifying Uniqueness of the Query Result
	Default Unique setting

	14.6.12 Specifying the Class of the Result
	Result Class Requirements
	Table 6: Shape of Result (C is the candidate class)

	14.6.13 Single-string Query element binding

	14.7 SQL Queries
	Table 7: Shape of Result of SQL Query
	14.7.1 Mapping Columns of SQL Queries to User-specified Result Classes

	14.8 Deletion by Query
	14.9 Extensions
	14.10 Examples:
	14.10.1 Basic query.
	14.10.2 Basic query with ordering.
	14.10.3 Parameter passing.
	14.10.4 Navigation through single-valued field.
	14.10.5 Navigation through multi-valued field.
	14.10.6 Membership in a collection
	14.10.7 Projection of a Single Field
	14.10.8 Projection of Multiple Fields and Expressions
	14.10.9 Projection of Multiple Fields and Expressions into a Constructed instance
	14.10.10 Aggregation of a single Field
	14.10.11 Aggregation of Multiple Fields and Expressions
	14.10.12 Aggregation of Multiple fields with Grouping
	14.10.13 Selection of a Single Instance
	14.10.14 Selection of a Single Field
	14.10.15 Projection of “this” to User-defined Result Class with Matching Field
	14.10.16 Projection of “this” to User-defined Result Class with Matching Method
	14.10.17 Projection of variables
	14.10.18 Deleting Multiple Instances

	15 Object-Relational Mapping
	Mapping Overview
	Mapping Strategies
	15.1 Column Elements
	15.1.1 Mapping single-valued fields to columns

	15.2 Join Condition
	15.2.1 Secondary Table mapping
	15.2.2 Map using join table

	15.3 Relationship Mapping
	Mapping Strategies
	15.3.1 Many-to-One using foreign key
	15.3.2 One-to-Many using foreign key
	15.3.3 Many-to-One and One-to-Many using mapped-by
	15.3.4 Many-to-One and One-to-Many using compound foreign key
	15.3.5 Many-to-One and One-to-Many using Map<Department, String>
	15.3.6 Many-to-One and One-to-Many using Map<String, Employee>

	15.4 Embedding
	15.4.1 Mapping relationships using embedded, referenced, and join table

	15.5 Foreign Key Constraints
	Delete Action, Update Action
	15.5.1 Many-to-One with foreign key constraint

	15.6 Indexes
	Unique Constraints
	15.6.1 Single-field and Compound Indexes

	15.7 Inheritance
	15.8 Versioning
	15.8.1 Inheritance with superclass-table and version
	15.8.2 Inheritance with new-table and version
	15.8.3 Inheritance with subclass-table

	16 Enterprise Java Beans
	16.1 Session Beans
	16.1.1 Stateless Session Bean with Container Managed Transactions
	16.1.2 Stateful Session Bean with Container Managed Transactions
	16.1.3 Stateless Session Bean with Bean Managed Transactions
	16.1.4 Stateful Session Bean with Bean Managed Transactions

	16.2 Entity Beans

	17 JDO Exceptions
	17.1 JDOException
	17.1.1 JDOFatalException
	17.1.2 JDOCanRetryException
	17.1.3 JDOUnsupportedOptionException
	17.1.4 JDOUserException
	17.1.5 JDOFatalUserException
	17.1.6 JDOFatalInternalException
	17.1.7 JDODataStoreException
	17.1.8 JDOFatalDataStoreException
	17.1.9 JDOObjectNotFoundException
	17.1.10 JDOOptimisticVerificationException
	17.1.11 JDODetachedFieldAccessException

	18 XML Metadata
	Mapping to Relational Databases
	18.1 ELEMENT jdo
	18.2 ELEMENT package
	18.3 ELEMENT interface
	18.4 ELEMENT column
	Table 8: Default jdbc-type

	18.5 ELEMENT class
	18.5.1 ELEMENT datastore-identity
	18.5.2 ELEMENT version

	18.6 ELEMENT primary-key
	18.7 ELEMENT join
	18.8 ELEMENT inheritance
	18.9 ELEMENT discriminator
	18.10 ELEMENT implements
	18.11 ELEMENT foreign-key
	18.11.1 ATTRIBUTE update-action
	18.11.2 ATTRIBUTE delete-action
	18.11.3 ATTRIBUTE deferred
	18.11.4 ATTRIBUTE name

	18.12 ELEMENT unique
	18.13 ELEMENT index
	18.14 ELEMENT property
	18.15 ELEMENT field
	Default persistence-modifier
	Embedded
	Column Mapping
	Foreign key
	18.15.1 ELEMENT collection
	18.15.2 ELEMENT map
	18.15.3 ELEMENT array
	18.15.4 ELEMENT embedded
	18.15.5 ELEMENT key
	18.15.6 ELEMENT value
	18.15.7 ELEMENT element
	18.15.8 ELEMENT order

	18.16 ELEMENT query
	18.17 ELEMENT sequence
	18.18 ELEMENT extension
	18.19 ELEMENT orm
	18.20 ELEMENT jdoquery
	18.21 The jdo Schema Descriptor
	18.22 The orm Schema Descriptor
	18.23 The jdoquery Schema Descriptor
	18.24 Example XML file

	19 Extent
	19.1 Overview
	19.2 Goals
	19.3 Interface Extent

	20 Portability Guidelines
	20.1 Optional Features
	20.1.1 Optimistic Transactions
	20.1.2 Nontransactional Read
	20.1.3 Nontransactional Write
	20.1.4 Transient Transactional
	20.1.5 RetainValues
	20.1.6 IgnoreCache

	20.2 Object Model
	20.3 JDO Identity
	20.4 PersistenceManager
	20.5 Query
	20.6 XML metadata
	20.7 Life cycle
	20.8 JDOHelper
	20.9 Transaction
	20.10 Binary Compatibility

	21 JDO Reference Enhancer
	21.1 Overview
	21.2 Goals
	21.3 Enhancement: Architecture
	21.4 Inheritance
	21.5 Field Numbering
	21.6 Serialization
	21.7 Cloning
	21.8 Introspection (Java core reflection)
	21.9 Field Modifiers
	21.9.1 Non-persistent
	21.9.2 Transactional non-persistent
	21.9.3 Persistent
	21.9.4 PrimaryKey
	21.9.5 Embedded
	21.9.6 Null-value

	21.10 Treatment of standard Java field modifiers
	21.10.1 Static
	21.10.2 Final
	21.10.3 Private
	21.10.4 Public, Protected

	21.11 Fetch Groups
	21.12 jdoFlags Definition
	21.13 Exceptions
	21.14 Modified field access
	Table 9: Field access mediation

	21.15 Generated fields in least-derived PersistenceCapable class
	21.16 Generated fields in all PersistenceCapable classes
	Generated static initializer

	21.17 Generated methods in least-derived PersistenceCapable class
	21.18 Generated methods in PersistenceCapable root classes
	21.19 Generated method in least-derived Detachable classes
	21.20 Generated methods in all PersistenceCapable classes
	21.21 Example class: Employee
	21.21.1 Generated fields
	21.21.2 Generated static initializer
	21.21.3 Generated interrogatives
	21.21.4 Generated jdoReplaceStateManager
	21.21.5 Generated jdoReplaceFlags
	21.21.6 Generated jdoNewInstance helpers
	21.21.7 Generated jdoGetManagedFieldCount
	21.21.8 Generated jdoGetXXX methods (one per persistent field)
	21.21.9 Generated jdoSetXXX methods (one per persistent field)
	21.21.10 Generated jdoReplaceField and jdoReplaceFields
	21.21.11 Generated jdoProvideField and jdoProvideFields
	21.21.12 Generated jdoCopyField and jdoCopyFields methods
	21.21.13 Generated writeObject method
	21.21.14 Generated jdoPreSerialize method
	21.21.15 Generated jdoNewObjectIdInstance
	21.21.16 Generated jdoCopyKeyFieldsToObjectId
	21.21.17 Generated jdoCopyKeyFieldsFromObjectId
	21.21.18 Generated Detachable methods

	22 Interface StateManager
	22.1 Overview
	Clone support

	22.2 StateManager Management
	22.3 PersistenceManager Management
	22.4 Dirty management
	22.5 State queries
	22.6 JDO Identity
	22.7 Serialization support
	22.8 Field Management
	22.8.1 User-requested value of a field
	22.8.2 User-requested modification of a field
	22.8.3 StateManager-requested value of a field
	22.8.4 StateManager-requested modification of a field

	22.9 Detached instance support

	23 JDOPermission
	24 JDOQL BNF
	24.1 Grammar Notation
	24.2 Single-String JDOQL
	24.3 Filter Specification
	24.4 Parameter Declaration
	24.5 Variable Declaration
	24.6 Import Declaration
	24.7 Ordering Specification
	24.8 Result Specification
	24.9 Grouping Specification
	24.10 Types
	24.11 Literals
	24.12 Names
	24.13 Keywords

	25 Items Deferred to the Next Release
	25.1 Nested Transactions
	25.2 Savepoint, Undosavepoint
	25.3 Inter-PersistenceManager References
	25.4 Enhancer Invocation API
	25.5 Prefetch API
	25.6 BLOB/CLOB datatype support
	25.7 Managed (inverse) relationship support
	25.8 Case-Insensitive Query
	25.9 String conversion in Query
	25.10 Read-only fields
	25.11 Enumeration pattern
	25.12 Non-static inner classes
	25.13 Projections in query
	25.14 LogWriter support
	25.15 New Exceptions
	25.16 Distributed object support
	25.17 Object-Relational Mapping

	26 JDO 1.0.1 Metadata
	26.1 ELEMENT jdo
	26.2 ELEMENT package
	26.3 ELEMENT class
	26.4 ELEMENT field
	Default persistence-modifier
	26.4.1 ELEMENT collection
	26.4.2 ELEMENT map
	26.4.3 ELEMENT array

	26.5 ELEMENT extension
	26.6 The Document Type Descriptor
	26.7 Example XML file

	Appendix A: References
	Appendix B: Design Decisions
	Appendix C: Revision History
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

